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Abstract. Disjointification inequalities are proven for arbitrary martingale difference
sequences and conditionally independent random variables of the form {fk(s)xk(t)}n

k=1,
where fk’s are independent and xk’s are arbitrary random variables from a symmetric
space X on [0, 1]. The main results show that the form of these inequalities depends on
which side of L2 the space X lies on. The disjointification inequalities obtained allow us
to compare norms of sums of martingale differences and non-negative random variables
with the norms of sums of their independent copies. The latter results can be treated as
an extension of the modular inequalities proved earlier by de la Peña and Hitczenko to the
setting of symmetric spaces. Moreover, using these results simplifies the proofs of some
modular inequalities.

1. Introduction. In 1970, H. P. Rosenthal proved a remarkable in-
equality [29] from which it follows that for sequences of independent mean
zero random variables in Lp[0, 1], p ≥ 2, the mapping fk 7→ f̄k, where
f̄k(t) := fk(t− k+ 1)χ[k−1,k)(t) (t > 0), extends to an isomorphism between
the closed linear span [fk]∞k=1 (in Lp[0, 1]) and the closed linear span [f̄k]∞k=1
(in Lp[0,∞)∩L2[0,∞)). A significant generalization of this disjointification
inequality to the class of symmetric spaces X on [0, 1] is due to W. B. John-
son and G. Schechtman [21]. In particular, they introduced the symmetric
space ZpX on [0,∞) (Note: Our notation differs from that used in [21]) which
can be defined as the space of all functions f ∈ L1[0,∞)+L∞[0,∞) such that
‖f‖Zp

X
:= ‖f∗χ[0,1]‖X + ‖f∗χ[1,∞)‖p < ∞, where f∗ is the non-increasing

rearrangement of f (see details in Section 2.1). In [21], they showed that any
sequence {fk}∞k=1 of independent mean zero random variables in X is equiv-
alent to the sequence of its disjoint translates {f̄k}∞k=1 in Z2

X provided that
X contains an Lp-space for some p < ∞. Moreover, Johnson and Schecht-
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man proved analogous results for positive independent random variables but
with the space Z1

X in place of Z2
X .

More recently, an extension of the results of Johnson and Schechtman (for
mean zero and non-negative independent random variables) was obtained by
introducing a new approach [7, 8]. This approach involves a positive linear
operator K : L1[0, 1]→ L1[0, 1] whose definition is based on some probabilis-
tic constructions of V. M. Kruglov [24] (see also M. Sh. Braverman [12]). The
application of this operator enabled the extension of the results of Johnson
and Schechtman to symmetric spaces with the Kruglov property, i.e., the
symmetric spaces X on which the operator K acts boundedly (see details
in Section 2.2). This is a far less restrictive condition than the assumption
that X ⊃ Lp for some p < ∞. For example, the exponential Orlicz space
Exp(Lp), 0 < p ≤ 1, which has the Kruglov property, does not contain any
Lp-space with p <∞ (see e.g. [7]).

In this paper, we replace the setting of independent random variables
with more general cases: that of arbitrary martingale difference sequences
and a special case of conditionally independent random variables. It should
first be noted that D. L. Burkholder [14] previously derived a different gener-
alization of Rosenthal’s inequality, proving a square-function-type inequality
for martingale difference sequences in Lp-spaces with p ≥ 2. The inequalities
which we present in this paper are one-sided disjointification inequalities in
general symmetric spaces and may in some sense be viewed as an extension
of these square function inequalities. We note, in passing, that two-sided
disjointification inequalities for martingale difference sequences hold if and
only if X = L2 (Corollary 3.8).

In the second case, we consider conditionally independent random vari-
ables of the form {fk(s)xk(t)}nk=1, s, t ∈ [0, 1], where fk’s are independent
and xk’s are arbitrary random variables from a symmetric space X on [0, 1].
In this case, we fall back to the operator approach from [7, 8, 9]. This time,
however, we require a modification of the operator K to the operator K⊗1X
on L1([0, 1]× [0, 1]) whose precise definition and properties are given in Sec-
tion 4. Using this new operator, we obtain stronger one-sided disjointification
inequalities than that for martingale difference sequences in the case when
fk’s satisfy the condition

∑n
k=1 λ(supp fk) ≤ 1, with λ the usual Lebesgue

measure (see Theorems 5.3 and 5.5).
The inequalities obtained have some interesting applications, given in

Section 6. Firstly, they allow us to compare martingale difference sequences
and non-negative random variables to their independent copies. The latter
results can be treated as an extension of modular inequalities proved ear-
lier by de la Peña in [17] and Hitczenko in [18] to the setting of symmetric
spaces. Furthermore, these results then provide a simple method for proving
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modular inequalities similar to those established in [17] and [18]. In partic-
ular, we eliminate the need for the Hoffmann–Jörgensen inequality required
in [18], where some comparison results for non-negative random variables in
symmetric spaces were obtained by using the concept of tangent sequences
of random variables.

2. Preliminaries

2.1. Symmetric spaces. In this paper, we shall denote by S(Ω)
(= S(Ω,µ)) the linear space of all measurable finite a.e. functions on a given
measure space (Ω,µ) equipped with the topology of convergence locally in
measure. In particular, the interval [0, α), 0 < α ≤ ∞, will be considered
with the usual Lebesgue measure λ.

Definition 2.1. A Banach space (X, ‖·‖X) of real-valued Lebesgue-
measurable functions (with identification λ-almost everywhere) on the in-
terval [0, α), 0 < α ≤ ∞, will be called symmetric if

(1) X is an ideal lattice, i.e., whenever y ∈ X and x ∈ S[0, α) with
0 ≤ |x| ≤ |y|, then x ∈ X and ‖x‖X ≤ ‖y‖X ;

(2) whenever x, y ∈ S[0, α) are such that

λ({s ∈ [0, α) : |x(s)| > t}) = λ({s ∈ [0, α) : |y(s)| > t}) (t > 0)

(we will say in this case that the functions |x| and |y| are equimea-
surable) and y ∈ X, then x ∈ X and ‖x‖X = ‖y‖X .

Also, if X is a symmetric space on I = [0, 1] then X(I × I) is the
corresponding symmetric space on the square with the norm ‖x‖X(I×I) =
‖x∗‖X . Here, x∗ denotes the non-increasing, left-continuous rearrangement
of x, which is equimeasurable with |x| and given by

x∗(t) = inf{τ > 0 : λ2({(u, v) : |x(u, v)| > τ}) < t}, t > 0,

where λ2 is the 2-dimensional Lebesgue measure on I × I.
Important examples of symmetric spaces are Lorentz (including Lp,q

spaces) and Orlicz spaces, which will be denoted by Λψ and LM respec-
tively. For more detailed information about these spaces and other basic
properties of symmetric spaces, we refer to [25, 23, 12].

The following symmetric space ZpX introduced in [19] (see also [21]) will
play an important role in this paper.

Definition 2.2. For an arbitrary symmetric space X on [0, 1] and any
p ∈ [1,∞], we define the function space ZpX on [0,∞) by

ZpX := {f ∈L1[0,∞)+L∞[0,∞) : ‖f‖Zp
X

:= ‖f∗χ[0,1]‖X +‖f∗χ[1,∞)‖p<∞}.
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The Köthe dual X ′ of a symmetric space X on the interval [0, α) consists
of all measurable functions y for which

‖y‖X′ = sup
{ α�

0

|x(t)y(t)| dt : x ∈ X, ‖x‖X ≤ 1
}
<∞.

Basic properties of Köthe duality can be found in [25] and [23].
We say that X has

(1) order continuous norm if from {xk}∞k=1 ⊆ X, xk ↓k 0 a.e. on [0, α) it
follows that ‖xk‖X → 0;

(2) order semicontinuous norm if from {xk}∞k=1 ⊆ X, x ∈ X and xk → x
a.e. on [0, α) it follows that ‖x‖X ≤ lim infn→∞‖xn‖X ;

(3) the Fatou property if from {xk}∞k=1 ⊆ X, xk → x a.e. on [0, α) and
supk‖xk‖X <∞ it follows that x∈X and ‖x‖X ≤ lim infk→∞‖xk‖X .

For a concise summary of how these properties relate to the properties of X
see [10, Section 2].

Throughout the paper, we will denote by I(A,B) the set of all 1-inter-
polation spaces (see e.g. [11, 23, 25]) between symmetric spaces A and B. For
a sequence of functions {fk}∞k=1 ⊆ X(I), consider their disjoint translates

f̄k(t) := fk(t− k + 1)χ[k−1,k)(t), t > 0.

