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Haar measure and continuous representations
of locally compact abelian groups

by

Jean-Christophe Tomasi (Bastia)

Abstract. Let L(X) be the algebra of all bounded operators on a Banach space X,
and let θ : G → L(X) be a strongly continuous representation of a locally compact and
second countable abelian group G on X. Set σ1(θ(g)) := {λ/|λ| | λ ∈ σ(θ(g))}, where
σ(θ(g)) is the spectrum of θ(g), and let Σθ be the set of all g ∈ G such that σ1(θ(g)) does
not contain any regular polygon of T (by a regular polygon we mean the image under a
rotation of a closed subgroup of the unit circle T different from {1}). We prove that θ is
uniformly continuous if and only if Σθ is a non-null set for the Haar measure on G.

1. Introduction. A characterization of uniform continuity for strongly
continuous groups was given in [7]. Indeed the authors proved that a strongly
continuous one-parameter group (T (t))t∈R on a Banach space X is uniformly
continuous if and only if {t ∈ R | σ1(T (t)) 6= T} is non-meager, where T
denotes the unit circle of C and σ1(T (t)) := {λ/|λ| | λ ∈ σ(T (t))}, well
defined since T (t) is invertible. The following generalization of this result
was obtained in [1]: if G is a second countable and locally compact abelian
group then either θ is uniformly continuous or Σθ := {g ∈ G | there is no
P ∈ P with P ⊆ σ1(θ(g))} is meager, where P is the set of regular polygons
of T. So when the representation is not uniformly continuous, the angular
distribution of the spectrum of θ(g) is rather dispersed, except for g in a
meager set in G.

In the present work, we are interested in another condition, obtained by
replacing meager set by null set.

Example 1.1. Let (T (t))t∈R be the translation group on L2(R) defined
by (T (t)f)(x) = f(x+ t). This one-parameter group is strongly continuous,
not uniformly continuous and for all t 6= 0, σ(T (t)) = T, thus Σθ = {0} is
indeed a null set.
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Following J. Esterle (see [2], [3]) we define a representation of a topological
group G on a Banach algebra A to be a map θ : G→ A such that θ(1) = I,
where 1 and I respectively denote the unit elements of G and A, and θ(uv) =
θ(u)θ(v).

In [2] the author established a zero-
√

3 law for representations of locally
compact abelian groups: if θ : G→ A is a locally bounded representation of
such a group on a Banach algebra then either θ is uniformly continuous or
lim supg→1 ρ(θ(g)− I) ≥

√
3, where ρ denotes the spectral radius.

As a consequence of our results we find, but only in the case of strongly
continuous representations of locally compact and second countable abelian
groups, that either θ is uniformly continuous or lim infg→1, g∈G\M ρ(θ(g)−I)
≥
√

2 where M is a null set in G.

2. Characterization of uniform continuity. For a locally bounded
representation of a locally compact abelian group G, there are some argu-
ments, based on Gelfand–Hille’s theorem, Shilov’s idempotent theorem and
the standard structure theorem for locally compact abelian groups (see [2])
that allow us to go from spectral continuity (that is, limg→1 ρ(θ(g)− I) = 0)
to uniform continuity.

Furthermore R. Phillips (see [5]) proved that the continuity for one-
parameter groups can be read through the characters, in the sense that if
T : R → A is a locally bounded representation of R on a commutative Ba-
nach algebra A then its uniform continuity is equivalent to the continuity of
t ∈ R 7→ χ(T (t)) for all χ ∈ Â, where Â denotes the character space of A.

However, going from the continuity through each character (that is, χ◦T
continuous for all χ ∈ Â) to the uniform condition on Â: limt→0 ρ(θ(t)− 1)
= 0 required, in the case of R, an analytical argument difficult to adapt to
a general group.

Therefore in order to generalize this result from R to any locally compact
abelian group, we had to use in [1] the Phillips theorem and the standard
structure theorem for locally compact abelian groups, and to deal separately
with compact groups and euclidean groups Rn.

Here, we present a direct proof of this generalization and also a simplified
proof of the Phillips result.

In what follows we denote by V(1) the family of all neighborhoods of the
unit element of G.

