Haar measure and continuous representations of locally compact abelian groups

by

JEAN-CHRISTOPHE TOMASI (Bastia)

Abstract. Let $\mathcal{L}(X)$ be the algebra of all bounded operators on a Banach space X, and let $\theta : G \to \mathcal{L}(X)$ be a strongly continuous representation of a locally compact and second countable abelian group G on X. Set $\sigma^1(\theta(g)) := \{\lambda/|\lambda| \mid \lambda \in \sigma(\theta(g))\}$, where $\sigma(\theta(g))$ is the spectrum of $\theta(g)$, and let Σ_{θ} be the set of all $g \in G$ such that $\sigma^1(\theta(g))$ does not contain any regular polygon of \mathbb{T} (by a *regular polygon* we mean the image under a rotation of a closed subgroup of the unit circle \mathbb{T} different from $\{1\}$). We prove that θ is uniformly continuous if and only if Σ_{θ} is a non-null set for the Haar measure on G.

1. Introduction. A characterization of uniform continuity for strongly continuous groups was given in [7]. Indeed the authors proved that a strongly continuous one-parameter group $(T(t))_{t\in\mathbb{R}}$ on a Banach space X is uniformly continuous if and only if $\{t \in \mathbb{R} \mid \sigma^1(T(t)) \neq \mathbb{T}\}$ is non-meager, where \mathbb{T} denotes the unit circle of \mathbb{C} and $\sigma^1(T(t)) \coloneqq \{\lambda \mid \lambda \in \sigma(T(t))\}$, well defined since T(t) is invertible. The following generalization of this result was obtained in [1]: if G is a second countable and locally compact abelian group then either θ is uniformly continuous or $\Sigma_{\theta} := \{g \in G \mid \text{there is no } P \in \mathcal{P} \text{ with } P \subseteq \sigma^1(\theta(g))\}$ is meager, where \mathcal{P} is the set of regular polygons of \mathbb{T} . So when the representation is not uniformly continuous, the angular distribution of the spectrum of $\theta(g)$ is rather dispersed, except for g in a meager set in G.

In the present work, we are interested in another condition, obtained by replacing *meager set* by *null set*.

EXAMPLE 1.1. Let $(T(t))_{t\in\mathbb{R}}$ be the translation group on $L^2(\mathbb{R})$ defined by (T(t)f)(x) = f(x+t). This one-parameter group is strongly continuous, not uniformly continuous and for all $t \neq 0$, $\sigma(T(t)) = \mathbb{T}$, thus $\Sigma_{\theta} = \{0\}$ is indeed a null set.

²⁰¹⁰ Mathematics Subject Classification: 47A10, 47D03, 22A25.

Key words and phrases: strongly and uniformly continuous representations of groups, Haar measure, nullsets, essential spectrum.

Following J. Esterle (see [2], [3]) we define a representation of a topological group G on a Banach algebra A to be a map $\theta: G \to A$ such that $\theta(1) = I$, where 1 and I respectively denote the unit elements of G and A, and $\theta(uv) = \theta(u)\theta(v)$.

In [2] the author established a zero- $\sqrt{3}$ law for representations of locally compact abelian groups: if $\theta: G \to A$ is a locally bounded representation of such a group on a Banach algebra then either θ is uniformly continuous or $\limsup_{g\to 1} \rho(\theta(g) - I) \ge \sqrt{3}$, where ρ denotes the spectral radius.

As a consequence of our results we find, but only in the case of strongly continuous representations of locally compact and second countable abelian groups, that either θ is uniformly continuous or $\liminf_{g\to 1, g\in G\setminus M} \rho(\theta(g)-I) \ge \sqrt{2}$ where M is a null set in G.

2. Characterization of uniform continuity. For a locally bounded representation of a locally compact abelian group G, there are some arguments, based on Gelfand–Hille's theorem, Shilov's idempotent theorem and the standard structure theorem for locally compact abelian groups (see [2]) that allow us to go from spectral continuity (that is, $\lim_{g\to 1} \rho(\theta(g) - I) = 0$) to uniform continuity.

Furthermore R. Phillips (see [5]) proved that the continuity for oneparameter groups can be read through the characters, in the sense that if $T : \mathbb{R} \to A$ is a locally bounded representation of \mathbb{R} on a commutative Banach algebra A then its uniform continuity is equivalent to the continuity of $t \in \mathbb{R} \mapsto \chi(T(t))$ for all $\chi \in \hat{A}$, where \hat{A} denotes the character space of A.

However, going from the continuity through each character (that is, $\chi \circ T$ continuous for all $\chi \in \hat{A}$) to the uniform condition on \hat{A} : $\lim_{t\to 0} \rho(\theta(t) - 1) = 0$ required, in the case of \mathbb{R} , an analytical argument difficult to adapt to a general group.

Therefore in order to generalize this result from \mathbb{R} to any locally compact abelian group, we had to use in [1] the Phillips theorem and the standard structure theorem for locally compact abelian groups, and to deal separately with compact groups and euclidean groups \mathbb{R}^n .

Here, we present a direct proof of this generalization and also a simplified proof of the Phillips result.

In what follows we denote by $\mathcal{V}(1)$ the family of all neighborhoods of the unit element of G.

