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Pervasive algebras and maximal subalgebras
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Abstract. A uniform algebra A on its Shilov boundary X is maximal if A is not
C(X) and no uniform algebra is strictly contained between A and C(X). It is essentially
pervasive if A is dense in C(F ) whenever F is a proper closed subset of the essential
set of A. If A is maximal, then it is essentially pervasive and proper. We explore the
gap between these two concepts. We show: (1) If A is pervasive and proper, and has a
nonconstant unimodular element, then A contains an infinite descending chain of pervasive
subalgebras on X. (2) It is possible to find a compact Hausdorff space X such that there is
an isomorphic copy of the lattice of all subsets of N in the family of pervasive subalgebras
of C(X). (3) In the other direction, if A is strongly logmodular, proper and pervasive,
then it is maximal. (4) This fails if the word “strongly” is removed.

We discuss examples involving Dirichlet algebras, A(U) algebras, Douglas algebras,
and subalgebras of H∞(D), and develop new results that relate pervasiveness, maximality,
and relative maximality to support sets of representing measures.

1. Introduction. This paper is about pervasive (unital) uniform alge-
bras, and the connections between pervasiveness, maximality, and the pres-
ence of nonconstant unimodular functions.

For a compact Hausdorff space X, let C(X) = C(X,C) denote the al-
gebra of complex-valued continuous functions onX, equipped with the topol-
ogy induced by the uniform norm. Concretely, a uniform algebra on X is a
closed subalgebra A of C(X) that contains the constants and separates the
points of X. Each uniform algebra is an example of a commutative, semi-
simple Banach algebra with unit [14]. Each unital semisimple commutative
Banach algebra A may be regarded, via the Gelfand transform, as an algebra
of complex-valued functions on its maximal ideal space, or character space,
M(A). The Gelfand transform is defined by

f̂(φ) = φ(f), ∀φ ∈M(A), ∀f ∈ A.

2010 Mathematics Subject Classification: Primary 46J10.
Key words and phrases: uniform algebra, logmodular algebra, pervasive algebra, maximal
subalgebra.

DOI: 10.4064/sm206-1-1 [1] c© Instytut Matematyczny PAN, 2011



2 P. Gorkin and A. G. O’Farrell

Abstractly, the uniform algebras are characterized among semisimple com-
mutative Banach algebras with unit by the property that they are complete
with respect to the uniform norm onM(A). For this, and other general facts
about uniform algebras referred to below, see [14].

Throughout the paper, all our algebras will be over the complex field, will
be algebras of complex-valued functions under pointwise operations, and will
have a unit (the constant function 1).

If A is a uniform algebra on X, then X is homeomorphic to a closed
subset of M(A), when M(A) is given the weak-star topology inherited from
the dual A∗ (characters belong to A∗). It is customary to identify X with
its image in M(A). When we do this, it always happens that X includes the
Shilov boundary of A, the minimal closed subset Y of M(A) such that

‖f‖ ≤ sup{|ψ(f)| : ψ ∈ Y }, ∀f ∈ A.
In general, a uniform algebra A is isometrically isomorphic to the restriction
algebra A|S, where S is the Shilov boundary of A, and one normally identifies
A with A|S.

Here are the definitions of the main concepts we study:
Let A be a uniform algebra on X. Then A is a maximal subalgebra of

C(X) if A is properly contained in C(X) (written A ⊂ C(X)) and there
is no closed algebra B satisfying A ⊂ B ⊂ C(X). We also express this by
saying that A is maximal on X.

Let A be a uniform algebra on X ⊆M(A). Then A is said to be pervasive
on X if for every proper compact subset Y of X, the restriction algebra

A|Y = {f |Y : f ∈ A}
is dense in C(Y ). The algebra A is said to be pervasive if it is pervasive on its
Shilov boundary. This concept was first introduced by Hoffman and Singer
[26], in a paper devoted to aspects of maximality. It is not hard to see that
if A is pervasive on X, then X is in fact the Shilov boundary of A.

Obviously, C(X) itself is pervasive on X, but not maximal on X. The
archetypical example is the disk algebra, consisting of all the functions con-
tinuous on the closed unit disk, clos(D), and analytic on its interior. Its
maximal ideal space is clos(D), and its Shilov boundary is the unit circle S1.
This algebra is pervasive on S1. This amounts to saying that the analytic
polynomials are dense in all continuous functions on any proper subarc of
the unit circle. This is a special case of Lavrent’ev’s theorem [14, Theorem
II.8.7], but may be proved in many ways.

According to the celebrated Wermer maximality theorem [14, Theorem
II.5.1], the disk algebra is also maximal on S1, and this suggests that there
might be some connection between being maximal and being pervasive. Hoff-
man and Singer introduced pervasive algebras, motivated by the observation
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that some results of Helson and Quigley, inter alia, about other uniform
algebras that behaved like the disk algebra, were, logically, more directly
connected with its pervasiveness than its maximality. They established some
general connections between maximality and pervasiveness.

Strictly speaking, maximality and pervasiveness are quite distinct prop-
erties, logically unconnected in the sense that the truth or falsehood of one
tells you nothing about the other (see Section 4 below). However, one can
say that “essentially”, maximality implies pervasiveness. More precisely, if
A is maximal, then the restriction of A to its so-called essential set—for
this, and other terms used in this introduction and not yet defined, see the
next section—is pervasive there. If we confine attention to essential algebras
(those with Shilov boundary equal to the essential set), then this raises the
question of what must be added to the assumption of pervasiveness to ensure
maximality.

We give examples to show that the gap between pervasiveness and max-
imality may be very large. In the most striking example (cf. Subsection 3.3),
the family of pervasive subalgebras of C(X) contains an isomorphic copy of
the lattice of all subsets of N, the set of natural numbers.

One may ask whether it makes any difference if the algebra is assumed to
be Dirichlet. In fact, in the example referred to, all the pervasive algebras we
construct are Dirichlet. However, we do show (Section 3) that if the algebra
A is assumed to be strongly logmodular, and if A is not maximal, then A
is not pervasive. Since Dirichlet algebras are logmodular, the example of
Subsection 3.3 shows that logmodular algebras can be essential, pervasive
and nonmaximal.

