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Multipliers and hereditary subalgebras of operator algebras

by

Damon M. Hay (Huntsville, TX, and Jacksonville, FL)

Abstract. We generalize some technical results of Glicksberg to the realm of general
operator algebras and use them to give a characterization of open and closed projections in
terms of certain multiplier algebras. This generalizes a theorem of J. Wells characterizing
an important class of ideals in uniform algebras. The difficult implication in our main
theorem is that if a projection is open in an operator algebra, then the multiplier algebra
of the associated hereditary subalgebra arises as the closure of the subalgebra with respect
to the strict topology of the multiplier algebra of a naturally associated hereditary C∗-
subalgebra. This immediately implies that the multiplier algebra of an operator algebra A
may be obtained as the strict closure of A in the multiplier algebra of the C∗-algebra
generated by A.

1. Introduction. By an operator algebra we mean a norm closed subal-
gebra of the bounded operators on a Hilbert space. Abstractly, an operator
algebra is a norm closed subalgebra of a C∗-algebra, and this is how we
choose to regard them in this paper. In any case, there is no assumption
about the algebra being closed under the adjoint operation. The general
theory of such ‘nonselfadjoint’ or ‘general’ operator algebras is much less
developed than that of C∗-algebras. Many of the results in the general the-
ory of C∗-algebras are possible because C∗-algebras possess an abundance of
positive elements, whereas general operator algebras need not have any. Con-
sequently, C∗-algebras possess increasing contractive approximate identities,
whereas their nonselfadjoint subalgebras do not, necessarily. Nonetheless,
many of the important nonselfadjoint operator algebras do possess contrac-
tive approximate identities, though not necessarily increasing, and form a
class about which something can be said.

A commutative C∗-algebra may always be thought of as a C0(Ω)-space,
the algebra of continuous functions on a locally compact space Ω which
vanish at infinity. The ordering is obvious, but it is Urysohn’s lemma which
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enables one to really see the existence of approximate identities in the closed
ideals of the algebra. Taking the view that general C∗-algebras represent
‘noncommutative’ topological spaces, one could argue that the order struc-
ture and the existence of approximate identities actually ‘are’ the topology.
Indeed, in the general theory of C∗-algebras, order arguments and those
involving approximate identities abound.

Thinking of topology in terms of approximate identities can be turned
around. This is precisely what is done when one considers Akemann’s open
and closed projections in the second dual of a C∗-algebra. More specifically,
a projection p in the second dual A∗∗ of a C∗-algebra A is said to be an open
projection if it is the weak* limit of an increasing net in A. A projection
q in A∗∗ is said to be a closed projection if q⊥ := 1 − q is open. These
projections, which are defined using the order structure, allow one to view
algebraic objects topologically. The prototypical example of this is the result
which characterizes closed ideals in a C∗-algebra as exactly those subspaces
supported by an open projection.

Turning back to the commutative case, a function algebra is a norm
closed subalgebra of a C0(Ω)-space which we assume separates the points
of Ω. These are the spaces of which general operator algebras are the non-
commutative analogue, and in the study of function algebras one has access,
though limited, to the underlying topological space. For general nonselfad-
joint operator algebras, one lacks a robust order structure and the benefits
of an underlying topological space. Since every operator algebra sits inside
a C∗-algebra, this containing C∗-algebra can be viewed as the underlying
topological space. In this view one tries to do part of the work in the con-
taining C∗-algebra and hopes that after passing to the subalgebra things
still work out. With this approach, some of the general tools from the study
of uniform algebras can be made to work in the noncommutative case. An
example of this appears in [5] where norm closed one-sided ideals with con-
tractive approximate identities were characterized in terms of projections in
the second dual of the operator algebra which were open with respect to
the containing C∗-algebra. The main result of the present paper provides
another example of this phenomenon. Here we show that a certain topol-
ogy, namely the ‘strict’ topology, on the multiplier algebra of a C∗-algebra
passes usefully to a closed subalgebra which generates the C∗-algebra. Con-
sequently, one can obtain the multiplier algebra of an operator algebra in
terms of the multiplier algebra of the containing C∗-algebra.