LEMMA 2.1. Let θ be a locally bounded representation of a topological abelian group G on a Banach algebra A. Then for all $\epsilon > 0$ there exists $V_{\epsilon} \in \mathcal{V}(1)$ such that for all $g \in V_{\epsilon}$,

$$\sigma(\theta(g)) \subseteq \{ z \in \mathbb{C} \mid 1 - \epsilon \le |z| \le 1 + \epsilon \}.$$

Proof. Since θ is locally bounded, there exist M > 1 and $V \in \mathcal{V}(1)$ such that for all $g \in V$, $\|\theta(g)\| \leq M$. By the continuity of the product, for all $n \geq 1$ there exists $V_n \in \mathcal{V}(1)$ such that for all $g \in V_n$, $\|\theta(g^n)\| \leq M$ and $\|\theta(g^{-n})\| \leq M$. Since $\sigma(\theta(g^{-n})) = \{1/\lambda \mid \lambda \in \sigma(\theta(g^n))\}$ we obtain

$$\sigma(\theta(g^n)) \subseteq \{ z \in \mathbb{C} \mid 1/M \le |z| \le M \},\$$

and since $\sigma(\theta(g^n)) = (\sigma(\theta(g)))^n$, we have

$$(1/M)^{1/n} \le |z| \le M^{1/n}$$

for all $g \in V_n$ and $z \in \sigma(\theta(g))$. This yields the desired conclusion.

PROPOSITION 2.2. Let θ be a locally bounded representation of a locally compact abelian group G on a commutative Banach algebra A. The following assertions are equivalent:

- (i) θ is uniformly continuous.
- (ii) θ is spectrally continuous.
- (iii) For all $\chi \in A$, $\chi \circ \theta$ is continuous.

Proof. (i) \Rightarrow (ii) \Rightarrow (iii): Clear.

(iii) \Rightarrow (ii): Let $V \in \mathcal{V}(1)$ be compact and symmetric. Then $H = \bigcup_{n \in \mathbb{N}} V^n$ is a locally compact and σ -compact subgroup of G. We have $H \in \mathcal{V}(1)$, hence it suffices to show that $\theta_H := \theta_{|H|}$ is spectrally continuous.

We first show that $\{\chi \circ \theta_H | | \chi \in \hat{A}\}$ is compact in $C(H, \mathbb{T})$ equipped with the topology of compact convergence. Since H is σ -compact, this topology is metrizable, thus it suffices to check that $\{\chi \circ \theta_H / | \chi \circ \theta_H | | \chi \in \hat{A}\}$ is sequentially compact. So let $(\chi_n \circ \theta_H / | \chi_n \circ \theta_H |)_{n \in \mathbb{N}}$ be a sequence in $\{\chi \circ \theta_H / | \chi \circ \theta_H | | \chi \in \hat{A}\}$. The Gelfand space \hat{A} is compact, and thus $\{\chi \circ \theta_H / | \chi \circ \theta_H | | \chi \in \hat{A}\} \subseteq C(H, \mathbb{T})$ is compact for the product topology and so is the set of restrictions to V that we denote $\{\chi \circ \theta_V / | \chi \circ \theta_V |\}$.

By hypothesis we have $\{\chi \circ \theta_V | | \chi \circ \theta_V | | \chi \in \hat{A}\} \subseteq C(V, \mathbb{T})$, and thus we can apply Eberlein–Šmulian's theorem (see [9, p. 296]): $\{\chi \circ \theta_V / | \chi \circ \theta_V | | \chi \circ \theta_V | | \chi \in \hat{A}\}$ is sequentially compact in \mathbb{T}^V , therefore we can extract a subsequence $(\chi_{n_k} \circ \theta_V / | \chi_{n_k} \circ \theta_V |)_{k \in \mathbb{N}}$ that converges to an element $\chi \circ \theta_V / | \chi \circ \theta_V |$, that is, for all $g \in V$, $\chi_{n_k}(\theta_V(g)) / | \chi_{n_k}(\theta_V(g)) | \to \chi(\theta_V(g)) / | \chi(\theta_V(g)) |$.

But since it concerns restrictions of morphisms, the convergence extends from V to $H = \bigcup_{n \in \mathbb{N}} V^n$, and using the dominated convergence theorem, we find that for all $f \in L^1(H)$, $\hat{f}(\chi_{n_k} \circ \theta_H / |\chi_{n_k} \circ \theta_H|) \to \hat{f}(\chi \circ \theta_H / |\chi \circ \theta_H|)$ (where $L^1(H)$ denotes the L^1 -space of H with respect to a Haar measure m and \hat{f} denotes the Fourier transform of f).

Since in the dual group \hat{H} the topology of compact convergence on H coincides with the weak^{*} topology that \hat{H} inherits as a subset of $L^{\infty}(H)$, we conclude that $\chi_{n_k} \circ \theta_H / |\chi_{n_k} \circ \theta_H| \to \chi \circ \theta_H / |\chi \circ \theta_H|$, which proves the compactness.

Then, by Ascoli's theorem, $\{\chi \circ \theta_H | | \chi \circ \theta_H | | \chi \in \hat{A}\}$ is equicontinuous; so for all $\epsilon > 0$ there exists $W_{\epsilon} \in \mathcal{V}(1)$ in H such that for all $h \in W_{\epsilon}$, $\sup_{\chi \in \hat{A}} |\chi \circ \theta_H(h)| |\chi \circ \theta_H(h)| - 1| < \epsilon$.