For all connected open subsets U of the Riemann sphere Ĉ, Hoffman and
Singer considered the associated algebra A(U), consisting of those continu-
ous functions on clos(U) that are holomorphic on U , regarded as a uniform
algebra on its Shilov boundary, X. They showed that in some cases A(U) is
pervasive on X. Gamelin and Rossi [18] showed that A(U) is in fact max-
imal in C(X) whenever U is connected, U is the interior of its closure K,
K ⊂ C is compact, and each f ∈ A(U) may be approximated uniformly
on K by rational functions with poles off X. (Actually, they studied the al-
gebra usually called A(K), for compact K ⊂ C, consisting of those functions
f ∈ C(K) that are holomorphic on the interior of K. Their result applies
when U = int(K) is connected and dense, and the hypothesis on rational
approximation holds. In this case A(K) coincides with A(U). In general, the
A(U) we consider in this paper are not the same as A(clos(U)), as A(U)
may have Shilov boundary points in the interior of the closure of U . For
instance, we consider below nontrivial examples in which U is dense in the
Riemann sphere Ĉ.) Gamelin and Rossi raised the question of the maximal-
ity of more general A(U), but to date this has not been completely resolved,
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except in the cases when A(U) is Dirichlet [14, p. 63, Ex. 1]. See also [11]
and Subsection 5.2. Later, one of the authors and collaborators showed that,
for all connected open subsets U of the Riemann sphere, the associated al-
gebra A(U) is pervasive [31, Theorem 3.2]. Further work extended this to
open Riemann surfaces [32]. There is also a characterization of the open (not
necessarily connected) U ⊂ Ĉ such that A(U) is pervasive [31, Section 4]. If
A(U) is maximal on its Shilov boundary X = bdy(U), then U must be con-
nected. It remains to be seen whether for all connected U (with the Shilov
boundary of A(U) equal to bdy(U) (1)) the algebra A(U) is maximal.

There is reason to suppose that pervasiveness is intimately connected
with complex dimension one, and it has been suggested that, apart from
uniform algebras defined on closed subsets of Riemann surfaces, it might
be profitable to study two other kinds: (1) algebras of L∞ functions on the
unit circle and other one-dimensional boundaries, particularly subalgebras
and superalgebras of H∞(U), the algebra of bounded analytic functions on
a one-dimensional open set, and (2) algebras obtained by taking the uniform
closure of the analytic polynomials on a curve lying in the boundary of a
pseudoconvex domain in Cn. We have something to say about type (1). This
is connected to logmodularity.

We shall abbreviate H∞(D) to H∞ throughout the paper.
The maximal ideal space of H∞ is a large compact space (with cardinal-

ity greater than that of the continuum). See [19, Chapter VIII] for details
about its structure referred to below. The Shilov boundary X of H∞ may
be identified with the maximal ideal space of the self-adjoint uniform al-
gebra L∞(S1) (of essentially bounded measurable functions on the circle;
we abbreviate its name to L∞ throughout the paper). It is an extremally
disconnected space, i.e. the closure of every open set is open. The Gelfand
transform of the identity function z 7→ z projects M(H∞) onto the closed
unit disk. The fibres over the points of the open disk are singletons, but the
preimage of the unit circle (the corona) is large and complicated, and X is
a subset of it. There are many interesting uniform algebras on X:

• C(X); it is just L∞, by the Stone–Weierstrass Theorem.
• Douglas algebras, i.e. those uniform algebras lying between H∞ and
L∞. We show in Subsection 4.2 that none of these is pervasive, except
L∞ itself.

• C = C(S1); it may be regarded as a subalgebra of C(X), and Sarason
[35] showed that the vector space sum H∞ +C is a closed subalgebra
of C(X). Let

QC = H∞ + C ∩ (H∞ + C),

(1) This condition is equivalent to saying that for each point a ∈ bdy(U) there exists
some function f ∈ A(U) having an essential singularity at a.
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where the bar denotes complex conjugation. Then QC is a sub-function
algebra of C(X), closed under complex conjugation, and hence (by
Stone–Weierstrass) equal to C(M(QC)). The space M(QC) may be
regarded as a quotient space of X. Sarason introduced the algebra
QA = QC ∩ H∞. Wolff [38] showed that QA is a Dirichlet algebra.
This turns out to be maximal and pervasive on M(QC).

It might seem that the highly disconnected nature of M(L∞) has a lot
to do with the fact that there are no maximal or pervasive Douglas algebras.
However, there can be maximal algebras on a totally disconnected space. The
existence of such algebras was first established by Rudin (cf. [26, Section 4]).

In Section 2, we present some background results and some technical lem-
mas that will aid us throughout the paper. In Section 3 we discuss some basic
examples, and then provide examples to show that there may exist many es-
sentially pervasive subalgebras of a given C(X), so that in general the gap
between pervasiveness and maximality may be very large. In Section 4, we
provide further examples of pervasive algebras as well as non-examples. Our
examples explore the different possible relations between maximal subalge-
bras and pervasive subalgebras.

In Section 5, we introduce some further concepts related to support sets
for representing measures, and give some new results about pervasiveness,
maximality, and so-called relative maximality, using these concepts.

We close with some questions.

2. Preliminaries

2.1. Notation and definitions. Throughout the paper, A will denote
a uniform algebra, and X its Shilov boundary. As noted in the introduction,
A is assumed unital, and hence X is a compact Hausdorff space.

The group of invertible elements of A is denoted A−1, and the set of
continuous functions x 7→ |f(x)| with f ∈ A−1 by |A−1|. In the same spirit,
the set of functions log |f |, for f ∈ A−1, is denoted log |A−1|, and the linear
vector space of real parts <f of the f ∈ A is denoted <A. For instance, we
have

<C(X) = C(X,R), C(X)−1 = C(X,C \ {0}),
|C(X)| = C(X, [0,+∞)), log |C(X)−1| = <C(X).

The algebra A is said to be logmodular if log |A−1| is dense in C(X,R).
It is said to be strongly logmodular if log |A−1| = C(X,R). It is said to be
Dirichlet if <A is dense in C(X,R). Each Dirichlet algebra is logmodular.

We note that if A is strongly logmodular, then |A−1| coincides with the
set of all continuous functions from X to the set of positive real numbers.
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A subset F of X is a set of antisymmetry for A if every function f ∈ A
that is real-valued on F is constant on F . The most important fact about
antisymmetry is the following result of E. Bishop [14, Theorem II.13.1, p. 60].

Theorem 2.1 (Bishop antisymmetric decomposition theorem). Let A be
a uniform algebra on X. Let {Eα} be the family of maximal sets of antisym-
metry of A. Then the Eα are closed disjoint subsets of X whose union is X.
Each restriction algebra A|Eα is closed. If f ∈ C(X) and f |Eα ∈ A|Eα for
all Eα, then f ∈ A.

The algebra A is said to be antisymmetric if its Shilov boundary X is a
set of antisymmetry. The essential set is the minimal closed set E in X such
that for each continuous function f , if f = 0 on E, then f ∈ A. If E = X,
then A is said to be an essential algebra. The restriction A|E of A to its
essential set is closed in C(E) [5, Theorem 2.8.1, p. 145], and A is said to be
essentially pervasive if A|E is pervasive. The algebra A is said to be analytic
if every function in the algebra that vanishes on a nonempty open subset of
X is identically zero.

2.2. Some useful results. The following results will be used through-
out the paper. They summarize results that appear in [26, pp. 220–221].

Proposition 2.2 (Hoffman–Singer). Let A be a uniform algebra on X.
Then each of the following implies the subsequent statement:

(1) A is proper and pervasive.
(2) A is analytic.
(3) A is an integral domain.
(4) A is antisymmetric.
(5) A is essential.