Lemma 2.1. Let θ be a locally bounded representation of a topological
abelian group G on a Banach algebra A. Then for all ε > 0 there exists
Vε ∈ V(1) such that for all g ∈ Vε,

σ(θ(g)) ⊆ {z ∈ C | 1− ε ≤ |z| ≤ 1 + ε}.
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Proof. Since θ is locally bounded, there exist M > 1 and V ∈ V(1) such
that for all g ∈ V , ‖θ(g)‖ ≤ M . By the continuity of the product, for all
n ≥ 1 there exists Vn ∈ V(1) such that for all g ∈ Vn, ‖θ(gn)‖ ≤ M and
‖θ(g−n)‖ ≤M . Since σ(θ(g−n)) = {1/λ | λ ∈ σ(θ(gn))} we obtain

σ(θ(gn)) ⊆ {z ∈ C | 1/M ≤ |z| ≤M},
and since σ(θ(gn)) = (σ(θ(g)))n, we have

(1/M)1/n ≤ |z| ≤M1/n

for all g ∈ Vn and z ∈ σ(θ(g)). This yields the desired conclusion.

Proposition 2.2. Let θ be a locally bounded representation of a locally
compact abelian group G on a commutative Banach algebra A. The following
assertions are equivalent:

(i) θ is uniformly continuous.
(ii) θ is spectrally continuous.
(iii) For all χ ∈ Â, χ ◦ θ is continuous.

Proof. (i)⇒(ii)⇒(iii): Clear.
(iii)⇒(ii): Let V ∈ V(1) be compact and symmetric. ThenH =

⋃
n∈N V

n

is a locally compact and σ-compact subgroup of G. We have H ∈ V(1), hence
it suffices to show that θH := θ|H is spectrally continuous.

We first show that {χ ◦ θH/|χ ◦ θH | | χ ∈ Â} is compact in C(H,T)
equipped with the topology of compact convergence. Since H is σ-compact,
this topology is metrizable, thus it suffices to check that {χ ◦ θH/|χ ◦ θH | |
χ ∈ Â} is sequentially compact. So let (χn ◦ θH/|χn ◦ θH |)n∈N be a sequence
in {χ ◦ θH/|χ ◦ θH | | χ ∈ Â}. The Gelfand space Â is compact, and thus
{χ ◦ θH/|χ ◦ θH | | χ ∈ Â} ⊆ C(H,T) is compact for the product topology
and so is the set of restrictions to V that we denote {χ ◦ θV /|χ ◦ θV |}.

By hypothesis we have {χ ◦ θV /|χ ◦ θV | | χ ∈ Â} ⊆ C(V,T), and thus
we can apply Eberlein–Šmulian’s theorem (see [9, p. 296]): {χ ◦ θV /|χ ◦ θV | |
χ ∈ Â} is sequentially compact in TV , therefore we can extract a subsequence
(χnk ◦ θV /|χnk ◦ θV |)k∈N that converges to an element χ ◦ θV /|χ ◦ θV |, that
is, for all g ∈ V , χnk(θV (g))/|χnk(θV (g))| → χ(θV (g))/|χ(θV (g))|.

But since it concerns restrictions of morphisms, the convergence extends
from V to H =

⋃
n∈N V

n, and using the dominated convergence theorem,
we find that for all f ∈ L1(H), f̂(χnk ◦ θH/|χnk ◦ θH |)→ f̂(χ ◦ θH/|χ ◦ θH |)
(where L1(H) denotes the L1-space of H with respect to a Haar measure m
and f̂ denotes the Fourier transform of f).

Since in the dual group Ĥ the topology of compact convergence on H
coincides with the weak∗ topology that Ĥ inherits as a subset of L∞(H),
we conclude that χnk ◦ θH/|χnk ◦ θH | → χ ◦ θH/|χ ◦ θH |, which proves the
compactness.
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Then, by Ascoli’s theorem, {χ ◦ θH/|χ ◦ θH | | χ ∈ Â} is equicontinuous;
so for all ε > 0 there exists Wε ∈ V(1) in H such that for all h ∈ Wε,
supχ∈Â

∣∣χ ◦ θH(h)/|χ ◦ θH(h)| − 1
∣∣ < ε.