For a function algebra A ⊂ C0(Ω), one may define the multiplier algebra
M(A) of A to be the space of bounded functions f on Ω such that fA ⊂ A.
It can be shown that multipliers are necessarily continuous functions, and
moreover, that M(A) is a closed unital subalgebra of Cb(Ω), the space of
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all bounded continuous functions on Ω, which is a commutative unital C∗-
algebra and is ∗-isomorphic to the C∗-algebra of continuous functions on
the Stone–Čech compactification of Ω. In the case that A = C0(Ω), we have
M(A) = Cb(Ω).

In addition to the norm topology associated with M(A), we may define
the strict topology on M(A) to be the locally convex topology generated by
seminorms of the form

f 7→ ‖fg‖
for all f ∈M(A) and g ∈ A. It is quite easy to show that A is strictly dense
inside M(A).

Suppose A is a uniform algebra on a compact Hausdorff space K, which
is a function algebra containing the constant functions. If J is a closed ideal
of A possessing a contractive approximate identity, then in [8] it is shown,
among other things, that the multiplier algebra M(J) of J is equal to the
closure of J inside Cb(EC) in the strict topology, where E is the closed
subset of K on which all elements of J vanish, and where EC denotes the
set complement of E. The space of all continuous functions on EC which
vanish at infinity, C0(EC), can be identified with a closed ideal I of C(K), so
that the multiplier algebra M(I) of I can be identified with Cb(EC). From
this perspective, J ⊂ I and M(J) equals the closure of J inside M(I) with
the strict topology relative to I. Conversely, given a closed set E, define J
(resp. I) to be the set of functions in A (resp. C(K)) which vanish on E.
If M(J) is the strict closure of J in M(I), then J is actually a closed ideal
possessing a contractive approximate identity. More precisely, Wells proves
the following theorem.

Theorem 1.1 (Wells [8]). Let E be a closed subset of a compact Haus-
dorff space K and let A be a uniform algebra on K. Denote by J the ideal
of functions in A which vanish on E. The following are equivalent:

(i) for every regular Borel measure µ on K and f ∈ A,�

K

f dµ = 0 ⇒
�

E

f dµ = 0 for all f ∈ A;

(ii) M(J) is the closure of J inside Cb(EC) with respect to the strict
topology associated with C0(EC);

(iii) the constant function 1 is in the strict closure of J in Cb(EC).

In this note we consider an analogous result when A is a closed unital
subalgebra of a C∗-algebra B, J is a closed hereditary subalgebra of A, and
I is an analogously associated hereditary C∗-subalgebra of B. See Theorem
1.3 below.

Multiplier algebras of C∗-algebras were introduced by Busby [3], and
those of general operator algebras with contractive approximate identities by



34 D. M. Hay

Poon and Ruan [6]. There are many equivalent definitions of the multiplier
algebra, but the one most suitable for our setting and techniques is in terms
of the second dual. Given an operator algebra A, selfadjoint or not, with
contractive approximate identity, the multiplier algebra M(A) may be taken
to be the unital operator algebra

{η ∈ A∗∗ : ηA ⊂ A and Aη ⊂ A}.
For more information on multipliers of operator algebras (and operator
spaces) see the monograph [2], and the references therein.

Let A be a unital subalgebra of a unital C∗-algebra B, with the same
unit, and let p ∈ A∗∗ be a projection. In [1], it is shown that the following
are equivalent:

(i) p ∈ (pA∗∗p ∩A)⊥⊥;
(ii) p is open as a projection in B∗∗;
(iii) p is the left support projection of a right ideal of A with left con-

tractive approximate identity;
(iv) p is the right support projection of a left ideal of A with right

contractive approximate identity.

A projection p ∈ A∗∗ satisfying these equivalent conditions will be said to be
open in A∗∗. The subalgebra D = pA∗∗p ∩A appearing in condition (i) will
be referred to as the hereditary subalgebra of A supported by p. Moreover,
this ‘HSA’ possesses a contractive approximate identity (et). If we let C be
the hereditary C∗-subalgebra of B supported by p, that is, C = pB∗∗p ∩B,
then D = A ∩ C and (et) is also a contractive approximate identity for C.