Moreover, every algebra that is essential and maximal is pervasive.

Applying this to maximal subalgebras, we get:

Proposition 2.3 (Hoffman–Singer). Let A be a maximal (proper, closed)
subalgebra of C(X). Then the following are equivalent:

(1) A is pervasive.
(2) A is analytic.
(3) A is an integral domain.
(4) A is antisymmetric.
(5) A is essential.

Corollary 2.4. If the uniform algebra A is maximal in C(X), then A
is essentially pervasive.

Proof. If E is the essential set of A, then A|E is maximal in C(E). Now
apply the proposition to the algebra A|E.
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We note that if A is antisymmetric, then M(A) is connected, by the
Shilov idempotent theorem [14, Cor. III.6.5, p. 88].

2.3. Support sets. Recall that A is assumed to be a uniform algebra
on its Shilov boundary X.

Given φ ∈ M(A), a Borel probability measure µ supported on X for
which

φ(f) =
�

X

f dµ

for all f ∈ A is said to represent φ on A, or simply, to be a representing
measure when the context is clear. We do not use complex representing
measures. Every φ has at least one representing measure supported on X,
and exactly one if A is logmodular [14, Theorem II.4.2, p. 38].

We denote the closed support of a measure µ by suppµ. If λ is a measure
supported on X that represents φ on A, then we say that suppλ is a support
set for φ. For each φ, there always exists at least one minimal support set,
which is either {φ} or a perfect set [14, Theorem II.2.3, p. 33]. For φ ∈M(A),
the outer support of φ, denoted suppφ, is the closure of the union of all the
support sets for φ.

We say that a representing measure λ for φ ∈ X represents φ remotely if
λ has no point mass at φ (i.e. λ({φ}) = 0). If φ ∈ M(A) \X, then we say
that each representing measure for φ represents it remotely. The points of X
that do not have remote representing measures are precisely the p-points,
or generalized peak points [14, Theorem II.11.3, and a comment on p. 59].
We denote by D(A) the set of all characters φ ∈ M(A) that have a remote
representing measure. The core remote support of φ, denoted by suppφ, is
the intersection of the supports of the remote representing measures for φ.
In general, this may be empty. Evidently, suppφ ⊆ suppφ, and if it happens
that φ ∈ D(A) has a unique representing measure, then the support of that
measure coincides with both the core remote and the outer supports of φ, in
which case we refer to it as the support set of φ, denoted suppφ.

We collect below several results that we will use in future sections.
The next proposition relies on the basic fact (first exploited in connection

with pervasiveness by Čerych [8]) that A is dense in C(X) if and only if there
exists no nonzero annihilating measure for A on X.

Lemma 2.5. Let A be a uniform algebra on X and let λ remotely repre-
sent some φ ∈ D(A). Let E = suppλ. Then A|E is not dense in C(E).

Proof. Since E is not {φ}, we may choose b ∈ E, b 6= φ. Choose f ∈
ker(φ) with f(b) = 1. Choose a neighborhood N of b such that <f > 1/2
on N . Then <

	
N f dλ > 0, so fλ is a nonzero measure on E. But fλ ⊥ A,

so A|E is not dense in C(E).
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Proposition 2.6. Suppose A is proper and pervasive on X, and φ ∈
M(A) is remotely represented by a measure λ on X. Then suppλ = X.

Proof. This is immediate from the lemma.

Corollary 2.7. Suppose A is proper and pervasive on X. Let φ ∈ D(A).
Then suppφ = X.

Corollary 2.8. If A is proper and pervasive in C(X), then X is perfect.

Proof. If φ ∈ M(A) \X, then it has a nonsingleton (and hence perfect)
minimal support set, and by Proposition 2.6, this must be X, and we are
done. Suppose there is no such φ. Then M(A) = X. Since A is proper and
pervasive, it is antisymmetric, so X is connected. Since A is proper, X has
more than one point. Hence X has no isolated points, and so it is perfect.

3. Maximality and pervasiveness

3.1. Beginning examples. The disk algebra is maximal and pervasive.
The algebra of all functions continuous on the union of two disjoint closed
disks and holomorphic on their interiors is neither maximal nor pervasive.

Pervasiveness says that the algebra is very big, relative to C(X), yet
it is easy to give examples of maximal algebras that are not pervasive by
using Proposition 2.3. For instance, the algebra of all functions continuous
on the union of the closed unit disk and the segment [1, 2], and holomorphic
on the open disk, is maximal and not essential, hence not pervasive. That
it is maximal is Wermer’s maximality theorem. Of course, this example is
essentially pervasive.

In what follows, let [A, uα : α ∈ I] denote the closed subalgebra of C(X)
generated by A and the collection of functions {uα}. We have the following
simple proposition. (Recall that A is assumed to be a uniform algebra on its
Shilov boundary X.)

Proposition 3.1. If A is a pervasive subalgebra of C(X), then [A, f ] =
C(X) for all nonconstant f ∈ A.

Proof. If A = C(X), this is clear. So suppose A is a proper pervasive
subalgebra of C(X). Let f ∈ A be a nonconstant function and consider
B = [A, f ]. Since A ⊆ B, we know that B is pervasive. Since f is not
constant, either the real part of f or imaginary part of f is nonconstant.
Choose whichever one is not constant, say <f . Then <f is in B, real-valued,
and not constant, so B is not antisymmetric. By Proposition 2.2, B cannot
be proper.

We note that this proposition does not say that A is maximal. However
there are situations in which A must be maximal. We explore one such
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situation briefly, before turning to the main result in this section. We say a
function u ∈ A is unimodular if it is unimodular on X.

Proposition 3.2. Let A be a strongly logmodular proper subalgebra of
C(X). Then A is pervasive on X if and only if A is essential and maximal.

Proof. First note that if A is essential and maximal, then A is pervasive
on X by Proposition 2.2. So suppose now that A is pervasive.

Choose f ∈ C(X) \ A. Consider the algebra B = [A, f ]. There exists a
constant M such that f + M is invertible in B. Therefore, we may choose
g ∈ A−1 such that |g−1| = |f+M |. Let u = g(f+M). Then u is unimodular
and u is invertible in B. Therefore u = u−1 ∈ B. Note that u /∈ A, for
otherwise we would have f ∈ A. Since A ⊂ B ⊆ C(X), we know that B is
pervasive. If it were proper, it would be antisymmetric. Therefore, B = C(X)
and A is maximal.

3.2. Nonmaximal pervasive algebras. It is not quite so obvious how
to give an example of a nonmaximal proper pervasive algebra. De Paepe
and Wiegerinck [13] (see also [26]) gave several constructions, the simplest
of which is the algebra

{f ∈ A(D) : f(0) = f(1)}.

We formulate a result that justifies a general construction, and uses an elab-
oration on their method.

Theorem 3.3. Let A be a proper pervasive algebra on X containing a
nonconstant unimodular function. Then there is an infinite descending chain

A ⊃ A1 ⊃ A2 ⊃ · · ·

of distinct uniform algebras, contained in A, each one pervasive on X.