Lemma 2.1 yields Vε ∈ V(1) such that for all h ∈ Vε and all χ ∈ Â,

χ ◦ θH(h) ∈ {z ∈ C | 1− ε ≤ |z| ≤ 1 + ε},

and thus for all h ∈Wε ∩ Vε and all χ ∈ Â,

|χ ◦ θH(h)− 1| ≤
∣∣χ ◦ θH(h)− χ ◦ θH(h)/|χ ◦ θH(h)|

∣∣
+
∣∣χ ◦ θH(h)/|χ ◦ θH(h)| − 1

∣∣
≤ 2ε,

that is, ρ(θH(h)− I) ≤ 2ε, and θH is spectrally continuous.
(ii)⇒(i): See Theorem 3.3 in [2].

3. Preliminary results. Let G be a topological group and ϕ : G→ T
a morphism. Define

Γϕ := {λ∈T | there is a net (gi) in G converging to 1 such that ϕ(gi)→λ}

=
⋂

W∈V(1)

ϕ(W )

(see [2]). Then:

• Γϕ is a closed subgroup of T (thus Γϕ = Γk the group of kth roots of
unity for some k ≥ 1, or Γϕ = T).
• ϕ is continuous if and only if Γϕ = {1}.
• If the group locally admits division by every n ≥ 1 (in the sense that

for every n ∈ N there exist V ∈ V(1), a compact subset W of G
containing 1 and a map ψ : V →W such that ψ(1) = 1 and ψn(u) = u
for every u ∈ V ), then one can easily check that Γϕ is divisible, thus
either Γϕ = T or Γϕ = {1}.

Lemma 3.1. Let Γ be a subset of T, and V an open subset of T such
that λV ∩ Γ 6= ∅ for all λ ∈ T. Then there exists a compact set K ⊆ V such
that λK ∩ Γ 6= ∅ for all λ ∈ T.

Proof. Since V is open in T, there exists a sequence (On)n∈N of relatively
compact open sets in V with On ⊆ On+1 for all n ∈ N and V =

⋃
n∈NOn.

It suffices to show that there exists an element of the sequence (On)n∈N
intersected by every λΓ .

If it is not true then for all n ∈ N there exists λn ∈ T such that λnΓ ∩On
= ∅, thus λnΓ ⊆ T \ On ⊂ T \ On =: Fn. As the sequence (On)n∈N is
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increasing, (Fn)n∈N is a decreasing sequence of closed sets such that⋂
n∈N

Fn =
⋂
n∈N

T \On = T \
⋃
n∈N

On = T \ V.

Moreover, since T is compact, we can suppose that (λn)n∈N is convergent.
Denote by λ its limit, let µ ∈ Γ and N ∈ N. For all k ≥ N , we have λkµ ∈
λkΓ ⊆ Fk ⊆ FN , and so λµ ∈ FN = FN . Finally λΓ ⊆

⋂
n∈N Fn = T \ V ,

which is a contradiction.

Lemma 3.2. Let G be a locally compact and second countable abelian
group and m a Haar measure on G. If A ⊆ G is measurable with m(A) > 0,
then for every N ≥ 1 there exists U1 ∈ V(1) such that for all (g1, . . . , gN )
∈ UN1 ,

m
(
A ∩

N⋂
i=1

giA
)
> 0.

Proof. As G is σ-finite, we can assume that m(A) < ∞. Let β ∈ ]0, 1[
and α = β/(N + 1). We know, by regularity of m, that there exist K ⊆
A ⊆ U with K and U respectively compact and open satisfying m(K) ≥
(1−α)m(U); since K is compact, there exist U1 ∈ V(1) such that U1K ⊆ U .
Let us check by finite induction on k that for all k ∈ {1, . . . , N} and for all
(g1, . . . , gk) ∈ Uk1 ,

m
(
K ∩

k⋂
i=1

giK
)
≥ (1− (k + 1)α)m(U).