Analogously, if {fk(t)xk(s)}∞k=1 ⊆ X(I × I), then

fk(t)xk(s) := (fkxk)∗(t− k + 1)χ[k−1,k)(t), t > 0.

Finally, if X is a symmetric function space on [0, 1] or [0,∞), the Boyd
indices pX and qX are defined by

pX = lim
s→∞

log s
log ‖σs‖

= sup
s>1

log s
log ‖σs‖

,

qX = lim
s→0+

log s
log ‖σs‖

= sup
0<s<1

log s
log ‖σs‖

,

where σa : X → X, a > 0, is the dilation operator defined by σax(t) :=
x(t/a) if X is a symmetric space on [0,∞), while for [0, 1] we set

σax(t) =
{
x(t/a) for 0 ≤ t ≤ min{1, a},
0 for min{1, a} < t ≤ 1.

2.2. The Kruglov property and the operator K. In this section,
let X denote a symmetric space on [0, 1].

Let f be a measurable function (random variable) on [0, 1]. By π(f) we
denote a random variable

∑N
i=1 fi where fi’s are independent copies of f

and N is a Poisson random variable with parameter 1 independent of the
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sequence {fi}. The characteristic function of π(f) is given by

ϕπ(f)(t) = exp
( ∞�
−∞

(eitx − 1) dFf (x)
)

where Ff is the distribution function of f [12, p. 7].
The following definition is due to Braverman [12, Definition 1.4, p. 11].

Definition 2.3. A symmetric space is said to have the Kruglov property
(X ∈ K) if

f ∈ X ⇔ π(f) ∈ X.

It was noted in [12, p. 11] that only the implication f ∈ X ⇒ π(f) ∈ X is
non-trivial. It is known that a symmetric space X has the Kruglov property
if X ⊃ Lp for some p < ∞ [12, p. 16]. In particular, this is satisfied by
symmetric spaces with non-trivial upper Boyd index, i.e. qX <∞. However,
some exponential Orlicz spaces which do not contain Lp for any p <∞ also
have this property. For a detailed discussion of this property and its relation
to various geometric properties of Banach spaces, we refer to [10].

There is an operator K defined on S([0, 1], λ) which is closely linked to
the Kruglov property (see [7, 8, 9]). Throughout this paper we write

(G, ν) :=
∞∏
k=0

([0, 1], λk)

where λk is the Lebesgue measure on [0, 1] for all k ≥ 0.

Definition 2.4. Let {Am} be a sequence of pairwise disjoint subsets of
[0,1] with λ(Am) = 1/(e ·m!), m ∈ N. Given an f ∈ S([0, 1], λ), we set

Kf(ω0, ω1, . . . ) :=
∞∑
m=1

m∑
j=1

f(ωj)χAm(ω0).

Since we work only with symmetric spaces, the main object of interest is
the distribution of the function Kf . Hence we can also consider the following
equivalent form of the operator K.

If f ∈ S([0, 1], λ) and {fm,j}mj=1, m ∈ N, is a sequence of measurable
functions on [0, 1] such that for every m ∈ N, fm,1, fm,2, . . . , fm,m, χAm are
independent random variables with Ffm,j

= Ff , j = 1, . . . ,m, then we write

(2.1) K′f(x) :=
∞∑
m=1

m∑
j=1

fm,j(x)χAm(x), x ∈ [0, 1].

Since for all f ∈ S([0, 1], λ) and t ∈ R,

ν{(ω0, ω1, . . . ) ∈ G : Kf(ω0, ω1, . . . ) > t} = λ{s ∈ [0, 1] : K′f(s) > t},
we can regard K as an operator acting from S([0, 1], λ) to S([0, 1], λ).
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It was shown in [7] that if X is a symmetric space on [0, 1], then the
operator K maps X boundedly into itself if and only if X ∈ K. In fact,
in [7–10], the operator K is shown to play an important role in estimating
the norms of sums of independent random variables by the norms of the
sums of their disjoint translates. In Section 4, we show how an extended
version of the operator K plays a similar role for conditionally independent
random variables.

To do so, we will need to move into Banach function spaces with mixed
norm (see, for example, [22, §11.1, p. 400]). Let X be a Banach lattice
and Y be a Banach lattice with order semicontinuous norm on I = [0, 1].
The space with mixed norm X[Y ] consists of all functions x(s, t) measurable
on the square I × I and satisfying the conditions: (1) x(s, ·) ∈ Y for a.e.
s ∈ I; (2) ϕx(s) = ‖x(s, ·)‖Y ∈ X. Then X[Y ] endowed with the norm
‖x‖X[Y ] = ‖ϕx‖X is a Banach lattice on I × I.

3. Disjointification of martingale differences. In this section we
establish one-sided disjointification inequalities for martingale difference se-
quences (mds) in symmetric spaces. The main results, Theorems 3.1 and
3.5, give necessary and sufficient conditions for the right-hand side and left-
hand side disjointification inequalities respectively. We will also show that
the form of these inequalities essentially depends on which side of L2 the
space X lies on.

Let X be a symmetric space on [0, 1]. Denote by X̃(l2) the set of all
sequences {xk}∞k=1 of functions from X such that

‖{xk}‖X̃(l2)
:= sup

n=1,2,...

∥∥∥( n∑
k=1

x2
k

)1/2∥∥∥
X
<∞.

The closed subspace of X̃(l2) generated by the set of all eventually vanishing
sequences {xk} will be denoted by X(l2).

Before stating the main result for the right-hand side disjointification
inequality for mds (see (3.2)), we need to define a linear operator which acts
on the space S(0,∞) into the space of sequences of functions from S(0, 1) by

(3.1) Bx(t) := {x(t+ k − 1)}∞k=1 (0 ≤ t ≤ 1).

It turns out that the boundedness of the operator B gives a necessary and
sufficient condition for the right-hand disjointification inequality.

Theorem 3.1. Let X be a symmetric space on [0, 1] such that qX <∞.
The following conditions are equivalent:

(i) B is bounded from Z2
X into X̃(l2);

(ii) there exists C > 0 such that for any mds {dk}nk=1 ⊂ X we have
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(3.2)
∥∥∥ max
k=1,...,n

∣∣∣ k∑
i=1

di

∣∣∣∥∥∥
X
≤ C

∥∥∥ n∑
i=1

d̄i

∥∥∥
Z2

X

;

(iii) there exists C > 0 such that for any sequence {xk}nk=1 ⊂ X we have

(3.3)
∥∥∥ n∑
i=1

ri(t)xi(s)
∥∥∥
X(I×I)

≤ C
∥∥∥ n∑
i=1

x̄i

∥∥∥
Z2

X

,

where {ri} are the Rademacher functions, i.e., ri(t) = sign(sin 2iπt)
(i = 1, 2, . . . ) for t ∈ [0, 1].

Proof. If (i) holds, then

(3.4)
∥∥∥( n∑

i=1

d2
i

)1/2∥∥∥
X

=
∥∥∥B( n∑

i=1

d̄i

)∥∥∥
X̃(l2)

≤ ‖B‖
Z2

X→X̃(l2)

∥∥∥ n∑
i=1

d̄i

∥∥∥
Z2

X

for any mds {dk}nk=1 ⊂ X. The assumption qX <∞ then allows us to apply
[20, Theorem 3] to get∥∥∥ max

k=1,...,n

∣∣∣ k∑
i=1

di

∣∣∣∥∥∥
X
≤ C1

∥∥∥( n∑
i=1

d2
i

)1/2∥∥∥
X

for any mds {dk}nk=1 ⊂ X. Combining this with (3.4) we obtain (3.2).
Since the Rademacher functions {ri} are independent, the implication

(ii)⇒(iii) is trivial. So it remains to prove (iii)⇒(i). By a well-known con-
sequence of the Khintchine inequality [25, 2.d.1], for every symmetric space
X there is a constant c > 0 such that∥∥∥ n∑

i=1

ri(t)xi(s)
∥∥∥
X(I×I)

≥ c
∥∥∥( n∑

i=1

x2
i

)1/2∥∥∥
X
.

Therefore, from (3.3), it follows that∥∥∥( n∑
i=1

x2
i

)1/2∥∥∥
X
≤ C

∥∥∥ n∑
i=1

x̄i

∥∥∥
Z2

X

for every sequence {xk}nk=1 ⊂ X. It is clear that this is equivalent to (i).