For instance, this applies to the disc algebra on X = S1, for which the
identity function z is unimodular.

Proof. Let u ∈ A be a nonconstant function with |u| = 1 on X. Then, if
M(A) = X, we would have |u| = 1 on M(A). As a consequence u would be
invertible. Thus, we would have u = u−1 ∈ A. But A is antisymmetric, so
this is impossible.

Therefore, since M(A) is connected (because A is antisymmetric), there
exist distinct characters φj ∈ M(A) \ X (j ∈ N). By Proposition 2.6, each
φj is represented by a measure having support equal to X. So |φj(u)| < 1,
for otherwise u would be constant. Let aj = φj(u), and for n ∈ N let Bn be
the finite Blaschke product with zeros a1, . . . , an. Replacing, if need be, u by
Bn ◦ u, and taking the appropriate product, we obtain un ∈ A unimodular
with φj(un) = 0 for each j = 1, . . . , n.
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Fix any x ∈ X. We know, by Corollary 2.8, that x is not isolated in X.
For each n ∈ N, let

An = {f ∈ A : φj(f) = f(x) for 1 ≤ j ≤ n}.
Then each An is closed and contains the constants, and the algebras An form
a decreasing chain.

For any uniform algebra A, and any finite subset F of M(A), the re-
striction A|F coincides with the algebra CF of all complex-valued functions
on F . Thus for each n there is a function f ∈ A that vanishes at x and φj
for j ≤ n, but not at φn+1, so the An are all distinct.

Now we claim that An|F is dense in C(F ), whenever F is a proper closed
subset of X. Note that this will also imply that An separates the points of X
and therefore An is a uniform algebra on X.

So suppose that F = X \U for some nonempty open set U . Let f ∈ C(F )
and let ε > 0.

We may suppose that ε < 1/2 and ‖f‖ ≤ 1.

Case 1◦. If x ∈ F , consider f1 = f − f(x). There exists k ∈ A such that
‖k − f1‖F < ε/2. Thus |k(x)| < ε/2. So

‖(k − k(x))− f1‖F ≤ ‖k − f1‖F + |k(x)| < ε.

Note that un ∈ C(X) and therefore there exists h ∈ A such that ‖h−un‖F =
‖unh − 1‖F < ε/2. Now, K = (k − k(x))hun ∈ An, since K(x) = 0 and
φj(un) = 0 for j = 1, . . . , n. Further,

‖K − f1‖F ≤ ‖(k − k(x))hun − (k − k(x))‖F + ‖(k − k(x))− f1‖F .
But

‖k − k(x)‖F ≤ ‖k‖F + ε/2 ≤ ‖f1‖F + ε ≤ 2 + ε.

So
‖K − f1‖F ≤ ‖k − k(x)‖F · ε/2 + ε < 3ε.

Thus, K + f(x) ∈ An and ‖K + f(x)− f‖F < 3ε.

Case 2◦. If x /∈ F , consider the set F ∪ {x}. Then F ∪ {x} 6= X,
because points are not open (by Corollary 2.8), and F ∪ {x} is a closed set
containing x. Thus, the previous case applies and we conclude that An is
dense in C(F ).

Therefore An is a pervasive algebra on X.

If we start, for instance, with A = A(D), then the intersection of any
infinite chain of the type constructed in the proof might not separate points
on X = S1, and if it did, it might not be pervasive on X. One might wonder
whether one could find an infinite descending chain with a pervasive inter-
section, or an infinite ascending chain, and so on. The next example answers
all such questions.
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Before leaving this theorem, we note that as one goes down the chain
of Aj ’s in this example, the first homotopy group π1(M(Aj)) becomes more
complex. This might suggest that, on a given X, maximal algebras A have
the simplest π1(M(A)). However, see below.

3.3. A large family of pervasive subalgebras. We now show how to
imbed the lattice of all subsets of N in the family of pervasive subalgebras
of some C(X).

Our example has the additional property that all the subalgebras are
Dirichlet, and the least algebra in the family is generated (as a function
algebra) by one element. The construction depends on the following ([31,
Theorem 4.1]).

Theorem 3.4. Suppose U is a proper open subset of Ĉ such that for
each boundary point a of U there exists some f ∈ A(U) with an essential
singularity at a. Then A(U) is pervasive on the boundary X of U if and only
if each connected component Uj of U has X for its boundary.

To construct the example, take U0, U1, U2, . . . to be a countably infi-
nite collection of pairwise disjoint simply connected open subsets of the
sphere Ĉ, all sharing the same boundary X. That such a collection exists
was first observed by Brouwer [4, p. 427]. In 1917, Yoneyama [39] gave a
nice way to describe an example of three Uj that share a common bound-
ary. His construction is known as the “Isles of Wada”, and may be found
in Krieger [30, pp. 7–8] or on the web [41]. The Uj are the “ocean”, a “cold
lake” and a “warm lake”. It is easy to modify it so that there are infinitely
many Uj : just have a separate lake with each temperature (1/n) ◦C, for
n ∈ N.

Then, for each S ⊂ N, let AS be the algebra of those functions on X
that extend analytically across each Uj with j ∈ N \ S. It is easy to see
that AS = AT implies S = T , and that S ⊂ T implies AS ⊂ AT . Then
AN = C(X), and A∅ is the intersection of all the An, in other words,
A(Ĉ ∼ U0). Thus A∅ is Dirichlet (by the Walsh–Lebesgue theorem [14,
Theorem II.3.3, p. 36]), and pervasive on X (by Theorem 3.4), so that each
AS is also Dirichlet and pervasive on X.

The maximal AS ’s are those for which N \ S is a singleton, i.e. AS con-
sists of all the functions in C(X) that extend holomorphically across a single
component Uj . In other words, they are the ones that have just a single non-
trivial Gleason part. (For background on Gleason parts, see [5, 14].) For each
of these algebras, the maximal ideal space has an infinitely generated first
homotopy group π1(M(A)), and the homotopy gets simpler as we go down
the lattice, away from the maximal elements. This contrasts with the previ-
ous example. It suggests that the maximal algebras might be distinguished
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among the pervasive by the difference (appropriately measured) between the
topology of M(A) and that of X. See below.

For general S ⊆ N, the nontrivial parts of AS are the Uj for j ∈ N\S. So
a pervasive algebra may have many nontrivial parts. In the AS , the parts are
all simply connected, but the result of Gamelin and Rossi already showed
that this is not necessary for maximality, since it applies, for instance, to
A(U), where U is an annulus.

4. Examples. In this section, we present examples to demonstrate the
relationships between various properties and pervasiveness. The disk alge-
bra was the first example of a pervasive Dirichlet algebra. We now present
some interesting Dirichlet algebras and discuss their pervasiveness (or lack
thereof).

4.1. Further Dirichlet examples. We give an example of an essential
Dirichlet algebra that is not pervasive.

Recall that for a compact subset K of the complex plane, P (K) denotes
the functions in C(K) that can be uniformly approximated by polynomials
in z on K.