We have m(K ∩ g1K) ≥ m(K) + m(g1K) −m(U) for K ∪ g1K ⊆ U , and
since m is translation-invariant, we obtain m(K ∩ g1K) ≥ (1 − 2α)m(U).
Suppose that m(K ∩

⋂k
i=1 giK) ≥ (1− (k + 1)α)m(U) for some 1 ≤ k < N ;

then

m
(
K ∩

k+1⋂
i=1

giK
)

= m
(
g1K ∩

(
K ∩

k+1⋂
i=2

giK
))

≥ m(g1K) +m
(
K ∩

k+1⋂
i=2

giK
)
−m(U).

Thus, by induction hypothesis and invariance of m,

m(g1K) +m
(
K ∩

k+1⋂
i=2

giK
)
−m(U)

≥ m(K) + (1− (k + 1)α)m(U)−m(U)
≥ (1− (k + 2)α)m(U),

which is the expected result.
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In particular, for all (g1, . . . , gN ) ∈ UN1 ,

m
(
A ∩

N⋂
i=1

giA
)
≥ (1− (N + 1)α)m(U)

= (1− β)m(U) ≥ (1− β)m(A) > 0.

Lemma 3.3. Let ϕ be a morphism from a locally compact abelian group
G into T, and m a Haar measure on G. If V is an open subset of T such
that λV ∩ Γϕ 6= ∅ for all λ ∈ T, and if A ⊆ G is measurable with m(A) > 0,
then ϕ(A) ∩ V 6= ∅.

Proof. Suppose that ϕ(A) ∩ V = ∅. Let us prove that there exist a sym-
metric and open V0 ∈ V(1) and an open set V1 in T such that for all λ ∈ T,

λV1 ∩ Γϕ 6= ∅ and V0V1 ⊆ V.
By Lemma 3.1 there exists a compact set K ⊆ V such that λK ∩Γϕ 6= ∅

for all λ ∈ T; thus if π : T × T → T denotes the product on T × T, the
compact set {1} ×K is a subset of the open set π−1(V ) and so there exist
a symmetric open unit-neighborhood V0 and an open set V1 containing K
such that

V0 × V1 ⊆ π−1(V ) and V0V1 ⊆ V.
Since λV1 ∩ Γϕ 6= ∅ for all λ ∈ T, we can easily deduce that T =

⋃
λ∈Γϕ λV1,

and then by compactness there exists N ≥ 1 such that T =
⋃N
i=1 λiV1 with

λi ∈ Γϕ.
By Lemma 3.2 there exists U1 ∈ V(1) in G such that for all (g1, . . . , gN )

∈ UN1 , m(A ∩
⋂N
i=1 giA) > 0 and thus A ∩

⋂N
i=1 giA 6= ∅.

Let i ∈ {1, . . . , N} and λi ∈ Γϕ. Since Γϕ ⊆ ϕ(U1), there exists gi ∈ U1

such that λiϕ(gi)−1 ∈ V0, that is, λi ∈ ϕ(gi)V0, and thus

T =
N⋃
i=1

λiV1 ⊆
N⋃
i=1

ϕ(gi)V0V1 ⊆
N⋃
i=1

ϕ(gi)V,

so T =
⋃N
i=1 ϕ(gi)V and G = ϕ−1(T) =

⋃N
i=1 giϕ

−1(V ).
Let g ∈ A ∩

⋂N
i=1 giA ⊆ G. There exists i0 ∈ {1, . . . , N} such that

g ∈ gi0ϕ
−1(V ), thus g−1

i0
g ∈ ϕ−1(V ). Since g ∈ gi0A, we obtain g−1

i0
g ∈

A ∩ ϕ−1(V ), which is a contradiction.
Proposition 3.4. Let G be a locally compact abelian group, m a Haar

measure on G, K(T) the space of all compact subsets of T equipped with the
Hausdorff metric and ω : G→ K(T) a Borel map. Let (ϕi)i∈I be a family of
morphisms from G into T such that ϕi(g) ∈ ω(g) for all i ∈ I and g ∈ G.
For i ∈ I set

Ωϕi := {g ∈ G | ∀λ ∈ T, λΓϕi 6⊆ ω(g)}.
Then the set

⋃
i∈I Ωϕi has measure zero.
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Proof. The proof is in two steps.

Step 1. Suppose that
⋃
i∈I Γϕi is infinite. Then the family of groups Γϕi

contains elements of arbitrarily large order, and so for each nonempty open
set U of T there exists i ∈ I such that λΓϕi ∩ U 6= ∅ for every λ ∈ T.