Lemma 2.1 yields $V_{\epsilon} \in \mathcal{V}(1)$ such that for all $h \in V_{\epsilon}$ and all $\chi \in \hat{A}$,

$$\chi \circ \theta_H(h) \in \{ z \in \mathbb{C} \mid 1 - \epsilon \le |z| \le 1 + \epsilon \},\$$

and thus for all $h \in W_{\epsilon} \cap V_{\epsilon}$ and all $\chi \in A$,

$$\begin{aligned} |\chi \circ \theta_H(h) - 1| &\leq \left| \chi \circ \theta_H(h) - \chi \circ \theta_H(h) / |\chi \circ \theta_H(h)| \right| \\ &+ \left| \chi \circ \theta_H(h) / |\chi \circ \theta_H(h)| - 1 \right| \\ &\leq 2\epsilon, \end{aligned}$$

that is, $\rho(\theta_H(h) - I) \leq 2\epsilon$, and θ_H is spectrally continuous.

(ii) \Rightarrow (i): See Theorem 3.3 in [2].

3. Preliminary results. Let G be a topological group and $\varphi: G \to \mathbb{T}$ a morphism. Define

$$\Gamma_{\varphi} := \{\lambda \in \mathbb{T} \mid \text{there is a net } (g_i) \text{ in } G \text{ converging to } 1 \text{ such that } \varphi(g_i) \to \lambda \}$$
$$= \bigcap_{W \in \mathcal{V}(1)} \overline{\varphi(W)}$$

(see [2]). Then:

- Γ_{φ} is a closed subgroup of \mathbb{T} (thus $\Gamma_{\varphi} = \Gamma_k$ the group of kth roots of unity for some $k \geq 1$, or $\Gamma_{\varphi} = \mathbb{T}$).
- φ is continuous if and only if $\Gamma_{\varphi} = \{1\}$.
- If the group locally admits division by every $n \ge 1$ (in the sense that for every $n \in \mathbb{N}$ there exist $V \in \mathcal{V}(1)$, a compact subset W of Gcontaining 1 and a map $\psi: V \to W$ such that $\psi(1) = 1$ and $\psi^n(u) = u$ for every $u \in V$), then one can easily check that Γ_{φ} is divisible, thus either $\Gamma_{\varphi} = \mathbb{T}$ or $\Gamma_{\varphi} = \{1\}$.

LEMMA 3.1. Let Γ be a subset of \mathbb{T} , and V an open subset of \mathbb{T} such that $\lambda V \cap \Gamma \neq \emptyset$ for all $\lambda \in \mathbb{T}$. Then there exists a compact set $K \subseteq V$ such that $\lambda K \cap \Gamma \neq \emptyset$ for all $\lambda \in \mathbb{T}$.

Proof. Since V is open in \mathbb{T} , there exists a sequence $(O_n)_{n \in \mathbb{N}}$ of relatively compact open sets in V with $\overline{O_n} \subseteq O_{n+1}$ for all $n \in \mathbb{N}$ and $V = \bigcup_{n \in \mathbb{N}} O_n$. It suffices to show that there exists an element of the sequence $(\overline{O_n})_{n \in \mathbb{N}}$ intersected by every $\lambda \Gamma$.

If it is not true then for all $n \in \mathbb{N}$ there exists $\lambda_n \in \mathbb{T}$ such that $\lambda_n \Gamma \cap \overline{O_n} = \emptyset$, thus $\lambda_n \Gamma \subseteq \mathbb{T} \setminus \overline{O_n} \subset \mathbb{T} \setminus O_n =: F_n$. As the sequence $(O_n)_{n \in \mathbb{N}}$ is

increasing, $(F_n)_{n \in \mathbb{N}}$ is a decreasing sequence of closed sets such that

$$\bigcap_{n \in \mathbb{N}} F_n = \bigcap_{n \in \mathbb{N}} \mathbb{T} \setminus O_n = \mathbb{T} \setminus \bigcup_{n \in \mathbb{N}} O_n = \mathbb{T} \setminus V$$

Moreover, since \mathbb{T} is compact, we can suppose that $(\lambda_n)_{n\in\mathbb{N}}$ is convergent. Denote by λ its limit, let $\mu \in \Gamma$ and $N \in \mathbb{N}$. For all $k \geq N$, we have $\lambda_k \mu \in \lambda_k \Gamma \subseteq F_k \subseteq F_N$, and so $\lambda \mu \in \overline{F_N} = F_N$. Finally $\lambda \Gamma \subseteq \bigcap_{n \in \mathbb{N}} F_n = \mathbb{T} \setminus V$, which is a contradiction.