Example 4.1. Take two disjoint closed disks, Dj (j = 1, 2), with bound-
ing circles Sj, and A = P (D1 ∪ D2) on X = S1 ∪ S2. Then A is Dirichlet
and essential on X, but not pervasive.

Proof. That A is Dirichlet is a case of the Walsh–Lebesgue theorem (see
[14, p. 36]). Since M(A) = D1 ∪D2 is not connected, A is not pervasive.

The following example, of a pervasive, nonmaximal Dirichlet algebra hav-
ing two nontrivial Gleason parts, is simpler to visualize than any of those of
Subsection 3.3.

Example 4.2. Let X be a simple closed Jordan curve which has positive
lower area density at each of its points. Then A = A(Ĉ ∼ X) is pervasive
on X, and D(A) consists of two Gleason parts, namely the two sides of X.

Proof. The area density condition guarantees that for each point a ∈ X,
there is an element f ∈ A having an essential singularity at a, so by Theorem
4.1 of [31], A is pervasive on X. To see that the two connected components
U1 and U2 of the complement of X belong to different parts of A, it suffices
to note that the characteristic function χU1 of U1 may be approximated,
pointwise on U = U1 ∪ U2, by elements of the unit ball of A. This follows
from work of Gamelin and Garnett: The capacitary condition for pointwise
bounded density of A(U) in H∞(U) given in [16] shows that there is a
bounded sequence belonging to A that approximates χU1 pointwise on U ,
and the reduction of norm theorem [17] tells us that the sequence may be
chosen with sup norm bounded by 1.
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With regard to the existence of such an example, we remark that Os-
good’s famous construction [33] of an arc of positive area does not produce
an arc that has positive lower area density at each point, because it contains
straight line segments. It can be modified to have the density property, or
the reader may consult [16, p. 396] for the idea of another construction.

It is possible to show that X may be replaced, in this example, by any
simple closed Jordan curve having no tangents, such as the fractal snowflake.
For the essential ideas behind this remark, see below, in Subsection 5.2.

4.2. Douglas algebras. It is well known [19] that H∞ is a strongly
logmodular subalgebra of L∞. Thus every element of M(H∞) has a unique
representing measure for H∞, supported on the Shilov boundary, X, of H∞,
which we identify with M(L∞). It follows that if H∞ ⊆ B ⊂ L∞, where
B is a closed subalgebra of L∞, then every element of M(B) has a unique
representing measure on X. We may regardM(B) as a subset ofM(H∞), by
identifying each element φ ∈M(B) with the element ofM(H∞) represented
by the same measure on X. After this identification, the Shilov boundary of
B is X.

Hoffman and Singer showed [26, Thm. 4.3, p. 222] that each proper per-
vasive algebra on a disconnected space X is contained in a maximal algebra
(of course, M(A) must be connected). They also showed [26, Theorem 7.3]
that H∞ is contained in no maximal subalgebra of L∞. Later, Sundberg [36]
gave several different proofs of this fact. Putting these facts together, we get:

Example 4.3. No proper closed subalgebra B of L∞ containing H∞ can
be pervasive on X = M(L∞).

We give a direct proof that uses a little less machinery:

Proof. Suppose that B is a closed algebra with H∞ ⊂ B ⊂ L∞. Then
z ∈ B [19, p. 378]. As a consequence, both z and z belong to B, so B cannot
be antisymmetric. By Proposition 2.2, B cannot be pervasive on X.

For the case B = H∞, we may note that if H∞ were pervasive on X,
then every Douglas algebra would be as well.

The case of H∞ can also be proved directly as follows: Recall that no
infinite Blaschke product is invertible in H∞. Furthermore, every infinite
Blaschke product must have a zero in M(H∞ + C) = M(H∞) \ D. Choose
a Blaschke product b with a discontinuity at z = 1. Since the zeros of b
cluster at 1, we may choose φ ∈ M(H∞) with φ(z) = 1 and φ(b) = 0. Now
φ cannot have X as support set, for then |φ(z)| < 1. If H∞ were pervasive,
Proposition 2.6 would imply that φ ∈ M(L∞). But then 1 = |φ(1)| =
|φ(bb)| = |φ(b)|2, contradicting the fact that φ(b) = 0.

Since X = M(L∞) is totally disconnected, one might suspect that it is
impossible to have a proper pervasive subalgebra of C(X) when X is to-
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tally disconnected. However, an example of this kind is implicit in [26, pp.
222–223]. If X ⊂ C is a compact set (such as the product C × C, where C
is a linear Cantor set of positive length) having positive area in each neigh-
bourhood of each of its points, and U = Ĉ\X, then A(U) is pervasive on X.

4.3. Between A(D) and H∞(D). A less well-known example of a per-
vasive algebra is the following.

Example 4.4. The algebra QA is pervasive on M(QC).

Proof. Since QA is a maximal subalgebra of QC ([38]) and analytic, the
example follows from Proposition 2.3.

This example has just one nontrivial part, D.
These results should be compared with the CAB algebras: let B be a

Douglas algebra properly containing H∞ + C. Let CB denote the algebra
generated by the unimodular functions invertible in B. Then B = H∞+CB
[10]. Furthermore, if CAB = CB ∩H∞, then the Shilov boundary of CAB is
naturally identified with M(CB), and if D is a closed algebra with CAB ⊂
D ⊂ CB, then D contains a nonconstant unimodular function invertible
in D. In fact, D is generated over CAB by such unimodular functions. (See
[10] for more information about these algebras.) Therefore, D is not anti-
symmetric and consequently no such D can be pervasive. As a consequence,
we may state:

Lemma 4.5. Let B be a proper Douglas algebra properly containing
H∞ + C. Then CAB is pervasive if and only if it is maximal in CB.

We now use the lemma together with a subclass of Blaschke products to
show that none of these algebras is pervasive. Recall that a Blaschke prod-
uct b is said to be interpolating if its zero sequence forms an interpolating
sequence, that is, if (zn) is the zero sequence of b then for each bounded
sequence (wn) of complex numbers, there exists a bounded analytic function
f such that f(zn) = wn for all n. In particular, the zeros of b must be dis-
tinct. The Blaschke product b is called thin or sparse if it is an interpolating
Blaschke product with zeros (zn) satisfying lim(1− |zn|2)|b′(zn)| = 1.

Example 4.6. If B is a proper Douglas algebra with H∞+C ⊂ B, then
CAB is not maximal in CB, and hence not pervasive on M(CB).

Proof. The maximal ideal space of H∞ + C is M(H∞) \ D. Therefore,
every finite Blaschke product is invertible in M(H∞ + C) and no infinite
Blaschke product is invertible in H∞+C. By the Chang–Marshall theorem,

B = [H∞, bα : bα is a Blaschke product invertible in B].