Let g ∈ G be such that ω(g) 6= T. Then the open set T \ ω(g) is non-
empty and thus there exists i ∈ I such that λΓϕi 6⊆ ω(g) for all λ ∈ T, so
that g ∈ Ωϕi . Since the other inclusion is obvious, we obtain

⋃
i∈I Ωϕi =

{g ∈ G | ω(g) 6= T}, which is measurable as the inverse image of an open set
in K(T).

Let V = {Vn | n ∈ N} be a basis of open subsets on T. Set An = {g ∈ G |
ω(g) ∩ Vn = ∅}. Then the set {g ∈ G | ω(g) 6= T} =

⋃
n∈NAn is a Borel

subset of T.
If m({g ∈ G | ω(g) 6= T}) > 0 then there exists n0 ∈ N such that

m(An0) > 0; since
⋃
i∈I Γϕi is infinite, there exists i0 ∈ I such that λVn0 ∩

Γϕi0 6= ∅ for all λ ∈ T, but ϕi0(g) ∈ ω(g) for all g ∈ G, hence ϕ−1
i0

(Vn0)∩An0

= ∅, which contradicts Lemma 3.3; so
⋃
i∈I Ωϕi has measure zero.

Step 2. Suppose that
⋃
i∈I Γϕi is finite, thus {Γϕi | i ∈ I} = {Γpj}mj=1.

For all j ∈ {1, . . . ,m}, define Ωj = {g ∈ G | ∀λ ∈ T, λΓpj 6⊆ ω(g)} and let
us check that Ωj has measure zero.

Let W = {Wn | n ∈ N} be the (countable) set of finite unions Wn of
elements of V such that λΓpj ∩Wn 6= ∅ for all λ ∈ T.

Let g ∈ Ωj . For all λ ∈ T, we have λΓpj 6⊆ ω(g), thus λΓpj ∩T\ω(g) 6= ∅,
and by Lemma 3.1, there exists a compact subset K ⊆ T \ ω(g) such that
λK ∩ Γpj 6= ∅ for all λ ∈ T.

Since K is compact and T \ω(g) is open, there exists Wn ∈ W such that
K ⊆ Wn ⊆ T \ ω(g), so g ∈ Bn := {g ∈ G | Wn ∩ ω(g) = ∅}. Therefore
Ωj =

⋃
n∈NBn (the other inclusion is obvious). But for all n ∈ N, Bn is

measurable since ω is Borel, and since {C ∈ K(T) | C ∩Wn = ∅} is a Borel
subset of K(T), Ωj is measurable too.

If m(Ωj) > 0 then there exists n0 ∈ N such that m(Bn0) > 0; but there
exists a morphism ϕ in the family (ϕi)i∈I such that Γϕ = Γpj and since
for all g ∈ G, ϕ(g) ∈ ω(g), we find that ϕ−1(Wn0) ∩ Bn0 = ∅, whereas
λΓϕ ∩Wn0 6= ∅ for all λ ∈ T, which contradicts Lemma 3.3.

Accordingly
⋃
i∈I Ωϕi =

⋃m
j=1Ωj has measure zero.

4. The main result and consequences. Let G be a locally compact
abelian group, X a Banach space and θ : G → L(X) a strongly continuous
representation of G on X. We are interested in the distribution of the ar-
guments of the elements of the spectrum σ(θ(g)) when θ is not uniformly
continuous. We write:
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• Aθ for the closed subalgebra of L(X) generated by θ(G) (so Aθ is
commutative),
• σAθ(θ(g)) for the spectrum of θ(g) in Aθ,
• Âθ for the character space of Aθ,
• K1 = {λ/|λ| | λ ∈ K} for K ⊆ C∗.

We have the following results:

Lemma 4.1.

(i) For all g ∈ G, σ1(θ(g)) = σ1
Aθ

(θ(g)).
(ii) For all χ ∈ Âθ, the map g 7→ |(χ ◦ θ)(g)| is a continuous morphism

from G into (R+∗,×).