The following result is an easy consequence of Theorem 3.1 and
[5, Lemma 3.5] which asserts that if X is a symmetric space on [0, 1],

X ∈ I(L1, L2), then the operator B is bounded from Z2
X into X̃(l2).

Corollary 3.2. Let X be a symmetric space on [0, 1], X ∈ I(L1, L2).
Then there exists a constant C > 0 such that (3.2) holds for every mds
{dk}nk=1 ⊂ X.

In the following corollary, we consider a special case of mds, which is
related to the conditionally independent random variables we study in Sec-
tion 5.
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Corollary 3.3. Let X be a symmetric space on [0, 1], X ∈ I(L1, L2).
Then there exists a constant C > 0 such that for every sequence {fk}nk=1 ⊂ X
of mean zero independent functions and arbitrary sequence {xk}nk=1 ⊂ X we
have

(3.5)
∥∥∥ max
k=1,...,n

∣∣∣ k∑
i=1

fi(s)xi(t)
∣∣∣∥∥∥
X(I×I)

≤ C
∥∥∥ n∑
i=1

fi(s)xi(t)
∥∥∥
Z2

X

.

Proof. It is sufficient to note that the sequence {fi(s)xi(t)}ni=1 is an mds
with respect to the increasing sequence of σ-algebras, {Σk}nk=1, of subsets
of the square I × I where Σk is generated by the functions {fi(s)xi(t)}ki=1

(k = 1, . . . , n), and apply the previous corollary.

Let us show that any of the conditions of Theorem 3.1 implies that
X ⊃L2.

Theorem 3.4. Let X be a symmetric space on [0, 1] that is separable or

has the Fatou property. If the operator B is bounded from Z2
X into X̃(l2),

then X ⊃ L2.

Proof. Without loss of generality, we may (and will) assume that
‖χ[0,1]‖X = 1. Suppose, on the contrary, that X 6⊃ L2. Since X either
has the Fatou property or is separable, for every M > 0 there is a step
function x(t) =

∑m
j=1 ajχEj (t) such that the sets Ej ⊂ [0, 1] are pairwise

disjoint, aj ≥ 0 (j = 1, . . . ,m), ‖x‖L2 = 1, and ‖x‖X ≥ M + 1. Denote
y(t) =

∑m
j=1[aj ]χEj (t), where [a] is the integer part of a real number a.

Then x = y + z, where |z(t)| ≤ 1. Therefore, by the previous inequality,

(3.6) ‖y‖X ≥M.

Setting yi(t) := min(y(t)2, i) and fi = yi − yi−1 (i = 1, 2, . . . ), where
y0 = 0, we deduce that y(t)2 =

∑l
i=1 fi(t) for some l ≥ 1. Since fi’s are

indicator functions of some measurable subsets of [0, 1], we see that f :=∑l
i=1 f̄i is the indicator function of a measurable subset of (0,∞) whose

Lebesgue measure equals
∑m

j=1[aj ]2λ(Ej). Hence,

‖f‖Z2
X

= ‖f∗χ[0,1]‖X + ‖f∗χ[1,∞)‖L2

≤ 1 +
( m∑
j=1

[aj ]2λ(Ej)
)1/2

≤ 1 + ‖x‖L2 ≤ 2.

On the other hand, since
∑l

i=1 fi(t) =
∑l

i=1 fi(t)
2, t > 0, we have

y(t) =
( m∑
j=1

[aj ]2χEj (t)
)1/2

=
( l∑
i=1

fi(t)2
)1/2

.

Thus, by (3.6),
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‖Bf‖
X̃(l2)

=
∥∥∥( l∑

i=1

fi(t)2
)1/2∥∥∥

X
= ‖y‖X ≥M.

Since M can be arbitrarily large and ‖f‖Z2
X
≤ 2 independently of M , this

contradicts our assumption on the boundedness of B and the proof is com-
plete.

Now consider the converse of inequalities (3.2) and (3.5). In this case,
the boundedness of the operator A defined below provides a necessary and
sufficient condition for the inequalities to hold.

Let X be a symmetric space on [0, 1]. Define on X(l2) the following linear
operator acting into the set S(0,∞):

A({xk})(u) :=
∞∑
k=1

xk(u− k + 1)χ[k−1,k)(u).

The proof of Theorem 3.5 is very similar to the proof of Theorem 3.1 and
is therefore omitted.

Theorem 3.5. Let X be a symmetric space on [0, 1] such that qX <∞.
The following conditions are equivalent:

(i) the operator A is bounded from X(l2) into Z2
X ;

(ii) there exists C > 0 such that for any mds {dk}nk=1 ⊂ X we have

(3.7)
∥∥∥ n∑
i=1

d̄i

∥∥∥
Z2

X

≤ C
∥∥∥ max
k=1,...,n

∣∣∣ k∑
i=1

di

∣∣∣∥∥∥
X

;

(iii) there exists C > 0 such that for any sequence {xk}nk=1 ⊂ X we have

(3.8)
∥∥∥ n∑
i=1

x̄i

∥∥∥
Z2

X

≤ C
∥∥∥ n∑
i=1

ri(t)xi(s)
∥∥∥
X(I×I)

.

The following corollary is the analogue of Corollaries 3.2 and 3.3 for the
left-hand side inequality.

Corollary 3.6. Let X be a symmetric space on [0, 1] with order semi-
continuous norm such that qX < ∞ and X ∈ I(L2, L∞). Then there exists
a constant C > 0 such that (3.7) holds for every mds {dk}nk=1 ⊂ X.

In particular, for every sequence {fk}nk=1 ⊂ X of mean zero independent
functions and arbitrary sequence {xk}nk=1 ⊂ X we have

(3.9)
∥∥∥ n∑
i=1

fi(t)xi(s)
∥∥∥
Z2

X

≤ C
∥∥∥ max
k=1,...,n

∣∣∣ k∑
i=1

fi(t)xi(s)
∣∣∣∥∥∥
X(I×I)

.

Proof. By Theorem 3.5, it suffices to show that the operatorA is bounded
from X(l2) into Z2

X for spaces X satisfying the conditions above.
Firstly, it is easy to check that the space Z2

X has order semicontinuous
norm as X does. Therefore, from the equality (Z2

X)′ = Z2
X′ (see for instance
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[5, Lemma 3.3]), it follows that

(3.10) ‖A({xk})‖Z2
X

= sup
‖y‖

Z2
X′
≤1

∣∣∣∞�
0

A({xk})(u)y(u) du
∣∣∣

for every {xk}∞k=1 ∈ X(l2).
Moreover, for any {xk}∞k=1 ∈ X(l2) and any y ∈ Z2

X′ we have

(3.11)
∞�

0

A({xk})(u)y(u) du =
∞∑
k=1

1�

0

(By)k(u)xk(u) du,

which follows from
∞�

0

A({xk})(u)y(u) du =
∞�

0

∞∑
k=1

xk(u− k + 1)χ[k−1,k)(u)y(u) du

=
∞∑
k=1

k�

k−1

xk(u− k + 1)y(u) du

=
∞∑
k=1

1�

0

y(u+ k − 1)xk(u) du

=
∞∑
k=1

1�

0

(By)k(u)xk(u) du.

Since (L2, L∞) is a K-monotone couple [13, 4.4.38] and L′2+L′∞ = L2+L1

is separable, it follows from [27, Theorem 4.1] that X ′ ∈ I(L1, L2). Hence,

by [5, Lemma 3.5], the operator B is bounded from Z2
X′ into X̃ ′(l2). Then,

using (3.10) and (3.11), we obtain

‖A({xk})‖Z2
X
≤ sup
‖y‖

Z2
X′
≤1

∣∣∣ ∞∑
k=1

1�

0

(By)k(u)xk(u) du
∣∣∣

≤ sup
‖y‖

Z2
X′
≤1

sup
n=1,2,...

(∥∥∥( n∑
k=1

(By)2k
)1/2∥∥∥

X′
·
∥∥∥( n∑

k=1

x2
k

)1/2∥∥∥
X

)
≤ sup
‖y‖

Z2
X′
≤1
‖By‖

X̃′(l2)
‖{xk}‖X(l2) = ‖B‖ ‖{xk}‖X(l2).

Therefore, A is bounded from X(l2) into Z2
X and the proof is complete.

Next, we show that any of the conditions of Theorem 3.5 implies that
X ⊂ L2.

Theorem 3.7. Let X be a symmetric space on [0, 1] that is separable or
has the Fatou property. If the operator A is bounded from X(l2) into Z2

X ,
then X ⊂ L2.
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Proof. We claim that the operator B is bounded from Z2
X′ into X̃ ′(l2).