Since B properly contains H∞ + C, it must contain invertible infinite Bla-
schke products. Furthermore, if we factor a Blaschke product c = c1c2 that
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is invertible in B, then since cj ∈ H∞ ⊂ B we see that c1 = c2(c1c2) =
c2c ∈ B. Therefore, once a Blaschke product is invertible in the algebra,
every subproduct is as well.

Choose a thin Blaschke product b1 ∈ B−1, and factorize it as b1 = b11b12,
where each factor is an infinite Blaschke product. Then there exists φ ∈
M(H∞) \ D with φ(b11) = 0. Recalling that φ has a unique representing
measure, we see that it has a support set. The support set of φ (in M(L∞))
is a weak peak set [23, p. 207], and therefore H∞|suppφ is closed. Now, it
is known [22] that a thin Blaschke product can have at most one zero in
M(H∞|suppφ), and b11 already has one zero there, so b12 cannot. There-
fore, b12 is invertible in the algebra H∞|suppφ. Thus |φ(b12)| = 1. Now
b12 is invertible in B. Let D = [CAB, b12] ⊆ CB. Now (φ|D) ∈ M(D) and
φ(b11) = 0. Therefore, b11 is not invertible in D and D 6= CB. Obviously,
D 6= CAB, so CAB is not maximal in CB.

For algebras of functions on D, the interested reader should consult the
papers of A. Izzo [28], [29].

5. Maximal algebras

5.1. The extension algebras AE. Let A be a uniform algebra on its
Shilov boundary X. If B is a closed algebra with A ⊂ B ⊂ C(X), then we
have a map

π : M(B)→M(A), φ 7→ φ|A.
This map may or may not be surjective. If A has unique representing mea-
sures onX, then π is injective fromM(B) intoM(A). It may also be injective
in other cases. Whenever this happens, we identify M(B) with a closed sub-
set of M(A). We note that in all cases, X is also the Shilov boundary of B,
and π restricts to the identity on X. However, points of X may have mul-
tiple preimages, as we saw in Subsection 3.2. If this happens, then there are
points of X that are not p-points for A.

Let E be a closed subset of X. Then the A-convex hull of E, denoted Ê, is
the set of homomorphisms in M(A) that extend continuously to the closure
of A|E in C(E) [14, p. 39]. We have

Ê = {φ ∈M(A) : φ is represented by some λ with suppλ ⊆ E}.
When A has unique representing measures, this becomes

Ê = {φ ∈M(A) : suppφ ⊆ E}.
We denote by

AE := closC(X){f ∈ C(X) : f |E ∈ A|E}

the related function algebra on X. The maximal ideal space of AE is X ∪ Ê.
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We observe that for each closed E ⊆ X, A is contained in AE , that if A is
maximal, then AE is either maximal or is C(X), and that if A is essentially
pervasive, then so is AE .

Lemma 5.1. Suppose A|E is closed in C(E). Then

(1) AE = {f ∈ C(X) : f |E ∈ A|E}.
(2) AE is maximal in C(X) if and only if A|E is maximal in C(E).
(3) AE is essentially pervasive if and only if A|E is essentially pervasive.

Proof. (1) follows from the facts that A|E is closed in C(E) and X is
the Shilov boundary for A. We present a proof of (2) and (3) for the reader’s
convenience.

(2) First, suppose A|E is not maximal in C(E). Choose a uniform algebra
B on E, properly contained between them. Then it is easy to see that BE is
properly contained between AE and C(X), so AE is not maximal in C(X).

On the other hand, suppose AE is not maximal in C(X), and choose a
uniform algebra B on X, properly contained between them. Let B1 be the
closure in C(E) of the restriction algebra B|E. Then B1 is a uniform algebra
on E, contained between A|E and C(E). If A|E = B1, then one checks that
B ⊆ BE = AE , a contradiction. So A|E ⊂ B1. Suppose B1 = C(E). Take
a measure µ on X that annihilates B. Then µ ⊥ AE , so suppµ ⊆ E, hence
µ ⊥ B1, and we conclude that µ = 0. ThusB = C(X), another contradiction.
Therefore B1 ⊂ C(E). Thus A|E is not maximal in C(E).

(3) It is clear from (1) that AE and A|E have the same essential set, and
easy to see that this set is E ∩ F , where F is the essential set of A. Using
(1) again, we have AE |(E ∩F ) = (A|E)|(E ∩F ), and this gives the result.

Lemma 5.2. Let φ ∈ D(A). Then E = suppφ is a maximal antisymmet-
ric set for AE.

We note that E need not be a maximal antisymmetric set for A. Consider,
for instance, A(U), where U is the union D1∪D2 of two closed tangent disks
in C, and φ is a point inside D1. Then E = suppφ is bdy(D1), which is a
set of antisymmetry for A(U), but is not maximal among such sets.

Proof of Lemma 5.2. Let E = suppφ and A1 = AE . The restriction
homomorphism A1 → A1|E induces a map M(A1|E)→M(A1). Since φ(f)
is bounded by the sup norm of f on E, it follows that φ belongs toM(A1|E),
and hence may be regarded as an element of M(A1). Furthermore, regarded
as an element of M(A1), it is still represented by each representing measure
for φ on A.

If f ∈ A1 is real-valued on E, then for each representing measure ηφ for φ
on A, the function f is constant on supp ηφ, with value, say, c(ηφ). If ηφ and
ξφ both represent φ on A, then c(ηφ) =

	
f dηφ = φ(f) =

	
f dξφ = c(ξφ). So

f is constant on E. Thus E is an antisymmetric set for A1.
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If E ⊂ F ⊆ X, then there is a real-valued continuous function f on X
that is constant on E and nonconstant on F . Then f ∈ A1, so F cannot be
antisymmetric for A1.

Corollary 5.3. With E as in Lemma 5.2, AE |E is closed and antisym-
metric on E, and hence essential. Also, E is the essential set for AE.

Corollary 5.4. Let φ ∈ D(A). If Asuppφ is essentially pervasive, then

suppφ = suppφ.

Proof. Let E = suppφ. Since AE |E is closed, Lemma 5.1 (applied with
A = AE) tells us that AE |E is essentially pervasive in C(E). Since it is also
essential, it is pervasive on E. Also, φ belongs to Ê, so φ ∈ M(AE) \ X.
Further, φ has the same set of representing measures on A and on AE , so
the sets suppφ and suppφ are the same for A and for AE . By Corollary 2.7,
suppφ = E, as required.

Combining our results above, we have the following.

Theorem 5.5. Let A be a uniform algebra on its Shilov boundary X.
Suppose A is essentially pervasive, and let E be the essential set of A. Let
φ ∈ D(A). Then

suppφ = E.

Proof. Let E′ = suppφ. Then by Corollary 5.3, E′ is the essential set
of AE′ . Since A ⊂ AE′ , it follows that E′ ⊂ E. Hence A|F is dense in
C(F ) whenever F is a closed proper subset of E′. It follows that AE′ is
pervasive on E′, i.e. AE′ is essentially pervasive. Applying Corollary 5.4, we
get suppφ = E′.