LEMMA 3.2. Let G be a locally compact and second countable abelian group and m a Haar measure on G. If $A \subseteq G$ is measurable with m(A) > 0, then for every $N \ge 1$ there exists $U_1 \in \mathcal{V}(1)$ such that for all $(g_1, \ldots, g_N) \in U_1^N$,

$$m\Big(A\cap\bigcap_{i=1}^N g_iA\Big)>0.$$

Proof. As G is σ -finite, we can assume that $m(A) < \infty$. Let $\beta \in [0, 1[$ and $\alpha = \beta/(N+1)$. We know, by regularity of m, that there exist $K \subseteq A \subseteq U$ with K and U respectively compact and open satisfying $m(K) \ge (1-\alpha)m(U)$; since K is compact, there exist $U_1 \in \mathcal{V}(1)$ such that $U_1K \subseteq U$. Let us check by finite induction on k that for all $k \in \{1, \ldots, N\}$ and for all $(g_1, \ldots, g_k) \in U_1^k$,

$$m\left(K \cap \bigcap_{i=1}^{k} g_i K\right) \ge (1 - (k+1)\alpha)m(U).$$

We have $m(K \cap g_1K) \ge m(K) + m(g_1K) - m(U)$ for $K \cup g_1K \subseteq U$, and since *m* is translation-invariant, we obtain $m(K \cap g_1K) \ge (1 - 2\alpha)m(U)$. Suppose that $m(K \cap \bigcap_{i=1}^k g_iK) \ge (1 - (k+1)\alpha)m(U)$ for some $1 \le k < N$; then

$$m\left(K \cap \bigcap_{i=1}^{k+1} g_i K\right) = m\left(g_1 K \cap \left(K \cap \bigcap_{i=2}^{k+1} g_i K\right)\right)$$
$$\geq m(g_1 K) + m\left(K \cap \bigcap_{i=2}^{k+1} g_i K\right) - m(U).$$

Thus, by induction hypothesis and invariance of m,

$$m(g_1K) + m\left(K \cap \bigcap_{i=2}^{k+1} g_iK\right) - m(U)$$

$$\geq m(K) + (1 - (k+1)\alpha)m(U) - m(U)$$

$$\geq (1 - (k+2)\alpha)m(U),$$

which is the expected result.

In particular, for all $(g_1, \ldots, g_N) \in U_1^N$,

$$m\left(A \cap \bigcap_{i=1}^{N} g_i A\right) \ge (1 - (N+1)\alpha)m(U)$$
$$= (1 - \beta)m(U) \ge (1 - \beta)m(A) > 0. \blacksquare$$

LEMMA 3.3. Let φ be a morphism from a locally compact abelian group G into \mathbb{T} , and m a Haar measure on G. If V is an open subset of \mathbb{T} such that $\lambda V \cap \Gamma_{\varphi} \neq \emptyset$ for all $\lambda \in \mathbb{T}$, and if $A \subseteq G$ is measurable with m(A) > 0, then $\varphi(A) \cap V \neq \emptyset$.

Proof. Suppose that $\varphi(A) \cap V = \emptyset$. Let us prove that there exist a symmetric and open $V_0 \in \mathcal{V}(1)$ and an open set V_1 in \mathbb{T} such that for all $\lambda \in \mathbb{T}$,

$$\lambda V_1 \cap \Gamma_{\varphi} \neq \emptyset$$
 and $V_0 V_1 \subseteq V$.

By Lemma 3.1 there exists a compact set $K \subseteq V$ such that $\lambda K \cap \Gamma_{\varphi} \neq \emptyset$ for all $\lambda \in \mathbb{T}$; thus if $\pi : \mathbb{T} \times \mathbb{T} \to \mathbb{T}$ denotes the product on $\mathbb{T} \times \mathbb{T}$, the compact set $\{1\} \times K$ is a subset of the open set $\pi^{-1}(V)$ and so there exist a symmetric open unit-neighborhood V_0 and an open set V_1 containing Ksuch that

$$V_0 \times V_1 \subseteq \pi^{-1}(V)$$
 and $V_0 V_1 \subseteq V$.

Since $\lambda V_1 \cap \Gamma_{\varphi} \neq \emptyset$ for all $\lambda \in \mathbb{T}$, we can easily deduce that $\mathbb{T} = \bigcup_{\lambda \in \Gamma_{\varphi}} \lambda V_1$, and then by compactness there exists $N \geq 1$ such that $\mathbb{T} = \bigcup_{i=1}^N \lambda_i V_1$ with $\lambda_i \in \Gamma_{\varphi}$.

By Lemma 3.2 there exists $U_1 \in \mathcal{V}(1)$ in G such that for all $(g_1, \ldots, g_N) \in U_1^N$, $m(A \cap \bigcap_{i=1}^N g_i A) > 0$ and thus $A \cap \bigcap_{i=1}^N g_i A \neq \emptyset$.

Let $i \in \{1, \ldots, N\}$ and $\lambda_i \in \Gamma_{\varphi}$. Since $\Gamma_{\varphi} \subseteq \overline{\varphi(U_1)}$, there exists $g_i \in U_1$ such that $\lambda_i \varphi(g_i)^{-1} \in V_0$, that is, $\lambda_i \in \varphi(g_i)V_0$, and thus

$$\mathbb{T} = \bigcup_{i=1}^{N} \lambda_i V_1 \subseteq \bigcup_{i=1}^{N} \varphi(g_i) V_0 V_1 \subseteq \bigcup_{i=1}^{N} \varphi(g_i) V,$$

so $\mathbb{T} = \bigcup_{i=1}^{N} \varphi(g_i) V$ and $G = \varphi^{-1}(\mathbb{T}) = \bigcup_{i=1}^{N} g_i \varphi^{-1}(V).$

Let $g \in A \cap \bigcap_{i=1}^{N} g_i A \subseteq G$. There exists $i_0 \in \{1, \ldots, N\}$ such that $g \in g_{i_0}\varphi^{-1}(V)$, thus $g_{i_0}^{-1}g \in \varphi^{-1}(V)$. Since $g \in g_{i_0}A$, we obtain $g_{i_0}^{-1}g \in A \cap \varphi^{-1}(V)$, which is a contradiction.