In fact, for any y ∈ Z2
X′ and n ∈ N,∥∥∥( n∑

k=1

(By)2k
)1/2∥∥∥

X′
= sup
‖x‖X≤1

1�

0

( n∑
k=1

(By)k(u)2
)1/2

x(u) du.

It is clear that there are measurable functions zk(t) (k = 1, . . . , n) such that∑n
k=1 z

2
k(u) = 1 (0 ≤ u ≤ 1) and( n∑

k=1

(By)k(u)2
)1/2

=
n∑
k=1

(By)k(u)zk(u) (0 ≤ u ≤ 1).

If x ∈ X and xk = xzk (k = 1, . . . , n) and xk = 0 (k > n), then {xk} ⊂ X(l2)
and ‖{xk}‖X(l2) = ‖x‖X . Therefore,∥∥∥( n∑

k=1

(By)2k
)1/2∥∥∥

X′
≤ sup
‖{xk}‖X(l2)≤1

n∑
k=1

1�

0

(By)k(u)xk(u) du.

Hence, by hypothesis and equality (3.11),

‖By‖
X̃′(l2)

= sup
n=1,2,...

∥∥∥( n∑
k=1

(By)2k
)1/2∥∥∥

X′
≤ ‖A‖ · ‖y‖Z2

X′
,

and our claim is proved.
Therefore, we can apply Theorem 3.4 and conclude that X ′ ⊃ L2, or

equivalently, X ′′ ⊂ L2. This implies X ⊂ L2 and the proof is complete.

The following corollary is an immediate consequence of Theorems 3.1,
3.4, 3.5 and 3.7. It shows, in contrast to the case of sequences of independent
random variables ([8, Theorem 3.1] and [21, Theorem 1]), that two-sided
disjointification inequalities hold only in L2.

Corollary 3.8. For a given symmetric space X on [0, 1] the following
conditions are equivalent:

(1) for every mds {dk}nk=1 ⊂ X,∥∥∥ max
k=1,...,n

∣∣∣ k∑
i=1

di

∣∣∣∥∥∥
X
�
∥∥∥ n∑
i=1

d̄i

∥∥∥
Z2

X

;

(2) for every sequence {fk}nk=1 ⊂ X of mean zero independent functions
and arbitrary sequence {xk}nk=1 ⊂ X,∥∥∥ max

k=1,...,n

∣∣∣ k∑
i=1

fi(t)xi(s)
∣∣∣∥∥∥
X(I×I)

�
∥∥∥ n∑
i=1

fi(t)xi(s)
∥∥∥
Z2

X

;
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(3) for any sequence {xk}nk=1 ⊂ X,∥∥∥ n∑
i=1

ri(t)xi(s)
∥∥∥
X(I×I)

�
∥∥∥ n∑
i=1

x̄i

∥∥∥
Z2

X

;

(4) X = L2 (with equivalence of norms).

Remark 3.9. Let X be the Lorentz space L2,q. It is shown in [16,
pp. 154–155] that in the case when q 6= 2 neither is B bounded from Z2

X

into X̃(l2) nor is A bounded from X(l2) into Z2
X . Therefore, for L2,q (q 6= 2)

neither (3.2) nor (3.7) holds.

Later, we will see that better disjointification results can be proved for
conditionally independent random variables of a special form. To this end,
we first introduce a modification of the operator K.

4. On the operator K ⊗ 1X

Definition 4.1. Let E, F and X be Banach function lattices on [0, 1].
Given a linear operator T : E → F and the identity operator 1X on X
we define the operator T ⊗ 1X : E ⊗ X → F ⊗ X as acting on all finite
combinations of the form

n∑
k=1

fk ⊗ xk :=
n∑
k=1

fk(s) · xk(t), fk ∈ E and xk ∈ X (k = 1, . . . , n)

as follows:

(T ⊗ 1X)
( n∑
k=1

fk ⊗ xk
)

=
n∑
k=1

T (fk)⊗ xk.

Our aim is to find conditions under which the operator T ⊗ 1X can be
extended to the space E[X] with mixed norm.

The following result is well known (see e.g. [1, Theorem 12.3]).

Proposition 4.2. Let E and F be Banach function lattices. If T is a
positive linear operator such that T (E) ⊆ F , then T is bounded from E
into F.

Theorem 4.3. Let E and X be symmetric spaces on [0, 1] that either
have the Fatou property or are separable and E 6= L∞, X 6= L∞. If T is a
positive linear operator such that T (E) ⊆ E and 1X is the identity operator
on X, then T ⊗ 1X can be extended to a bounded operator defined on the
whole space E[X] (which will also be denoted by T ⊗ 1X) and

‖T ⊗ 1X‖E[X]→E[X] ≤ ‖T‖E→E .
Proof. Firstly, let u ∈ E⊗X, i.e. u(s, t) =

∑n
i=1 fi(s)xi(t), where n ∈ N,

fi ∈ E, xi ∈ X. If y ∈ X ′, then by the linearity of the integral, it follows
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that

(4.1) (T ⊗ 1X)
1�

0

u(s, t)y(t) dt =
1�

0

(T ⊗ 1X)u(s, t)y(t) dt.

Moreover, for every y ∈ X ′ with ‖y‖X′ = 1, we have∣∣∣ 1�
0

u(s, t)y(t) dt
∣∣∣ ≤ ‖u(s, ·)‖X .

Hence,

T (‖u(s, ·)‖X) = (T ⊗ 1X)(‖u(s, ·)‖X)

≥ (T ⊗ 1X)
∣∣∣ 1�
0

u(s, t)y(t) dt
∣∣∣

≥ |(T ⊗ 1X)
1�

0

u(s, t)y(t) dt| (since T ⊗ 1X is positive)

=
∣∣∣ 1�
0

(T ⊗ 1X)u(s, t)y(t) dt
∣∣∣ (from (4.1)).

Therefore,

T (‖u(s, ·)‖X) ≥ sup
y∈X′
‖y‖=1

∣∣∣ 1�
0

(T ⊗ 1X)u(s, t)y(t) dt
∣∣∣

= ‖(T ⊗ 1X)u(s, ·)‖X
(since X has the Fatou property or is separable).

Now, applying the monotonicity of the norm of E and Proposition 4.2, we
get∥∥‖(T⊗1X)u‖X

∥∥
E
≤
∥∥T (‖u‖X)

∥∥
E
≤ ‖T‖E→E ·

∥∥‖u‖X∥∥E = ‖T‖E→E ·‖u‖E[X].

Thus, the operator T ⊗ 1X acts boundedly from the space E ⊗X endowed
with the norm ‖ · ‖E[X] into E[X] and

(4.2) ‖T ⊗ 1X‖E⊗X→E[X] ≤ ‖T‖E→E .

Now we want to extend the operator T ⊗ 1X to the whole space E[X].
If E and X are separable symmetric spaces, then the set of functions of the
form

(4.3)
n∑
i=1

χAi(t)fi(s),
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where n ∈ N, Ai ⊂ [0, 1] are pairwise disjoint, and fi ∈ L∞, is dense in the
space E[X] (see [22, §11.1, Lemma 2]). Therefore, by (4.2), T ⊗ 1X can be
extended to E[X] so that

‖T ⊗ 1X‖E[X]→E[X] ≤ ‖T‖E→E .

Let symmetric spaces E and X have the Fatou property. Then, as before,
we extend T ⊗ 1X to a bounded operator from E0[X0] into E[X], where E0

and X0 are subspaces of E and X respectively, with order continuous norm
(see also [11, Theorem 3.8]). Thereby, T ⊗ 1X is defined on L∞(I × I) ⊂
E0[X0]. Let u ∈ E[X], u ≥ 0. Setting um(s, t) := min(u(s, t),m) (m ∈ N),
we see that um ↑ u a.e. on I×I. Since T is positive, the sequence (T⊗1X)um
increases a.e. Moreover, we have proved that for all m ∈ N,

‖(T ⊗ 1X)um‖E[X] ≤ ‖T‖E→E‖um‖E[X] ≤ ‖T‖E→E‖u‖E[X].

Using the definition of a space with mixed norm it is not hard to check that
together with E and X, the space E[X] has the Fatou property. Therefore,

(T ⊗ 1X)u := lim
m→∞

(T ⊗ 1X)um ∈ E[X]

and

(4.4) ‖(T ⊗ 1X)u‖E[X] ≤ ‖T‖E→E‖u‖E[X].