Lemma 1.2. Let p, D and C be as above with p open in A∗∗. Then
M(D) = {η ∈M(C) : ηD ⊂ D and Dη ⊂ D}.

Proof. Suppose that η ∈ M(D) and c ∈ C. Then etc → c, where (et) is
a contractive approximate identity of D and C. Then ηc = limt ηetc, which
must lie in C, since ηet ∈ D ⊂ C. Similarly, cη ∈ C, so that M(D) is
contained in {η ∈ M(C) : ηD ⊂ D and Dη ⊂ D}. On the other hand, if ν
belongs to this set, then D contains the nets (etν) and (νet) which converge
weak∗ to pν = ν = νp, so that ν ∈M(D).

More generally, suppose that C is given a priori as a hereditary C∗-
subalgebra of B with support projection p and D = A ∩ C. Then D is still
a closed subalgebra of A, but not necessarily a hereditary subalgebra of A,
nor does it necessarily possess an approximate identity. Nonetheless, we may
still consider the operator algebra

M(C : D) := {η ∈M(C) : ηD ⊂ D and Dη ⊂ D},
and if D is a hereditary subalgebra of A with support projection p, then
M(C : D) = M(D).
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The strict topology on M(C) is defined to be the topology generated by
seminorms of the form

η 7→ ‖ηb‖+ ‖cη‖,
for η ∈M(C) and b, c ∈ C. We denote this topology by βC . In general, the
strict topology on M(C) is weaker than the norm topology, and so strictly
continuous linear functionals on M(C) are uniformly continuous.

The main result of this paper is the following theorem, which is a non-
commutative version Theorem 1.1.

Main Theorem 1.3. Let A be a unital subalgebra of a C∗-algebra B
and let p be a projection which is open in B∗∗. Let C be the hereditary
C∗-subalgebra of B supported by p and set D = C ∩ A. The following are
equivalent:

(i) p is open in A∗∗;
(ii) M(C : D) equals the βC-closure of D in M(C);

(iii) p lies in the βC-closure of D inside M(C).

Moreover, if any of the above equivalent conditions hold, then D is a hered-
itary subalgebra of A and M(C : D) = M(D).

See Section 3 for the proof.

Corollary 1.4. Let A be closed subalgebra of a C∗-algebra B such that
A generates B as a C∗-algebra. If A has a contractive approximate identity,
then M(A) is the βB-closure of A inside M(B).

Proof. First, A is a hereditary subalgebra of A1, the unitization of A.
Since A generates B, the identity of A1 is that of B1 (the unitization of B),
and the HSA of B associated with 1 is just B. The result follows immedi-
ately.

Corollary 1.5. Let A be a unital subalgebra of a C∗-algebra B and let
p be a projection which is open in B∗∗. If C is the HSA of B supported by
p and D = C ∩A has an unbounded or bounded approximate identity which
is also an approximate identity for C, then D has an approximate identity
which is contractive.

Proof. If (et) is an approximate identity for D which is also such for C,
then for any c ∈ C, it follows that (etc) and (cet) converge to pc = c = cp
in norm. Hence, (et) converges to p in the βC-topology, so that p lies in the
βC-closure of D in M(C).

2. Functionals orthogonal to operator algebras. As before, let B
be a unital C∗-algebra and let A ⊂ B be a unital subalgebra. We have the
following completely isometric homomorphic relations:

A ⊂ A∗∗ ∼= A⊥⊥ ⊂ B∗∗.
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We will also use the following lemma frequently and without explicit men-
tion.

Lemma 2.1. Let A be a unital subalgebra of a C∗-algebra B. If q ∈ B∗∗
is a projection, then the following are equivalent:

(i) q ∈ Aw∗;
(ii) q ∈ A⊥⊥;

(iii) A⊥ is contained in (qA)⊥ (resp. (Aq)⊥);
(iv) A⊥ is contained in (qAq)⊥;
(v) µ ∈ A⊥ ⇒ µq ∈ A⊥ (resp. qµ ∈ A⊥);

(vi) µ ∈ A⊥ ⇒ qµq ∈ A⊥.