Proof. (i) We have σ(θ(g)) ⊆ σAθ(θ(g)), thus σ1(θ(g)) ⊆ σ1
Aθ

(θ(g)).
Moreover we know that ∂σAθ(θ(g)) ⊆ σ(θ(g)) and since 0 /∈ σAθ(θ(g)) it
is clear that (∂σAθ)

1(θ(g)) = σ1
Aθ

(θ(g)) (every half-line from the origin that
intersects σAθ(θ(g)) intersects also its boundary by connectedness), hence
σ1
Aθ

(θ(g)) ⊆ σ1(θ(g)).
(ii) θ is locally bounded so there exist M > 1 and an open V ∈ V(1)

such that ‖θ(g)‖ ≤ M for all g ∈ V . Then |χ ◦ θ(g−1)| ≤ M for all g ∈ V ,
thus 1/M ≤ |χ ◦ θ(g)| ≤ M for all g ∈ V . Therefore Γ|χ◦θ| is a bounded
multiplicative subgroup of (R+∗,×), that is, Γ|χ◦θ| = {1}, which shows that
|χ ◦ θ| is continuous.

Recall two useful results:

Lemma 4.2 (see [7]). Let X be a Banach space, T ∈ L(X), and Y a T -
invariant closed subspace of X. Then ρ∞(T ) ⊆ ρ∞(T|Y ) where ρ∞ denotes
the unbounded connected component of the resolvent set ρ. If 0 ∈ ρ∞(T )
then σ1(T|Y ) ⊆ σ1(T ).

Proposition 4.3 (see [8] or [10]). If X is a separable Banach space,
then the map T 7→ σ(T ) (respectively T 7→ σ1(T )) from L(X) into K(C)
(respectively K(T)) is Borel (where K(C) and K(T) are equipped with the
Hausdorff topology and L(X) with the strong operator topology).

For χ ∈ Âθ, we denote by χ1 the morphism from G into T defined by
χ1(g) := (χ ◦ θ)(g)/|(χ ◦ θ)(g)| and we set:

Ωχ := {g ∈ G | ∀λ ∈ T, λΓχ1 6⊆ σ1(θ(g))},

Ω :=
⋃
χ∈Âθ

Ωχ,

Σθ := {g ∈ G | there is no P ∈ P with P ⊆ σ1(θ(g))},

where P is the set of regular polygons of T.
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Theorem 4.4. Let G be a locally compact and second countable abelian
group, m a Haar measure on G, X a Banach space, and θ : G → L(X) a
strongly continuous representation of G on X. Then Ω is a null set for m.

Proof. Note that χ1(g) ∈ σ1(θ(g)) for all χ ∈ Âθ.

Step 1. Suppose that X is separable. By Proposition 4.3 and the strong
continuity of θ, the map g 7→ σ1(θ(g)) from the locally compact abelian
group G into K(T) is Borel, so the result is a consequence of Proposition 3.4.

Step 2. Suppose that X is not separable. If θ is uniformly continuous
then for all χ ∈ Â, χ ◦ θ and χ1 are continuous by Proposition 2.2 and
Lemma 4.1, hence Γχ1 = {1} and Ωχ = ∅.

If θ is not uniformly continuous, there exist δ > 0 and a sequence (gn)n∈N
in G such that limn gn = 1 and ‖θ(gn)− I‖ > δ. So there exists a sequence
(xn)n∈N of unit vectors in X such that ‖θ(gn)xn−xn‖ > δ for all n ∈ N. Now
set Y := span(

⋃
n∈N{θ(g)xn | g ∈ G}); since G is separable and θ strongly

continuous, {θ(g)xn | g ∈ G} is separable, thus Y is separable, and clearly
Y is (θ(g))g∈G-invariant. Using the first step we conclude that

⋃
χ∈Âθ Ωχ,Y

has measure zero, where

Ωχ,Y := {g ∈ G | ∀λ ∈ T, λΓχ1 6⊆ σ1(θ(g)|Y )}.

If g ∈ Ωχ, then σ1(θ(g)) 6= T, thus 0 ∈ ρ∞(θ(g)), and by Lemma 4.2,
σ1(θ(g)/Y ) ⊆ σ1(θ(g)), further g ∈ Ωχ,Y , that is, Ωχ ⊆ Ωχ,Y .