For arbitrary u ∈ E[X], we let u = u+ − u−, where u+ := max(u, 0) and
u− := max(−u, 0), and set (T ⊗ 1X)u := (T ⊗ 1X)u+ − (T ⊗ 1X)u−. Then,
by (4.4),

‖(T ⊗ 1X)u‖E[X] ≤ ‖(T ⊗ 1X)(|u|)‖E[X] ≤ ‖T‖E→E‖u‖E[X],

and the proof is complete.

The following result is an immediate consequence of Theorem 4.3 and
the fact that the Kruglov operator K is a positive linear operator.

Theorem 4.4. Let E and X be symmetric spaces on [0, 1] that either
have the Fatou property or are separable. If K(E) ⊆ E and 1X is the identity
operator on X, then K ⊗ 1X is bounded in E[X] and

‖K ⊗ 1X‖E[X]→E[X] ≤ ‖K‖E→E .

Corollary 4.5. If a symmetric space X on I = [0, 1] is such that
qX <∞ and either has the Fatou property or is separable, then K⊗1X[0,1] :
X(I × I)→ X(I × I).

Proof. Since the Kruglov operator is bounded in Lp := Lp(I) if 1 ≤ p
<∞, and Lp[Lp] is isometrically isomorphic to Lp(I×I), from Theorem 4.4
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it follows that K ⊗ 1Lp[0,1] : Lp(I × I)→ Lp(I × I) (1 ≤ p <∞) and

‖K ⊗ 1Lp[0,1]‖Lp(I×I)→Lp(I×I) ≤ ‖K‖Lp→Lp .

Let now qX < r < ∞. Since X either has the Fatou property or is sep-
arable, it is an interpolation space between L1 and L∞ [23, Theorems 2.4.9
and 2.4.10]. More specifically, from a one-sided version of the Boyd interpo-
lation theorem [4, Theorem 1], it follows that X is an interpolation space
between L1 and Lr. Therefore, K⊗ 1X[0,1] is bounded in X(I × I), and the
proof is complete.

5. Disjointification of conditionally independent random vari-
ables. By applying the results of the previous section, we are able to prove
better results for conditionally independent random variables of the form
{fk(s)xk(t)}nk=1, where fk’s are independent and xk’s are arbitrary, in the
case when

(5.1)
n∑
k=1

λ(supp fk) ≤ 1.

The idea of the following theorem comes from [7] and [8] but was not
presented explicitly. We state it here as it plays a key role in the proof of
the main theorem, Theorem 5.3. Recalling that we use ϕf to denote the
characteristic function of a random variable f , we have

Theorem 5.1. If a sequence {fk}nk=1 ⊆ S([0, 1], λ) consists of pairwise
disjointly supported functions satisfying condition (5.1), then {Kfk}nk=1 is a
sequence of independent random variables.

Proof. We find the characteristic function of the random vector (Kf1, . . .
. . . ,Kfn). Note first that

(5.2)
n∑
k=1

(exp(itkfk)− 1) = exp
(
i

n∑
k=1

tkfk

)
− 1 (tk ∈ R),

which follows from
n∑
k=1

(exp(itkfk)− 1) =
n∑
k=1

exp(itkfk)− n

= exp
(
i
n∑
k=1

tkfk

)
+ n− 1− n

(since fk’s are disjointly supported)

= exp
(
i

n∑
k=1

tkfk

)
− 1.
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Therefore,

ϕf1,...,fn(t1, . . . , tn)−1 =
1�

0

(
exp
(
i

n∑
k=1

tkfk(x)
)
− 1
)
dx(5.3)

=
1�

0

n∑
k=1

(exp(itkfk(x))−1) dx (by (5.2))

=
n∑
k=1

(ϕfk
(tk)− 1).

Finally, this leads to the equality

ϕKf1,...,Kfn(t1, . . . , tn) = ϕPn
k=1 tkKfk

(1) = ϕK(
Pn

k=1 tkfk)(1)

= exp(ϕPn
k=1 tkfk

(1)− 1)

= exp(ϕf1,...,fn(t1, . . . , tn)− 1)

= exp
( n∑
k=1

(ϕfk
(tk)− 1)

)
(by (5.3))

=
n∏
k=1

ϕKfk
(tk).

Applying the fact that random variables ξ1, . . . , ξn are independent iff
ϕξ1,...,ξn(t1, . . . , tn) = ϕξ1(t1) . . . ϕξn(tn) for all real t1, . . . , tn (see e.g. [30,
p. 284]), we conclude that the random variables {Kfk}nk=1 are independent.

Next, we will need an auxiliary statement. In what follows, we consider
the cube

∏n
k=1[0, 1] with the usual n-dimensional Lebesgue measure λn.

Lemma 5.2. Let {fk}nk=1 ⊆ S([0, 1], λ) be a sequence of non-negative
independent functions and {xk}nk=1 ⊆ S([0, 1], λ) be a sequence of arbitrary
non-negative measurable functions. Suppose that {hk}nk=1 is a sequence of
independent functions on [0, 1] such that hk and Kfk are equimeasurable for
every k = 1, . . . , n. Then, for every τ > 0,

(5.4) λ2

{
(s, t) ∈ I × I :

n∑
k=1

fk(s)xk(t) > τ
}

≤ 2λ2

{
(s, t) ∈ I × I :

n∑
k=1

hk(s)xk(t) > τ/2
}
.

Proof. Since fi ≥ 0, by the definition of the Kruglov operator, it follows
that Kfi ≥ gi, where gi is equimeasurable with the function σ1/2fi (i =
1, . . . , n). In particular,

(5.5)
n∑
i=1

Kfi(ti)xi(t0) ≥
n∑
i=1

gi(ti)xi(t0).
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It is clear that, for every i = 1, . . . , n, the function fi is equimeasurable
with the sum g′i+g′′i of two disjointly supported functions g′i and g′′i , each of
which is equimeasurable with the function gi. Therefore, by (5.5), we have

λn+1

{
(tk)nk=0 :

n∑
i=1

(g′i(ti)+g′′i (ti))xi(t0)> τ
}

≤ 2λn+1

{
(tk)nk=0 :

n∑
i=1

gi(ti)xi(t0) > τ/2
}

≤ 2λn+1

{
(tk)nk=0 :

n∑
i=1

Kfi(ti)xi(t0)> τ/2
}
.

On the other hand, from Fubini’s theorem and the assumptions on fi, g′i, g
′′
i

as well as hi and Kfi (i ∈ N), it follows that, for all τ > 0,

λ2

{
(s, t) ∈ I × I :

n∑
i=1

fi(s)xi(t) > τ
}

= λn+1

{
(tk)nk=0 ∈

n∏
k=0

[0, 1] :
n∑
i=1

fi(ti)xi(t0) > τ
}

= λn+1

{
(tk)nk=0 ∈

n∏
k=0

[0, 1] :
n∑
i=1

(g′i(ti) + g′′i (ti))xi(t0) > τ
}

and

λ2

{
(s, t) ∈ I × I :

n∑
i=1

hi(s)xi(t) > τ
}

= λn+1

{
(tk)nk=0 ∈

n∏
k=0

[0, 1] :
n∑
i=1

hi(ti)xi(t0) > τ
}

= λn+1

{
(tk)nk=0 ∈

n∏
k=0

[0, 1] :
n∑
i=1

Kfi(ti)xi(t0) > τ
}
.

Combining these with the previous inequality yields the conclusion.

The main result of this section is the following.

Theorem 5.3. Let X be a symmetric space on [0, 1] that either has
the Fatou property or is separable. Suppose qX < ∞. Then there exists a
constant C > 0 such that for every sequence {fk}nk=1 ⊆ X of independent
functions satisfying condition (5.1) and for every sequence {xk}nk=1 ⊆ X of
arbitrary measurable functions we have

(5.6)
∥∥∥ n∑
k=1

fk(s)xk(t)
∥∥∥
X(I×I)

≤ C
∥∥∥ n∑
k=1

fk(s)xk(t)
∥∥∥
X
.
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Proof. Without loss of generality, we may (and will) assume that fk ≥ 0
and xk ≥ 0.

Firstly, from Theorem 5.1, it follows that the functions Kf̄k are indepen-
dent. Moreover, it is clear that Kf̄k and Kfk are equimeasurable for each
k = 1, . . . , n. Therefore, by [23, Corollary 2.4.2], Lemma 5.2 and Corol-
lary 4.5, we obtain∥∥∥ n∑
k=1

fk(s)xk(t)
∥∥∥
X(I×I)

≤ 4
∥∥∥ n∑
k=1

Kf̄k(s)xk(t)
∥∥∥
X(I×I)

≤ 4C ′
∥∥∥ n∑
k=1

f̄k(s)xk(t)
∥∥∥
X(I×I)

= 4C ′
∥∥∥ n∑
k=1

fk(s)xk(t)
∥∥∥
X
,

where C ′ is the norm of the operator K ⊗ 1 in the space X(I × I).