PROPOSITION 3.4. Let G be a locally compact abelian group, m a Haar measure on G, $\mathcal{K}(\mathbb{T})$ the space of all compact subsets of \mathbb{T} equipped with the Hausdorff metric and $\omega : G \to \mathcal{K}(\mathbb{T})$ a Borel map. Let $(\varphi_i)_{i \in I}$ be a family of morphisms from G into \mathbb{T} such that $\varphi_i(g) \in \omega(g)$ for all $i \in I$ and $g \in G$. For $i \in I$ set

$$\mathcal{Q}_{\varphi_i} := \{ g \in G \mid \forall \lambda \in \mathbb{T}, \ \lambda \Gamma_{\varphi_i} \not\subseteq \omega(g) \}.$$

Then the set $\bigcup_{i \in I} \Omega_{\varphi_i}$ has measure zero.

Proof. The proof is in two steps.

STEP 1. Suppose that $\bigcup_{i \in I} \Gamma_{\varphi_i}$ is infinite. Then the family of groups Γ_{φ_i} contains elements of arbitrarily large order, and so for each nonempty open set U of \mathbb{T} there exists $i \in I$ such that $\lambda \Gamma_{\varphi_i} \cap U \neq \emptyset$ for every $\lambda \in \mathbb{T}$.

Let $g \in G$ be such that $\omega(g) \neq \mathbb{T}$. Then the open set $\mathbb{T} \setminus \omega(g)$ is nonempty and thus there exists $i \in I$ such that $\lambda \Gamma_{\varphi_i} \not\subseteq \omega(g)$ for all $\lambda \in \mathbb{T}$, so that $g \in \Omega_{\varphi_i}$. Since the other inclusion is obvious, we obtain $\bigcup_{i \in I} \Omega_{\varphi_i} =$ $\{g \in G \mid \omega(g) \neq \mathbb{T}\}$, which is measurable as the inverse image of an open set in $\mathcal{K}(\mathbb{T})$.

Let $\mathcal{V} = \{V_n \mid n \in \mathbb{N}\}$ be a basis of open subsets on \mathbb{T} . Set $A_n = \{g \in G \mid \omega(g) \cap V_n = \emptyset\}$. Then the set $\{g \in G \mid \omega(g) \neq \mathbb{T}\} = \bigcup_{n \in \mathbb{N}} A_n$ is a Borel subset of \mathbb{T} .

If $m(\{g \in G \mid \omega(g) \neq \mathbb{T}\}) > 0$ then there exists $n_0 \in \mathbb{N}$ such that $m(A_{n_0}) > 0$; since $\bigcup_{i \in I} \Gamma_{\varphi_i}$ is infinite, there exists $i_0 \in I$ such that $\lambda V_{n_0} \cap \Gamma_{\varphi_{i_0}} \neq \emptyset$ for all $\lambda \in \mathbb{T}$, but $\varphi_{i_0}(g) \in \omega(g)$ for all $g \in G$, hence $\varphi_{i_0}^{-1}(V_{n_0}) \cap A_{n_0} = \emptyset$, which contradicts Lemma 3.3; so $\bigcup_{i \in I} \Omega_{\varphi_i}$ has measure zero.

STEP 2. Suppose that $\bigcup_{i \in I} \Gamma_{\varphi_i}$ is finite, thus $\{\Gamma_{\varphi_i} \mid i \in I\} = \{\Gamma_{p_j}\}_{j=1}^m$. For all $j \in \{1, \ldots, m\}$, define $\Omega_j = \{g \in G \mid \forall \lambda \in \mathbb{T}, \lambda \Gamma_{p_j} \not\subseteq \omega(g)\}$ and let us check that Ω_j has measure zero.

Let $\mathcal{W} = \{W_n \mid n \in \mathbb{N}\}$ be the (countable) set of finite unions W_n of elements of \mathcal{V} such that $\lambda \Gamma_{p_j} \cap W_n \neq \emptyset$ for all $\lambda \in \mathbb{T}$.

Let $g \in \Omega_j$. For all $\lambda \in \mathbb{T}$, we have $\lambda \Gamma_{p_j} \not\subseteq \omega(g)$, thus $\lambda \Gamma_{p_j} \cap \mathbb{T} \setminus \omega(g) \neq \emptyset$, and by Lemma 3.1, there exists a compact subset $K \subseteq \mathbb{T} \setminus \omega(g)$ such that $\lambda K \cap \Gamma_{p_j} \neq \emptyset$ for all $\lambda \in \mathbb{T}$.

Since K is compact and $\mathbb{T} \setminus \omega(g)$ is open, there exists $W_n \in \mathcal{W}$ such that $K \subseteq W_n \subseteq \mathbb{T} \setminus \omega(g)$, so $g \in B_n := \{g \in G \mid W_n \cap \omega(g) = \emptyset\}$. Therefore $\Omega_j = \bigcup_{n \in \mathbb{N}} B_n$ (the other inclusion is obvious). But for all $n \in \mathbb{N}$, B_n is measurable since ω is Borel, and since $\{C \in \mathcal{K}(\mathbb{T}) \mid C \cap W_n = \emptyset\}$ is a Borel subset of $\mathcal{K}(\mathbb{T})$, Ω_j is measurable too.