Proof. The equivalence of (i) and (ii) is a standard result of functional
analysis. For (ii)⇒(iii), suppose (ii) holds. By hypothesis, ψ(q) = 0 for all
ψ ∈ A⊥. Let ϕ ∈ A⊥. Then for each a ∈ A, aϕ ∈ A⊥. Thus ϕ(qa) = 0 for
all a ∈ A. Hence ϕ ∈ (qA)⊥, which gives (iii). For (iii)⇒(ii), we assume that
A⊥ ⊂ (qA)⊥, so that ((qA)⊥)⊥ ⊂ A⊥⊥. However, ((qA)⊥)⊥ = qA

w∗
= qA

w∗

which must contain q since A is unital. Hence, (ii) holds. For (iii)⇒(iv),
suppose that ϕ ∈ A⊥. Then by (iii), ϕq ∈ A⊥. By applying the other
condition in (iii) to ϕq, we then have qϕq ∈ A⊥. The proof of (iv)⇒(ii) is
similar to that of (iii)⇒(ii). The equivalence of (iii) and (v) is trivial, as is
that of (iv) and (vi).

Suppose J is a closed right ideal of A with a left contractive approximate
identity (et). For such J there exists an open projection p in B∗∗ which is
open in A∗∗, so that J = A ∩ pA∗∗. Moreover, (et) converges to p in the
weak∗ topology. Since p is an open projection in B∗∗, it supports a closed
right ideal I = B ∩ pB∗∗ of B. It is easy to see that I contains J and (et) is
a left contractive approximate identity for I.

If ϕ ∈ (qB)∗, then associated to ϕ is an element of B∗ defined by x 7→
ϕ(qx). We denote this naturally associated map by ϕq. The set (qB)∗q =
{ϕq : ϕ ∈ (qB)∗} is a subspace of B∗. We may also consider the spaces
(Bq)∗ and q(Bq)∗ analogously.

The following lemmas are the noncommutative versions of some results
due to Glicksberg [4] and are closely related to the subject of peak interpo-
lation for operator algebras.

Lemma 2.2. Let q ∈ B∗∗ be a closed projection such that µq ∈ A⊥ for
every µ ∈ A⊥. Then

‖ϕ+ (qA)⊥‖ ≤ ‖ϕq +A⊥‖ for all ϕ ∈ (qB)∗.

Proof. Let ϕ ∈ (qB)∗ and ψ ∈ A⊥. Then ψq ∈ A⊥ and we may also
regard ψq as an element of (qB)∗ (by viewing ψq as acting on B∗∗ and
then restricting to the subspace qB). Regarding ψq as such, we also have
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ψq ∈ (qA)⊥ ⊂ (qB)∗. If I is the right ideal in B supported by q⊥, then for
qb ∈ Ball(qB), we have ‖qb‖ = ‖b+ I‖. Since right ideals are proximinal in
a C∗-algebra, it follows that there exists a ∈ I such that ‖qb‖ = ‖b + I‖ =
‖b + a‖. Since q(b + a) = qb and ‖b + a‖ ≤ 1, by replacing b with b + a, it
follows that

‖ϕ+ ψq‖(qB)∗ = sup{|ϕ(qb) + ψ(qb)| : b ∈ Ball(B)}.

However, taking a net (ft) ⊂ Ball(B) converging to q weak∗ with qft = q,
for b ∈ Ball(B), we have

|ϕ(qb) + ψ(qb)| = lim
t
|ϕ(qftb) + ψ(ftb)| ≤ ‖ϕq + ψ‖B∗ .

The last inequality follows from |ϕ(qftb)+ψ(ftb)| ≤ ‖ϕq+ψ‖B∗‖ftb‖. Hence,
‖ϕ+ψq‖(qB)∗ ≤ ‖ϕq+ψ‖B∗ , and thus, ‖ϕ+ (qA)⊥‖ ≤ ‖ϕq+ψ‖B∗ . Taking
the infimum over all ψ ∈ A⊥ yields ‖ϕ+ (qA)⊥‖ ≤ ‖ϕq +A⊥‖.