There is at least one representing measure λ for φ, necessarily supported
on E′, and for every f ∈ ker(φ) we get an annihilating measure fλ, supported
on E′. Not all these can be zero, so A|E′ is not dense in C(E′). Thus E′
cannot be a proper subset of E, so E′ = E. The result follows.

5.2. Other maximal A(U). Consider open sets U dense in the sphere,
for which A(U) has nonconstant elements. We have noted that all such A(U)
are pervasive.

Wermer [37] considered the algebra A(U) on X, where U = Ĉ \ X and
X ⊂ C is an arc having positive area. He showed that this algebra separates
points on Ĉ, and used it to construct an arc in C3 that is not polynomially
convex. He and Browder [6] studied the subalgebra Aψ of A(D) mapped iso-
morphically by “conformal welding” to A(U), and showed that it is Dirichlet
on its Shilov boundary if and only if the associated welding map is singular.
Translated back to U , this says that A(U) is Dirichlet if and only if the two
pieces of harmonic measure (say for the point ∞) on the two sides of X
are mutually singular. Their proof used the F. and M. Riesz theorem, and
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an analysis of Aψ as a subalgebra of the disk algebra. Their result applies
to any arc X, and characterizes those for which A(U) is Dirichlet on X.
They managed to construct an example by applying the Ahlfors–Beurling
quasiconformal extension theorem and quasiconformal welding.

Later, Bishop, Carleson, Garnett and Jones [3] showed that the two pieces
of harmonic measure are mutually singular as soon as X has no tangents.
Thus A(U) is Dirichlet whenever X has no tangents.

Example 5.6. If X ⊂ C is an arc having no tangents, and U = Ĉ \X,
then A(U) is maximal in C(X).

For the reader’s convenience, we give a direct proof that establishes this
without transferring to the unit disk. A proof of this kind has not appeared
in print, but see [14, Exercise 1(g), p. 63]. The key point used here is that
A(U) is Dirichlet. Being Dirichlet can also be established without passing to
the disk, by applying the capacity condition of Gamelin and Garnett, and a
result of Bishop.

Proof of Example 5.6. By Arens’ theorem [14, Theorem II.1.9, p. 31],
the maximal ideal space of A(U) is Ĉ. Since A = A(U) is Dirichlet, it has
unique representing measures, so its harmonic measure is the only repre-
senting measure for a point a ∈ U on A. Suppose B is a uniform algebra
contained between A and C(X), and consider the map π : M(B)→M(A).

If there is some point a ∈ U that is omitted by π, then z 7→ 1/(z − a)
belongs toB, and thusB contains the closure onX of the algebra of functions
holomorphic near X, hence B = C(X).

So suppose the image of π contains U . Then π is injective, since for a ∈ U
all points of π−1(a) must share the same representing measure, namely the
harmonic measure for a. Thus B is an algebra of functions on Ĉ. Moreover,
since it is represented on U by the harmonic measures, each f ∈ B is har-
monic on U . Thus gf is harmonic on U , for all g ∈ A and f ∈ B. But
then

0 = ∆(fg) = ∂∂̄(fg) = ∂(g∂̄f) = (∂g)(∂̄f)

on U . It is not hard to see that for each a ∈ U there is some g ∈ A with
∂g(a) 6= 0 (just take a nonconstant g ∈ A, and if g′(a) = 0, consider the first
k ∈ N with g(k+1)(a) 6= 0, and form (g(z)− g(a))/(z − a)k), so we conclude
that f is holomorphic on U . Thus B = A.

We remark that Hoffman and Singer constructed a maximal algebra on
an arc, by starting with a similar A(U), but having complement consisting
of two arcs, and forming a quotient algebra. They left open the question
whether such an A(U) could be maximal.

5.3. Relative maximality. In this section we study relative maximal-
ity, a concept that permits strongly logmodular algebras to be maximal rela-
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tive to an algebra other than C(X). Throughout this subsection, A will be a
logmodular subalgebra of C(X), and B will represent a closed algebra with
A ⊂ B ⊆ C(X).

Given a set Ω ⊂M(A), Guillory and Izuchi study relative minimal sup-
port sets in the context of subalgebras of L∞ containing H∞ (see [21], as
well as [22]). Our result is motivated by their work. Thus, we will say a point
φ ∈ M(A) \M(B) is a minimal support point (relative to M(A) \M(B))
if there is no point ψ ∈ M(A) \M(B) with suppψ ⊂ suppφ. The goal of
this section is to prove Theorem 5.7, below, which applies to Douglas alge-
bras. Douglas-like subalgebras of L∞(D, dA) (where dA denotes area measure
on D) have recently been investigated [2].

Before we consider relative maximal algebras, we should note that if
suppφ is a proper nontrivial subset of X, then the algebra Asuppφ is not
essential and therefore not pervasive.

Theorem 5.7. Let A be a logmodular algebra on X and B an algebra
with A ⊂ B ⊆ C(X). Suppose that

(a) for each algebra D with A ⊂ D ⊆ C(X) there exists a nonempty
index set I and unimodular functions

U = {uα : α ∈ I} ⊂ A such that D = [A, uα : uα ∈ U ];

(b) whenever B1, B2 are subalgebras of C(X) containing A and ψ ∈
M(A) \ (M(B1) ∪ M(B2)), there exists u ∈ A, unimodular, such
that 0 /∈ u(M(B1) ∪M(B2)) but ψ(u) = 0.

Then φ ∈M(A)\M(B) is a minimal support point if and only if B∩Asuppφ

is maximal in B.

The proof depends on the following lemma.

Lemma 5.8. Let A be a logmodular algebra. Suppose that whenever B1

and B2 are subalgebras of C(X) with A ⊂ B1∪B2 and ψ ∈M(A)\(M(B1)∪
M(B2)), then there exists u ∈ A, unimodular, such that 0 /∈ u(M(B1) ∪
M(B2)) but ψ(u) = 0. Then for any closed algebra B with A ⊂ B ⊆ C(X)
we have

M(B ∩Asuppφ) = M(B) ∪M(Asuppφ).

Proof. We let A1 = B ∩Asuppφ. One containment is obvious, so suppose
ψ ∈ M(B ∩ Asuppφ) = M(A1). In particular, ψ ∈ M(A). Suppose that
ψ /∈M(B)∪M(Asuppφ). By our assumption, there exists u ∈ A unimodular
such that u does not vanish onM(Asuppφ)∪M(B), but ψ(u) = 0. Therefore,
u ∈ A1. But ψ ∈M(A1) and u ∈ A−1

1 , so this is impossible.

Proof of Theorem 5.7. Assume first that suppφ is minimal. If A1 is not
maximal, there exists an algebra D with A1 ⊂ D ⊂ B. By assumption (part
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(a)), there exists u ∈ A ∩ D−1 unimodular and satisfying u /∈ A−1
1 . Since

u ∈ D−1, we know that u ∈ B. Thus, u /∈ A−1
1 implies that u /∈ Asuppφ.