If $m(\Omega_j) > 0$ then there exists $n_0 \in \mathbb{N}$ such that $m(B_{n_0}) > 0$; but there exists a morphism φ in the family $(\varphi_i)_{i \in I}$ such that $\Gamma_{\varphi} = \Gamma_{p_j}$ and since for all $g \in G$, $\varphi(g) \in \omega(g)$, we find that $\varphi^{-1}(W_{n_0}) \cap B_{n_0} = \emptyset$, whereas $\lambda \Gamma_{\varphi} \cap W_{n_0} \neq \emptyset$ for all $\lambda \in \mathbb{T}$, which contradicts Lemma 3.3.

Accordingly $\bigcup_{i \in I} \Omega_{\varphi_i} = \bigcup_{j=1}^m \Omega_j$ has measure zero.

4. The main result and consequences. Let G be a locally compact abelian group, X a Banach space and $\theta : G \to \mathcal{L}(X)$ a strongly continuous representation of G on X. We are interested in the distribution of the arguments of the elements of the spectrum $\sigma(\theta(g))$ when θ is not uniformly continuous. We write:

- A_{θ} for the closed subalgebra of $\mathcal{L}(X)$ generated by $\theta(G)$ (so A_{θ} is commutative),
- $\sigma_{A_{\theta}}(\theta(g))$ for the spectrum of $\theta(g)$ in A_{θ} ,
- \hat{A}_{θ} for the character space of A_{θ} ,
- $K^1 = \{\lambda | \lambda | \mid \lambda \in K\}$ for $K \subseteq \mathbb{C}^*$.

We have the following results:

Lemma 4.1.

- (i) For all $g \in G$, $\sigma^1(\theta(g)) = \sigma^1_{A_{\theta}}(\theta(g))$.
- (ii) For all $\chi \in \hat{A}_{\theta}$, the map $g \mapsto |(\chi \circ \theta)(g)|$ is a continuous morphism from G into $(\mathbb{R}^{+*}, \times)$.

Proof. (i) We have $\sigma(\theta(g)) \subseteq \sigma_{A_{\theta}}(\theta(g))$, thus $\sigma^{1}(\theta(g)) \subseteq \sigma_{A_{\theta}}^{1}(\theta(g))$. Moreover we know that $\partial \sigma_{A_{\theta}}(\theta(g)) \subseteq \sigma(\theta(g))$ and since $0 \notin \sigma_{A_{\theta}}(\theta(g))$ it is clear that $(\partial \sigma_{A_{\theta}})^{1}(\theta(g)) = \sigma_{A_{\theta}}^{1}(\theta(g))$ (every half-line from the origin that intersects $\sigma_{A_{\theta}}(\theta(g))$ intersects also its boundary by connectedness), hence $\sigma_{A_{\theta}}^{1}(\theta(g)) \subseteq \sigma^{1}(\theta(g))$.

(ii) θ is locally bounded so there exist M > 1 and an open $V \in \mathcal{V}(1)$ such that $\|\theta(g)\| \leq M$ for all $g \in V$. Then $|\chi \circ \theta(g^{-1})| \leq M$ for all $g \in V$, thus $1/M \leq |\chi \circ \theta(g)| \leq M$ for all $g \in V$. Therefore $\Gamma_{|\chi \circ \theta|}$ is a bounded multiplicative subgroup of $(\mathbb{R}^{+*}, \times)$, that is, $\Gamma_{|\chi \circ \theta|} = \{1\}$, which shows that $|\chi \circ \theta|$ is continuous.

Recall two useful results:

LEMMA 4.2 (see [7]). Let X be a Banach space, $T \in \mathcal{L}(X)$, and Y a Tinvariant closed subspace of X. Then $\rho_{\infty}(T) \subseteq \rho_{\infty}(T|_Y)$ where ρ_{∞} denotes the unbounded connected component of the resolvent set ρ . If $0 \in \rho_{\infty}(T)$ then $\sigma^1(T|_Y) \subseteq \sigma^1(T)$.

PROPOSITION 4.3 (see [8] or [10]). If X is a separable Banach space, then the map $T \mapsto \sigma(T)$ (respectively $T \mapsto \sigma^1(T)$) from $\mathcal{L}(X)$ into $\mathcal{K}(\mathbb{C})$ (respectively $\mathcal{K}(\mathbb{T})$) is Borel (where $\mathcal{K}(\mathbb{C})$ and $\mathcal{K}(\mathbb{T})$ are equipped with the Hausdorff topology and $\mathcal{L}(X)$ with the strong operator topology).

For $\chi \in \hat{A}_{\theta}$, we denote by χ_1 the morphism from G into \mathbb{T} defined by $\chi_1(g) := (\chi \circ \theta)(g)/|(\chi \circ \theta)(g)|$ and we set:

$$\begin{split} \Omega_{\chi} &:= \{g \in G \mid \forall \lambda \in \mathbb{T}, \, \lambda \Gamma_{\chi_1} \not\subseteq \sigma^1(\theta(g))\}, \\ \Omega &:= \bigcup_{\chi \in \hat{A}_{\theta}} \Omega_{\chi}, \\ \Sigma_{\theta} &:= \{g \in G \mid \text{there is no } P \in \mathcal{P} \text{ with } P \subseteq \sigma^1(\theta(g))\}, \end{split}$$

where \mathcal{P} is the set of regular polygons of \mathbb{T} .