Lemma 2.3. Let q be a closed projection in B∗∗ such that µq ∈ A⊥ for
all µ ∈ A⊥. If J = q⊥A∗∗ ∩A, then J⊥ = A⊥ + (qB)∗q.

Proof. Let ρ+µq ∈ A⊥+(qB)∗q, where ρ ∈ A⊥ and µ ∈ (qB)∗. Then for
a ∈ J we have ρ(a) = 0 and (µq)(a) = µ(qa) = µ(0) = 0. Thus, A⊥+(qB)∗q
is contained in J⊥.

We now show that the weak∗ closure of A⊥ + (qB)∗q is all of J⊥. So
suppose that b ∈ (A⊥ + (qB)∗q)⊥. Then ρ(b) = 0 for all ρ ∈ A⊥ and
µ(qb) = (µq)(b) = 0 for all µ ∈ (qB)∗. Thus, b ∈ (A⊥)⊥ = A, and qb = 0,
so that b ∈ J . Therefore, (A⊥ + (qB)∗q)⊥ ⊂ J , from which it follows that
A⊥ + (qB)∗q is weak∗ dense in J⊥.

To finish the proof it now suffices to show that A⊥ + (qB)∗q is weak∗

closed. By Goldstine’s theorem, we only need to show that the unit ball of
A⊥ + (qB)∗q is weak∗ closed. Suppose that ϕ is the weak∗ limit of a net
(µt + νtq) in the unit ball of A⊥ + (qB)∗q, where µt ∈ A⊥ and νt ∈ (qB)∗.
By Lemma 2.2,

‖νt + (qA)⊥‖ ≤ ‖νtq +A⊥‖.

Therefore, ‖νt+ (qA)⊥‖ ≤ ‖νtq+µt‖, and there exists ψt ∈ (qA)⊥ such that

‖νt − ψt‖ < ‖νt + (qA)⊥‖+ 1 ≤ ‖νtq + µt‖+ 1 ≤ 2.

By weak∗ compactness, (νt − ψt) has a limit point ν in (qB)∗. However,

µt + ψtq = (µt + νtq)− (νtq − ψtq) = (µt + νtq)− (νt − ψt)q,

so that a subnet of (µt + ψtq) converges to ϕ − νq. Since ψt ∈ (qA)⊥, it
follows that ψtq ∈ A⊥, so that ϕ−νq lies in A⊥. Therefore, ϕ ∈ A⊥+(qB)∗,
which shows that A⊥ + (qB)∗ is weak∗ closed.

The following is an HSA variant of the previous lemma.
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Lemma 2.4. Let q be a closed projection in B∗∗ such that µq ∈ A⊥ for
all µ ∈ A⊥. If D = q⊥A∗∗q⊥ ∩A, then D⊥ = A⊥ + (qB)∗q + q(Bq)∗.

Proof. Set p = q⊥, and let J = pA∗∗ ∩ A and K = A∗∗p ∩ A. It is clear
that K⊥ + J⊥ ⊂ D⊥. We show the other containment. We argue as in the
proof of Theorem 2.4 of [1] to get (qA∗ + A∗q)⊥ = pA∗∗p. Since qA∗ + A∗q
is shown to be weak∗ closed there, it follows that qA∗ +A∗q = (pA∗∗p)⊥. If
ϕ ∈ D⊥, then by a weak∗ continuity argument, it follows that ϕ ∈ (pA∗∗p)⊥.
Thus, there exist ψ1, ψ2 ∈ A∗ such that ϕ = qψ1 + ψ2q. Moreover, after
extending ψ1 and ψ2 to B, it is easy to see that qψ1 and ψ2q lie in K⊥

and J⊥, respectively. So D⊥ = K⊥ + J⊥. By Lemma 2.3 and a left-handed
variant of it, we have J⊥ = A⊥ + (qB)∗q and K⊥ = A⊥ + q(Bq)∗. Putting
these two together gives the desired result.