Thus, |φ(u)| < 1 and u is not constant on the support of φ.
Fix τ ∈M(D) and note that |τ(u)| = 1. If τ /∈M(B), then τ ∈M(A) \

M(B). Since τ ∈M(A1), we know from the lemma above that, in this case,
τ ∈M(Asuppφ). Since the support of φ is minimal, we have suppφ = supp τ .
But u is not constant on the former set, while it is constant on the latter.
Hence, this is impossible. Hence, τ ∈M(B). ThusM(D) = M(B) and every
unimodular function in A that is invertible in B is also invertible in D. Thus
B = D, and A1 is maximal.

Now suppose that A1 is maximal. Suppose that ψ ∈ M(A) \M(B) and
suppψ ⊂ suppφ. Then ψ ∈M(Asuppφ) ⊆M(A1). By hypothesis (part (b)),
however, there exists u ∈ A unimodular such that u ∈ B−1 and ψ(u) = 0.
Now φ /∈M(B)∪M(Asuppψ). Letting A2 = B ∩Asuppψ and again applying
hypothesis (b), we find that there exists v ∈ A−1

2 , unimodular, such that
φ(v) = 0. Therefore A1 ⊂ A2, and since u ∈ B \ A2, we see that A1 is not
maximal, a contradiction.

The next example illustrates the relative maximality discussed above
and can be found in [21], but we present the short proof here. Note that
every closed subalgebra B of L∞ with B ⊃ H∞ is, by the Chang–Marshall
theorem, generated by H∞ and the conjugates of interpolating Blaschke
products. Furthermore, the second hypothesis of Theorem 5.7 is satisfied
as well, though the justification is more work: Suppose that H∞ ⊂ Bj for
j = 1, 2 and ψ ∈M(H∞)\(M(B1)∪M(B2)). Choose an open set V about ψ
that is disjoint from M(B1)∪M(B2). By [20, Corollary 3.2], there is a point
ψ0 in V ∩ M(H∞suppψ) such that ψ0 is in the closure of an interpolating
sequence (zn). Choose a subset of (zn), denoted by (zn,1), capturing ψ0 in
its closure and such that the closure of the sequence is entirely contained
in V . Then a result of Hoffman [25] implies that the corresponding Blaschke
product b can vanish at x inM(Bj) if and only if x is in the closure of (zn,1).
Therefore, b will not vanish on M(Bj), while ψ0(b) = 0. Since the support
set of ψ0 is contained in that of ψ, we see that |ψ(b)| < 1. Then u =
(b− ψ(b))/(1− ψ(b)b) satisfies the hypothesis of Theorem 5.7(b).

Example 5.9 ([21]). There is an example of a minimal support set in a
strongly logmodular algebra on a totally disconnected space.

This result relies on the fact that any point in the closure of a thin
sequence has a maximal support set. This is an unpublished result of Hoffman
and can be found in [7].

Proof. Let b be a thin Blaschke product, that is, the zeros of b are (zn) and
they satisfy lim(1−|zn|2)|b′(zn)| = 1. Consider H∞[b] and let φ ∈M(H∞)\
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M(H∞[b]). We claim that φ has a minimal support set, that is, if ψ ∈
M(H∞) \M(H∞[b]) then the support of ψ is not properly contained in the
support of φ. To see this, we argue by contradiction: Suppose that suppψ ⊂
suppφ. Since ψ ∈ M(H∞) \M(H∞[b]), we must have |ψ(b)| < 1. So b /∈
H∞| suppψ and there exists ψ1 ∈M(H∞|suppψ) with ψ1(b) = 0. Therefore,
(by Hoffman’s result, as stated in [7]) suppψ1 is maximal, so suppψ1 =
supp φ. But then suppψ = supp φ as well, establishing the contradiction.
So φ is a minimal support point and H∞suppφ∩H∞[b] is maximal in H∞[b].

This algebra is not pervasive, of course, because it is a subalgebra of L∞
containing H∞.

Example 5.10. Let A = H∞ and B = H∞+C. Then H∞ is maximal in
H∞+C and every point in M(A)\M(B) has minimal support set. Further,
H∞ is relatively pervasive in H∞+C (in a sense to be made precise below).

Proof. It is well known that H∞ is maximal in H∞ + C ([19, p. 376])
and that M(A) \M(B) = D, that is, evaluation at points of the open unit
disk D.

The algebra H∞ is also “relatively” pervasive in H∞+C in the following
sense: Let F be a closed and proper subset of the Shilov boundary X. Then
U = X \ F is open. Choose a smaller open set U1 ⊂ U such that its closure
is also contained in U . Since X is extremally disconnected, W1 = clos(U1)
is clopen. Thus, by [19, p. 376] the closed subalgebra of L∞ generated by
H∞ and χW1 contains H∞ + C. So for each h ∈ H∞ + C, there exist
fn, gn ∈ H∞ such that ‖h− (fn + gnχW1)‖X → 0. Since χW1 = 0 on F , we
have ‖h− fn‖F → 0, completing the proof.

6. Final questions. Our results and examples raise some questions:

1. We have seen that a maximal algebra A on X may have M(A) either
more or less complicated, topologically, than X. We have also seen that a
maximal algebra need not have a homotopically trivial M(A). What, if any,
topological conditions onX andM(B) will guarantee that an essentially per-
vasive B is maximal? It cannot just be a matter of comparing π1’s, because
of the example in Subsection 5.2.

2. One common feature of all our examples is that the maximal algebras
have just one nontrivial Gleason part, but this is not necessary for maximal-
ity. A theorem of Hoffman and Singer [27, Theorem 4.7] implies that the big
disk algebra is maximal on the torus, and this algebra has many nontrivial
parts. However, each nontrivial part of the big disk algebra is dense in the
whole of M(A), so one may ask whether it is necessary for maximality that
M(A) lies in the closure of each nontrivial part. However, even if necessary
for maximality, this property will not be enough to distinguish the maximal
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from the essentially pervasive. The counterexamples we have seen have the
feature that the part meets X.

3. Suppose A has just one nontrivial part P , and P is finitely connected,
and the weak-star and metric topologies agree on P . Is A maximal in C(X)?
What if we assume that all points of X are peak points?

4. Can a pervasive algebra have more than one non-simply-connected
nontrivial part? What about a maximal algebra?

5. Can a strongly logmodular essential algebra be pervasive?
6. It would be interesting if we could even show that you cannot have a

proper pervasive algebra on X = M(A) = [0, 1]. As far as we know, this is
open.

7. Is A(U) maximal in C(X) whenever U ⊂ Ĉ is open and connected and
X = bdy(U) is the Shilov boundary of A(U)?

8. Suppose A is essential and φ ∈ D(A) implies suppφ = E and there
are no completely singular annihilating measures for A. Is A pervasive?

9. The referee also asks whether a proper uniform algebra can be (a) per-
vasive, or (b) Dirichlet, or (c) logmodular, or (d) strongly logmodular, on its
maximal ideal space. We do not know.
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