THEOREM 4.4. Let G be a locally compact and second countable abelian group, m a Haar measure on G, X a Banach space, and $\theta : G \to \mathcal{L}(X)$ a strongly continuous representation of G on X. Then Ω is a null set for m.

Proof. Note that $\chi_1(g) \in \sigma^1(\theta(g))$ for all $\chi \in \hat{A}_{\theta}$.

STEP 1. Suppose that X is separable. By Proposition 4.3 and the strong continuity of θ , the map $g \mapsto \sigma^1(\theta(g))$ from the locally compact abelian group G into $\mathcal{K}(\mathbb{T})$ is Borel, so the result is a consequence of Proposition 3.4.

STEP 2. Suppose that X is not separable. If θ is uniformly continuous then for all $\chi \in \hat{A}$, $\chi \circ \theta$ and χ_1 are continuous by Proposition 2.2 and Lemma 4.1, hence $\Gamma_{\chi_1} = \{1\}$ and $\Omega_{\chi} = \emptyset$.

If θ is not uniformly continuous, there exist $\delta > 0$ and a sequence $(g_n)_{n \in \mathbb{N}}$ in G such that $\lim_n g_n = 1$ and $\|\theta(g_n) - I\| > \delta$. So there exists a sequence $(x_n)_{n \in \mathbb{N}}$ of unit vectors in X such that $\|\theta(g_n)x_n - x_n\| > \delta$ for all $n \in \mathbb{N}$. Now set $Y := \overline{\operatorname{span}}(\bigcup_{n \in \mathbb{N}} \{\theta(g)x_n \mid g \in G\})$; since G is separable and θ strongly continuous, $\{\theta(g)x_n \mid g \in G\}$ is separable, thus Y is separable, and clearly Y is $(\theta(g))_{g \in G}$ -invariant. Using the first step we conclude that $\bigcup_{\chi \in \hat{A}_{\theta}} \Omega_{\chi,Y}$ has measure zero, where

$$\Omega_{\chi,Y} := \{ g \in G \mid \forall \lambda \in \mathbb{T}, \, \lambda \Gamma_{\chi_1} \not\subseteq \sigma^1(\theta(g)_{|Y}) \}.$$

If $g \in \Omega_{\chi}$, then $\sigma^{1}(\theta(g)) \neq \mathbb{T}$, thus $0 \in \rho_{\infty}(\theta(g))$, and by Lemma 4.2, $\sigma^{1}(\theta(g)_{/Y}) \subseteq \sigma^{1}(\theta(g))$, further $g \in \Omega_{\chi,Y}$, that is, $\Omega_{\chi} \subseteq \Omega_{\chi,Y}$.

Accordingly $\bigcup_{\chi \in \hat{A}_{\theta}} \Omega_{\chi}$ is a null set for m.

REMARK. If θ is uniformly continuous, the theorem is uninteresting because Ω_{χ} is empty for all $\chi \in \hat{A}_{\theta}$; the interesting case concerns the strongly continuous representations that are not uniformly continuous:

COROLLARY 4.5. Let G be a locally compact and second countable abelian group, m a Haar measure on G, X a Banach space, and $\theta : G \to \mathcal{L}(X)$ a strongly continuous representation. Then θ is uniformly continuous if and only if Σ_{θ} is a non-null set for m.

Proof. If θ is uniformly continuous then there exists an open set $U \in \mathcal{V}(1)$ in G such that $\sigma^1(\theta(g)) \subseteq B(0; 1/2)$ for all $g \in U$, and so $U \subseteq \Sigma_{\theta}$ is a non-null set.

If θ is not continuous, then by Proposition 2.2 there exists $\chi \in \hat{A}_{\theta}$ such that $\chi \circ \theta$ is not continuous, that is, by Lemma 4.1, χ_1 is not continuous, so $\Gamma_{\chi_1} \neq \{1\}$ and thus, except for the null set Ω_{χ} , $\sigma^1(\theta(g))$ contains the image of Γ_{χ_1} under a rotation.

REMARK. The theorem and its corollary are valid without the hypothesis of second countability of G provided that the space X is separable.

REMARK 4.6. If there is $\chi \in \hat{A}_{\theta}$ such that $\Gamma_{\chi_1} = \mathbb{T}$ then $\{g \in G \mid \sigma^1(\theta(g)) \neq \mathbb{T}\} \subseteq \Omega_{\chi}$ and thus $\{g \in G \mid \sigma^1(\theta(g)) \neq \mathbb{T}\}$ is a null set.

Recall the following lemma (see [7]):

LEMMA 4.7. Let X be a Banach space and $B \in \mathcal{L}(X)$. If $0 \notin \sigma(B)$ then $\sigma^1(B) \neq \mathbb{T}$ if and only if $\sigma^1_k(B) \neq \mathbb{T}$ where $\sigma_k(\cdot)$ is the Kato essential spectrum (the spectrum corresponding to the set of all semi-Fredholm operators).