Remark 5.4. The converse of inequality (5.6) holds in every symmetric
space X that either has the Fatou property or is separable (see the proof of
Theorem 6.5 in the next section).

The following result shows the necessity of the condition qX <∞ in the
last theorem.

Theorem 5.5. Suppose that a symmetric space X on [0, 1] has the fol-
lowing property: there exists a constant C > 0 such that for every sequence
{fk}nk=1 ⊆ X of independent functions satisfying condition (5.1) and for
every sequence {xk}nk=1 ⊆ X of arbitrary measurable functions, inequal-
ity (5.6) holds. Then qX <∞.

Proof. If qX = ∞, then from Krivine’s theorem for symmetric spaces
(see e.g. [25, Theorem 2.b.6] or [3, Theorem 4]), it follows that for every
integer m, X contains m pairwise disjointly supported functions {gi}mi=1 all
having the same distribution so that

(5.7)
1
2

max
i=1,...,m

|ai| ≤
∥∥∥ m∑
i=1

aigi

∥∥∥ ≤ 2 max
i=1,...,m

|ai|

for every choice of scalars {ai}mi=1. Obviously, we may assume that gi ≥ 0.
Now fix n and consider the aforementioned sequence {gi}mi=1 with m =

n2n · 2n. Consider the sequence of functions {xk}2
n

k=1, where xk :=
∑k·n2n

i=1 gi.
Note that 0 ≤ xk ≤ xk+1 for k = 1, . . . , 2n − 1. Moreover, let {fk}2

n

k=1 be a
sequence of independent copies of the function χ[0,2−n]. We show that, for
the sequences {fk(s)xk(t)}2

n

k=1, the norms on the right-hand side of (5.6) are
bounded but the ones on the left-hand side are not.
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Recalling that σa denotes the dilation operator (see Section 2 for defini-
tion), we first estimate from above the right-hand side of (5.6):∥∥∥ 2n∑
k=1

fk(s)xk(t)
∥∥∥
X

=
∥∥∥ 2n∑
k=1

fk(tk)xk(t0)
∥∥∥
X

=
∥∥∥ 2n∑
k=1

χ[0,2−n](tk)xk(t0)
∥∥∥
X

=
∥∥∥ 2n∑
k=1

σ2−n(xk)
∥∥∥
X

≤
∥∥∥ 2n∑
k=1

σ2−n(x2n)
∥∥∥
X

(since xk ≤ xk+1)

= ‖x2n‖X (since the σ2−n(x2n)’s are disjointly supported)

=
∥∥∥ 2n·n2n∑

i=1

gi

∥∥∥
X

(from the definition of x2n)

≤ 2 (from (5.7)).

Consider the left-hand side of (5.6). We show that ‖
∑2n

k=1 fk(s)xk(t)‖X(I×I)
is unbounded as n→∞. Since xk ≤ xk+1 for k = 1, . . . , 2n − 1, we have

(5.8)
∥∥∥ 2n∑
k=1

fk(s)xk(t)
∥∥∥
X(I×I)

≥
∥∥∥ 2n∑
k=1

fk(s)x1(t)
∥∥∥
X(I×I)

.

Hence, we first estimate
∑2n

k=1 fk(s) from below.
Since

2n!
(2n − n)!

≥ (2n − n)n and 1− 1
2n
≥ 1− n

2n
,

for sufficiently large n we have

λ
{
s ∈ [0, 1] :

2n∑
k=1

fk(s) ≥ n
}
≥ 2n!
n!(2n − n)!

(
1
2n

)n(
1− 1

2n

)2n−n

≥ (2n − n)n

n!(2n)n
· (2n − n)2

n−n

(2n)2n−n

=
1
n!

(
1− n

2n

)2n

≥ 1
n2n

.

Therefore, if A := {s ∈ [0, 1] :
∑2n

k=1 fk(s) ≥ n}, then by (5.8),∥∥∥ 2n∑
k=1

fk(s)xk(t)
∥∥∥
X(I×I)

≥ ‖nχA(s)x1(t)‖X(I×I) = n‖σn−2n(x1)‖X .

But by the definition of x1 and (5.7), ‖σn−2n(x1)‖X = ‖g1‖X ≥ 1/2. Hence,
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taking into account the previous inequality, we obtain∥∥∥ 2n∑
k=1

fk(s)xk(t)
∥∥∥
X(I×I)

→∞ as n→∞.

Thus, the left-hand side of (5.6) is unbounded as n → ∞ and the result
follows.

Remark 5.6. Assumption (5.1) for a sequence {fk}nk=1 ⊆ X of inde-
pendent functions is essential. In fact, Theorems 3.1 and 3.4 show that the
inequality ∥∥∥ n∑

i=1

ri(t)xi(s)
∥∥∥
X(I×I)

≤ C
∥∥∥ n∑
i=1

x̄i

∥∥∥
Z2

X

,

where {ri(t)} are the Rademacher functions, holds for any sequence {xi}ni=1

⊂ X only if X ⊃ L2.

Remark 5.7. Recall that some disjointification relations using the space
Z1
X instead of Z2

X were obtained earlier for non-negative independent ran-
dom variables as well (see [21, 7, 9]). However, in the case of mds and even
conditionally independent functions, analogous formulas do not hold for any
other symmetric spaces apart from L1.

In fact, suppose that a symmetric space X satisfies the following con-
dition: there is a constant C > 0 such that for any sequence {fk}nk=1 ⊂ X
of independent functions and any sequence {xk}nk=1 ⊂ X of measurable
functions,

(5.9)
∥∥∥ n∑
i=1

fi(s)xi(t)
∥∥∥
X(I×I)

≤ C
∥∥∥ n∑
i=1

fi(s)xi(t)
∥∥∥
Z1

X

.

Take fk(s) = 1 and xk(t) = χ[0,1/n](t) (k = 1, . . . , n). Then
∑n

k=1 fk(s)xk(t)
= nχ[0,1/n](t) and the sum

∑n
k=1 fk(s)xk(t) is equimeasurable with χ[0,1].

Then inequality (5.9) gives

n‖χ[0,1/n]‖X ≤ C‖χ[0,1]‖X .
At the same time,

‖χ[0,1]‖X =
∥∥∥ n∑
k=1

χ[0,1/n]

∥∥∥
X
≤

n∑
k=1

‖χ[0,1/n]‖X = n‖χ[0,1/n]‖X .

Hence,

(5.10) ‖χ[0,1/n]‖X �
1
n
‖χ[0,1]‖X (n ∈ N).

Next, recall that given the symmetric space X, the function φX(t) :=
‖χA‖X , where λ(A) = t, is the fundamental function of X. Recall also that
ΛφX

⊆ X, where ΛφX
is the corresponding Lorentz space (see Section 2.1).
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It is not hard to check that (5.10) implies φX(t) � t. Therefore, ΛφX
= L1,

whence L1 ⊆ X. But for all symmetric spaces X on [0, 1] we have X ⊆ L1.
Thus, inequality (5.9) holds only in the case X = L1.

6. Comparison of martingale differences and non-negative ran-
dom variables with their independent copies. The results on the dis-
jointification of martingale differences proven in the previous sections allow
us to compare norms of sums of martingale differences with the norms of
sums of their independent copies.

Theorem 6.1. Let X be a symmetric space on [0, 1], X ∈ I(L1, L2).
Then there exists a constant C > 0 such that for every mds {dk}nk=1 ⊂ X
and any sequence {fk}nk=1 ⊂ X of independent functions such that fk is
equimeasurable with dk for every k = 1, . . . , n we have

(6.1)
∥∥∥ max
k=1,...,n

∣∣∣ k∑
i=1

di

∣∣∣∥∥∥
X
≤ C

∥∥∥ n∑
k=1

fk

∥∥∥
X
.

Proof. Since
	1
0 fk(t) dt =

	1
0 dk(t) dt = 0 (k = 1, . . . , n), it follows that

{fk}nk=1 is a sequence of mean zero independent functions. Therefore, by
[21, Theorem 1], there is a constant C ′ > 0, depending only on X, such that∥∥∥ n∑

k=1

f̄k

∥∥∥
Z2

X

≤ C ′
∥∥∥ n∑
k=1

fk

∥∥∥
X
.