We close this section by stating a variant of a theorem due to D. C.
Taylor which is needed in the next section. It relates strictly continuous
linear functionals on the multiplier algebra to bounded linear functionals.

Theorem 2.5 (Taylor [7]). If C is a C∗-algebra, then the βC-continuous
linear functionals on M(C) are precisely those functionals on M(C) of the
form cµb for b, c ∈ C and µ ∈M(C)∗.

Here we are using the natural left and right module actions of C on
M(C)∗. For example, if µ ∈ C∗ and c ∈ C, then (cµ)(x) = µ(xc) for all
x ∈M(C).

We can now prove our main theorem.

3. Proof of Theorem 1.3. For (i)⇒(ii), we first note that (i) implies
that p ∈ D⊥⊥ so that D has a contractive approximate identity. Thus,
M(D) = M(C : D). Let η be in the βC-closure of D ⊂ M(C) and suppose
that (at) is a net in D converging βC-strictly to η. Then for b ∈ D ⊂ C, we
see that atb converges to ηb in norm. However, atb is an element of D, which
is norm closed. Hence, ηb ∈ D, and a similar argument shows that bη ∈ D,
so that η ∈M(C : D). Thus, DβC ⊂M(C : D).

Now suppose that η is in M(C : D) but not in DβC . Then there is a βC-
continuous linear functional ϕ on M(C) such that ϕ(η) = 1 and ϕ(D) = 0.
However, by the result of Taylor above, there exist b0, c0 ∈ C and λ0 ∈
M(C)∗ such that ϕ = c0λ0b0. Define ρ ∈ B∗ by ρ(x) = λ0(b0xηc0) for all
x ∈ B. To see that this is well-defined, let x ∈ B. Since η is a multiplier
of C, we have ηc0 ∈ C, and because C is an inner ideal of B, it follows that
b0xηc0 ∈ C.

Moreover, we also have

ρ(1) = λ0(b01ηc0) = ϕ(η) = 1,
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and for a ∈ D,
ρ(a) = λ0(b0aηc0) = ϕ(aη) = 0,

since aη ∈ D. Thus, ρ ∈ D⊥. Set q = p⊥. From the definition of ρ and the
fact that b0q = qc0 = 0, it is also clear that qρq = qρ = ρq = 0.

By Lemma 2.4 there exist µ ∈ A⊥ and ψ1 ∈ (qB)∗ and ψ2 ∈ (Bq)∗ such
that ρ = µ+ ψ1q + qψ2. Since p+ q = 1, we may write

µ+ ψ1q + qψ2 = µ+ pψ1q + qψ1q + qψ2p+ qψ2q

= µ+ pψ1q + qψ2p+ (qψ1q + qψ2q).

Since we are assuming (i) holds, we have µq, qµ, qµq ∈ A⊥. Pre- and post-
multiplying ρ by q leads to

0 = qρq = qµq + (qψ1q + qψ2q),

so that qψ1q + qψ2q ∈ A⊥. Only pre-multiplying ρ by q leads to

0 = qρ = qµ+ qψ2p+ (qψ1q + qψ2q),

so that qψ2p ∈ A⊥. Finally, post-multiplying by q gives

0 = ρq = pψ1q + (qψ1q + qψ2q),

so that pψ1q ∈ A⊥. We conclude that ρ ∈ A⊥, which contradicts ρ(1) = 1.
(ii)⇒(iii) is obvious.
(iii)⇒(i). It suffices to show that p ∈ D⊥⊥. Suppose there exists a net

(at) in D which converges βC-strictly to p. If p is not in D⊥⊥, there exists a
ϕ ∈ B∗ such that ϕ(p) = 1, yet ϕ(D) = 0. Restricting ϕ to C, there exists
c0 ∈ C and λ0 ∈ C∗ such that ϕ|C = c0λ0. Then

0 = ϕ(at) = λ0(atc0),

which converges to λ0(pc0) = λ0(c0), so that λ0(c0) = 0. If (es) is a contrac-
tive approximate identity for C, then ϕ(p) = lims ϕ(es) = lims λ0(esc0) =
lims λ0(c0) = 0, a contradiction. This completes the proof.
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