COROLLARY 4.8. Let θ be a strongly continuous representation of an abelian, locally compact, locally connected and second countable group G on a Banach space X. Then θ is uniformly continuous if and only if $\{g \in G \mid \sigma_k^1(\theta(g)) \neq \mathbb{T}\}$ is a non-null set.

Proof. If θ is uniformly continuous, it suffices to apply Corollary 4.5 for $\sigma_k^1(\theta(g)) \subseteq \sigma^1(\theta(g))$.

For the converse, recall that an abelian, locally compact, locally connected and second countable group is isomorphic to $\mathbb{R}^n \times \mathbb{T}^m \times \mathbb{D}$ with $n \in \mathbb{N}, m \in \mathbb{N} \cup \{\aleph_0\}$ and \mathbb{D} discrete (see [6, Proposition 8.34, Proposition 8.43, and Theorem 8.46]). Such a group locally admits division, thus if θ is not continuous then by Proposition 2.2 there exists $\chi \in \hat{A}_{\theta}$ such that $\chi \circ \theta$ is not continuous, that is, $\Gamma_{\chi_1} = \mathbb{T}$, and it suffices to apply Remark 4.6 and Lemma 4.7.

COROLLARY 4.9. If X is a hereditarily indecomposable Banach space then a strongly continuous representation of a locally compact, locally connected and second countable abelian group G on X is automatically uniformly continuous.

Proof. Recall that for all $g \in G$, $\theta(g) = \lambda_g I + S_g$ where $\lambda_g \in \sigma(\theta(g))$ and S_g is a strictly singular operator (see [4]), thus $\lambda_g \neq 0$ and it is easy to check that $\sigma_e^1(\theta(g)) = \{\lambda_g/|\lambda_g|\}$ where $\sigma_e^1(.)$ is the essential spectrum, since $\sigma_k^1(\theta(g)) \subseteq \sigma_e^1(g)$ for all $g \in G$. The result then follows from Corollary 4.8.

Finally, we conclude with a result announced in the introduction:

COROLLARY 4.10. Let θ be a strongly continuous representation of a locally compact and second countable abelian group G on a Banach space X. Then either θ is uniformly continuous or there is a null set M in G such that

$$\liminf_{g \to 1, g \in G \setminus M} \rho(\theta(g) - 1) \ge \sqrt{2}.$$

Proof. Since θ is locally bounded, we can apply Lemma 2.1, and for every $\epsilon > 0$ there exists $V_{\epsilon} \in \mathcal{V}(1)$ such that for all $g \in V_{\epsilon}$,

$$\sigma(\theta(g)) \subseteq \{ z \in \mathbb{C} \mid 1 - \epsilon \le |z| \le 1 + \epsilon \}.$$

Assume now that θ is not continuous. There exists a null set M in G such that for all $g \in G \setminus M$, $\sigma^1(\theta(g))$ contains a regular polygon $\lambda \Gamma_p$. Then if

 $g \in V_{\epsilon} \setminus M$ there exists $z_1 \in \sigma^1(\theta(g))$ such that $|z_1 - 1| \ge \sqrt{2}$, and thus there exists $z \in \sigma(\theta(g))$ such that $|z - 1| \ge \sqrt{2} - \epsilon$. Hence, $\rho(\theta(g) - I) \ge \sqrt{2} - \epsilon$ for all $g \in V_{\epsilon}$.

Acknowledgements. The author would like to thank J. M. Paoli and M. Cianfarani for their attention and valuable suggestions.

References

- M. Cianfarani, J. M. Paoli and J. C. Tomasi, Spectral properties of strongly continuous representations of groups, Arch. Math. (Basel) 96 (2011), 253–262.
- J. Esterle, The zero-√3 and zero-two laws for representations of locally abelian groups, Izv. Nats. Akad. Nauk Armenii Mat. 38 (2003), no. 5, 11-22 (in Russian); English transl.: J. Contemp. Math. Anal. 38 (2003), no. 5, 9-19 (2004).
- [3] J. Esterle and J. M. Paoli, Corrections and complements to the zero- $\sqrt{3}$ and zero-two laws for representations of locally abelian groups, preprint.
- [4] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851–874.
- [5] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ. 31, Providence, RI, 1957.
- [6] K. H. Hofmann and S. A. Morris, *The Structure of Compact Groups*, de Gruyter, 1998.
- [7] K. Latrach, J. M. Paoli and P. Simonnet, A spectral characterization of the uniform continuity of strongly continuous groups, Arch. Math. (Basel) 90 (2008), 420–428.
- [8] —, —, —, Some facts from descriptive set theory concerning essential spectra and applications, Studia Math. 171 (2005), 207–225.
- [9] A. Wilansky, *Topology for Analysis*, Dover Publ., 2008.
- [10] M. Yahdi, Théorie descriptive des ensembles en géométrie des espaces de Banach, exemples, Thèse de Doctorat de Mathématiques, Univ. Paris 6, 1998.

Jean-Christophe Tomasi

IUFM Institut Universitaire de Formation des Maîtres

Ancien Collège de Montesoro

Avenue Paul Giacobbi

20600 Bastia, France

E-mail: jean-christophe.tomasi@wanadoo.fr

Received December 1, 2010 Revised version August 9, 2011 (7054)