Combining this inequality with inequality (3.2) proved in Corollary 3.2 and
applying the fact that the functions

∑n
k=1 d̄k and

∑n
k=1 f̄k are equimeasur-

able, we get the result.

Theorem 6.2. Suppose that a symmetric space X ∈ I(L2, L∞) has order
semicontinuous norm and qX < ∞. Then there exists a constant C > 0
such that for every mds {dk}nk=1 ⊂ X and any sequence {fk}nk=1 ⊂ X of
independent functions such that fk is equimeasurable with dk for every k =
1, . . . , n we have

(6.2)
∥∥∥ n∑
k=1

fk

∥∥∥
X
≤ C

∥∥∥ max
k=1,...,n

∣∣∣ k∑
i=1

di

∣∣∣∥∥∥
X
.

Proof. Since qX <∞, the operator K is bounded in X. So we may apply
[8, Theorem 3.1] to find a constant C ′ > 0, depending only on X, such that∥∥∥ n∑

k=1

fk

∥∥∥
X
≤ C ′

∥∥∥ n∑
k=1

f̄k

∥∥∥
Z2

X

.

Inequality (6.2) follows from this and inequality (3.7) from Corollary 3.6.
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For sequences {fk(s)xk(t)}nk=1 of conditionally independent random vari-
ables satisfying condition (5.1) a rather stronger result holds. Theorem 5.3
and [21, Theorem 1] imply

Theorem 6.3. Let X be a symmetric space on [0, 1] that either has the
Fatou property or is separable. Suppose qX < ∞. Then there exists a con-
stant C > 0 such that for arbitrary sequences {fk}nk=1 ⊆ X of independent
functions satisfying condition (5.1), measurable functions {xk}nk=1 ⊆ X and
for any sequence {gk}nk=1 ⊆ X of independent functions such that gk is
equimeasurable with the function fk(s)xk(t) (k = 1, . . . , n), we have

(6.3)
∥∥∥ n∑
k=1

fk(s)xk(t)
∥∥∥
X(I×I)

≤ C
∥∥∥ n∑
k=1

gk

∥∥∥
X
.

Remark 6.4. Let X be a symmetric space on [0, 1] that either has the
Fatou property or is separable. Suppose also that K : X → X. Then, by [8,
Theorem 3.1] and Remark 5.4, we obtain the converse of inequality (6.3),
i.e., if sequences {fk}nk=1 ⊆ X, {xk}nk=1 ⊆ X, and {gk}nk=1 ⊆ X satisfy the
same conditions as in Theorem 6.3, then

(6.4)
∥∥∥ n∑
k=1

gk

∥∥∥
X
≤ C

∥∥∥ n∑
k=1

fk(s)xk(t)
∥∥∥
X(I×I)

for some constant C > 0.

Now, we prove some inequalities comparing sums of non-negative random
variables to sums of their independent copies in the setting of symmetric
spaces. These inequalities are strongly related to the results of Theorems 6.1
and 6.2. Furthermore, the results on non-negative random variables and
their independent copies provide a simpler method of obtaining the modular
comparison inequalities (see [28, p. 82] for terminology) proved in [17] (see
also [18]).

Theorem 6.5. Suppose the operator K is bounded on a symmetric space
X on [0, 1] that either has the Fatou property or is separable. Then for ar-
bitrary sequences {gk}nk=1 of non-negative functions and {fk}nk=1 of inde-
pendent functions from X such that fk is equimeasurable with gk for every
k = 1, . . . , n we have

(6.5)
∥∥∥ n∑
k=1

fk

∥∥∥
X
≤ α‖K‖X→X

∥∥∥ n∑
k=1

gk

∥∥∥
X
,

with a universal constant α > 0.

Proof. First, let Z[0,∞) be a symmetric space on the semiaxis [0,∞)
and {hk}nk=1 ⊂ Z[0,∞) (n ∈ N) be an arbitrary sequence of non-negative
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measurable functions on [0,∞) whose supports have finite measure. Obvi-
ously, for every τ > 0,

τ�

0

( n∑
k=1

h̄k

)∗
(s) ds ≤

τ�

0

( n∑
k=1

hk

)∗
(s) ds.

Then if Z[0,∞) ∈ I(L1[0,∞), L∞[0,∞)), by [23, Theorem 2.4.3], we obtain

(6.6)
∥∥∥ n∑
k=1

h̄k

∥∥∥
Z[0,∞)

≤ C
∥∥∥ n∑
k=1

hk

∥∥∥
Z[0,∞)

,

where C is the interpolation constant of the space Z[0,∞) in the couple
(L1[0,∞), L∞[0,∞)).

Note that the space Z1
X also either has the Fatou property or is separable

(depending on X). Therefore, by assumption, Z1
X ∈ I(L1[0,∞), L∞[0,∞))

with constant 1.
Now, let sequences {gk}nk=1 and {fk}nk=1 ⊂ X satisfy our assumptions.

Then, applying arguments similar to that at the beginning of the proof
together with inequality (6.6) to the space Z1

X , we obtain

(6.7)
∥∥∥ n∑
k=1

f̄k

∥∥∥
Z1

X

≤
∥∥∥ n∑
k=1

gk

∥∥∥
X
.

On the other hand, by [9, Theorem 1(ii)], there is a universal constant α > 0
such that ∥∥∥ n∑

k=1

fk

∥∥∥
X
≤ α‖K‖X→X

∥∥∥ n∑
k=1

f̄k

∥∥∥
Z1

X

.

Combining this inequality with (6.7), we obtain (6.5).

Remark 6.6. With a different (non-interpolation) method, inequali-
ty (6.6) in the case when a symmetric space Z[0,∞) is separable is proved
in [19, Lemma 7.2].

Now we are able to prove the following modular inequality.

Corollary 6.7. Let M be an Orlicz function on [0,∞) such that the
operator K is bounded on the Orlicz space LM = LM [0, 1]. Then there exists
a constant C > 0 such that for every n ∈ N and for arbitrary sequences
{gk}nk=1 of non-negative measurable functions and {fk}nk=1 of independent
functions from X such that fk is equimeasurable with gk (k = 1, . . . , n),
there is a τ > 0, depending only on ‖

∑n
k=1 gk‖LM

, such that

(6.8)
1�

0

M

(∑n
k=1 fk(s)
τ

)
ds ≤

1�

0

M

(
C
∑n

k=1 gk(s)
τ

)
ds.
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In particular, if ‖
∑n

k=1 gk‖LM
= 1, we may take τ = C to obtain

(6.9)
1�

0

M

(∑n
k=1 fk(s)
C

)
ds ≤

1�

0

M
( n∑
k=1

gk(s)
)
ds.

Proof. Since an arbitrary Orlicz space has the Fatou property, from The-
orem 6.5, it follows that∥∥∥ n∑

k=1

fk

∥∥∥
LM

≤ C
∥∥∥ n∑
k=1

gk

∥∥∥
LM

,

where C := α‖K‖LM→LM
. If τ := C‖

∑n
k=1 gk‖LM

, then
1�

0

M

(
C
∑n

k=1 gk(s)
τ

)
ds = 1.

Hence, from the previous inequality and the definition of the Luxemburg
norm in LM we have

1�

0

M

(∑n
k=1 fk(s)
τ

)
ds ≤ 1,

which implies (6.8). Inequality (6.9) follows from (6.8) and the definition
of τ.

Let us show how inequalities for non-negative random variables and their
independent copies imply analogous inequalities for martingale differences
and their independent copies. But first, we need an auxiliary result (see e.g.
[6, Corollary 15]).

Recall that a Banach lattice E is said to be p-convex (1 ≤ p <∞) with
constant K ≥ 1 if ∥∥∥( n∑

k=1

|xk|p
)1/p∥∥∥ ≤ K( n∑

k=1

‖xk‖p
)1/p

for every choice of vectors x1, . . . , xn from E. For a p-convex Banach function
lattice E we may define its p-concavification, i.e., the Banach lattice E(p)

with the norm ‖x‖E(p)
:=
∥∥ |x|1/p∥∥p

E
.

Lemma 6.8. Suppose that p > 1 and the Kruglov operator K is bounded
on a p-convex symmetric space X. Then K is bounded on X(p) as well and
‖K‖X(p)→X(p)

≤ ‖K‖pX→X .

Proof. By definition, Kf is equimeasurable with the function
∞∑
n=1

n∑
k=1

fn,k(x)χEn(x), x ∈ [0, 1],
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where {En} is a sequence of measurable pairwise disjoint subsets of [0, 1],
λ(En) = 1/(en!) (n ∈ N), and fn,1, . . . , fn,n are copies of f such that the
sequence fn,1, . . . , fn,n, χEn consists of independent functions. Then, by the
elementary inequality∣∣∣ n∑

k=1

αk

∣∣∣1/p ≤ n∑
k=1

|αk|1/p (αk ∈ R),

we see that (Kf)∗1/p ≤ (K(|f |1/p))∗. Therefore,

‖Kf‖X(p)
=
∥∥ |Kf |1/p∥∥p

X
≤ ‖K(|f |1/p)‖pX ≤ ‖K‖

p
X→X‖f‖X(p)

,

and we obtain the result.

Theorem 6.9. Suppose that the operator K is bounded in a 2-convex
symmetric space X on [0, 1] that either has the Fatou property or is separ-
able. Then for an arbitrary mds {dk}nk=1 ⊆ X and for any sequence {fk}nk=1
of independent functions such that fk is equimeasurable with dk for every
k = 1, . . . , n we have

(6.10)
∥∥∥ n∑
k=1

fk

∥∥∥
X
≤ C1

∥∥∥( n∑
k=1

d2
k

)1/2∥∥∥
X
,

with a constant C1 > 0.
In particular, if qX <∞, then there is a constant C2 > 0 such that

(6.11)
∥∥∥ n∑
k=1

fk

∥∥∥
X
≤ C2

∥∥∥ max
k=1,...,n

∣∣∣ k∑
i=1

di

∣∣∣∥∥∥
X
.

Proof. Note that the space X(2) has the Fatou property (respectively, is
separable) if the space X has the Fatou property (respectively, is separable).
Therefore, applying Lemma 6.8 and Theorem 6.5 for sequences {d2

k}nk=1 and
{f2
k}nk=1, we obtain∥∥∥ n∑

k=1

f2
k

∥∥∥
X(2)

≤ α‖K‖2X→X
∥∥∥ n∑
k=1

d2
k

∥∥∥
X(2)

,

which implies∥∥∥( n∑
k=1

f2
k

)1/2∥∥∥
X
≤ α1/2‖K‖X→X

∥∥∥( n∑
k=1

d2
k

)1/2∥∥∥
X
.

Since {fk}nk=1 is a sequence of mean zero independent functions and K is
bounded in X, we see by [2, Theorem 1] that∥∥∥( n∑

k=1

f2
k

)1/2∥∥∥
X
�
∥∥∥ n∑
k=1

fk

∥∥∥
X
.
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This and the previous inequality imply (6.10). Assuming qX < ∞, we get
(6.11) as an immediate consequence of (6.10) and [20, Theorem 3].

Remark 6.10. In Theorem 6.2, inequality (6.11) was proved under the
weaker assumption X ∈ I(L2, L∞).

Theorems 6.1, 6.5 and 6.9 can be viewed as extensions of the modular
inequalities proved in [17] and [18] to the setting of symmetric spaces. On
the other hand, using the results obtained here, we can prove those modular
inequalities. Let us prove, for instance, the modular version of (6.5).

In the following, we will use the notation EF =
	1
0 F (s) ds. Recall that

an Orlicz function M on [0,∞) satisfies the ∆2-condition at infinity if there
exist C > 0 and u0 > 0 such that M(2u) ≤ CM(u) for all u ≥ u0.

Theorem 6.11. Let M be an Orlicz function on [0,∞) satisfying the
∆2-condition at infinity. Then, possibly after changing the function M on
the interval [0, 1], there exists a constant C > 0 such that for every n ∈ N
and for arbitrary sequences {gk}nk=1 of non-negative measurable functions
and {fk}nk=1 of independent functions from the Orlicz space LM on [0, 1]
such that fk is equimeasurable with gk (k = 1, . . . , n), we have

(6.12) E
(
M
( n∑
k=1

fk

))
≤ CE

(
M
( n∑
k=1

gk

))
.

Proof. First of all, note that by assumption, the upper Boyd index qLM

of LM is finite (see e.g. [26, Theorem 11.7]). Therefore, since qLMt
= qLM

<∞,
where Mt := t−1M (t > 0), we have K : LMt → LMt . Moreover, for any
t > 0, LMt has the Fatou property. Therefore, by Theorem 6.5,

(6.13)
∥∥∥ n∑
k=1

fk

∥∥∥
LMt

≤ α‖K‖LMt→LMt

∥∥∥ n∑
k=1

gk

∥∥∥
LMt

,

where α > 0 is a universal constant. Let us show that

(6.14) sup
t>0
‖K‖LMt→LMt

≤ C1‖K‖LM→LM

with some C1 > 0.
Without loss of generality, we may (and do) assume that

(6.15) M(u+ v) ≤ γ(M(u) +M(v))

for some constant γ > 0 and all u, v ≥ 0 (see for instance [14, formula (7.9)]
or [25, Proposition 2.b.5]).

Let now f ≥ 0. Suppose that EM(f) := A <∞. If {fk}∞k=1 is a sequence
of independent functions equimeasurable with f , then, by (6.15), for every
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n ∈ N, we have

E
(
M
( n∑
k=1

fk

))
≤ γE

(
M
( n−1∑
k=1

fk

)
+M(fn)

)
= γ

(
EM

( n−1∑
k=1

fk

)
+A

)
≤ γ2

(
EM

( n−2∑
k=1

fk

)
+ 2A

)
≤ · · · ≤ γn−1nA.

By definition, Kf equals
∑n

k=1 fk on a set En with Lebesgue measure λ(En)
= 1/(en!) (n = 1, 2, . . . ); moreover, the En are pairwise disjoint and the
family {f1, . . . , fn, χEn} consists of independent functions. Therefore,

EM(Kf) =
∞∑
n=1

EM
( n∑
k=1

fkχEn

)
=
∞∑
n=1

EM
( n∑
k=1

fk

)
λ(En)

≤
∞∑
n=1

γn−1nAλ(En) =
A

e

∞∑
n=1

γn−1

(n− 1)!
= eγ−1A,

whence,
EMt(Kf) ≤ eγ−1EMt(f) (t > 0).

From this it follows that

‖Kf‖LMt
≤ eγ−1‖f‖LMt

(t > 0),

i.e., (6.14) is proved. Therefore, by (6.13), there is a constant C > 0 such
that

(6.16)
∥∥∥ n∑
k=1

fk

∥∥∥
LMt

≤ C
∥∥∥ n∑
k=1

gk

∥∥∥
LMt

(t > 0)

for every n ∈ N, where {gk}nk=1 is an arbitrary sequence of non-negative
measurable functions from LM and {fk}nk=1 is any sequence of their inde-
pendent copies.

Furthermore, we may find t > 0 such that

(6.17)
1�

0

M
(
C

n∑
k=1

gk(s)
)
ds = t,

or equivalently, ∥∥∥ n∑
k=1

gk

∥∥∥
LMt

=
1
C
.

Then from (6.16) it follows that
1�

0

M
(
C

n∑
k=1

fk(s)
)
ds ≤ t.
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Combining this with equality (6.17), we obtain
1�

0

M
( n∑
k=1

fk(s)
)
ds ≤

1�

0

M
(
C

n∑
k=1

gk(s)
)
ds

and the proof is complete because M satisfies the ∆2-condition at infinity.

Using Theorem 6.9, arguments analogous to the ones used in the proof
of the previous theorem and the Burkholder–Davis–Gundy square function
inequality from [15], it is not hard to prove the following comparison asser-
tion.

Theorem 6.12. Let M be an Orlicz function on [0,∞) satisfying the
∆2-condition at infinity such that the function M(

√
t) is convex for t > 0.

Then, possibly after changing the function M on [0, 1], there exists a constant
C > 0 such that for an arbitrary mds {dk}nk=1 on [0, 1] and for any sequence
{fk}nk=1 of independent functions such that fk is equimeasurable with dk
(k = 1, . . . , n), we have

(6.18) E
(
M
( n∑
k=1

fk

))
≤ CE

(
M
(

max
k=1,...,n

∣∣∣ k∑
i=1

di

∣∣∣)).
Remark 6.13. Similar disjointification methods allow us to prove the

converses of the modular inequalities (6.12) and (6.18) (see [17] and [18]) as
well. We do not pursue this subject here, noting only that the relation (6.1)
proved in Theorem 6.1 is an extension of these inequalities to the setting of
symmetric spaces.
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