Accordingly
⋃
χ∈Âθ Ωχ is a null set for m.

Remark. If θ is uniformly continuous, the theorem is uninteresting be-
cause Ωχ is empty for all χ ∈ Âθ; the interesting case concerns the strongly
continuous representations that are not uniformly continuous:

Corollary 4.5. Let G be a locally compact and second countable abelian
group, m a Haar measure on G, X a Banach space, and θ : G → L(X) a
strongly continuous representation. Then θ is uniformly continuous if and
only if Σθ is a non-null set for m.

Proof. If θ is uniformly continuous then there exists an open set U ∈ V(1)
inG such that σ1(θ(g)) ⊆ B(0; 1/2) for all g ∈ U , and so U ⊆ Σθ is a non-null
set.

If θ is not continuous, then by Proposition 2.2 there exists χ ∈ Âθ such
that χ ◦ θ is not continuous, that is, by Lemma 4.1, χ1 is not continuous, so
Γχ1 6= {1} and thus, except for the null set Ωχ, σ1(θ(g)) contains the image
of Γχ1 under a rotation.

Remark. The theorem and its corollary are valid without the hypothesis
of second countability of G provided that the space X is separable.
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Remark 4.6. If there is χ ∈ Âθ such that Γχ1 = T then {g ∈ G |
σ1(θ(g)) 6= T} ⊆ Ωχ and thus {g ∈ G | σ1(θ(g)) 6= T} is a null set.

Recall the following lemma (see [7]):

Lemma 4.7. Let X be a Banach space and B ∈ L(X). If 0 /∈ σ(B) then
σ1(B) 6= T if and only if σ1

k(B) 6= T where σk(·) is the Kato essential spec-
trum (the spectrum corresponding to the set of all semi-Fredholm operators).

Corollary 4.8. Let θ be a strongly continuous representation of an
abelian, locally compact, locally connected and second countable group G on
a Banach space X. Then θ is uniformly continuous if and only if {g ∈ G |
σ1
k(θ(g)) 6= T} is a non-null set.

Proof. If θ is uniformly continuous, it suffices to apply Corollary 4.5 for
σ1
k(θ(g)) ⊆ σ1(θ(g)).
For the converse, recall that an abelian, locally compact, locally con-

nected and second countable group is isomorphic to Rn × Tm × D with
n ∈ N, m ∈ N ∪ {ℵ0} and D discrete (see [6, Proposition 8.34, Proposition
8.43, and Theorem 8.46]). Such a group locally admits division, thus if θ is
not continuous then by Proposition 2.2 there exists χ ∈ Âθ such that χ ◦ θ
is not continuous, that is, Γχ1 = T, and it suffices to apply Remark 4.6 and
Lemma 4.7.

Corollary 4.9. If X is a hereditarily indecomposable Banach space
then a strongly continuous representation of a locally compact, locally con-
nected and second countable abelian group G on X is automatically uniformly
continuous.

Proof. Recall that for all g ∈ G, θ(g) = λgI + Sg where λg ∈ σ(θ(g))
and Sg is a strictly singular operator (see [4]), thus λg 6= 0 and it is easy to
check that σ1

e(θ(g)) = {λg/|λg|} where σ1
e(.) is the essential spectrum, since

σ1
k(θ(g)) ⊆ σ1

e(g) for all g ∈ G. The result then follows from Corollary 4.8.

Finally, we conclude with a result announced in the introduction:

Corollary 4.10. Let θ be a strongly continuous representation of a
locally compact and second countable abelian group G on a Banach space X.
Then either θ is uniformly continuous or there is a null set M in G such
that

lim inf
g→1, g∈G\M

ρ(θ(g)− 1) ≥
√

2.

Proof. Since θ is locally bounded, we can apply Lemma 2.1, and for every
ε > 0 there exists Vε ∈ V(1) such that for all g ∈ Vε,

σ(θ(g)) ⊆ {z ∈ C | 1− ε ≤ |z| ≤ 1 + ε}.
Assume now that θ is not continuous. There exists a null set M in G such
that for all g ∈ G \M, σ1(θ(g)) contains a regular polygon λΓp. Then if
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g ∈ Vε \M there exists z1 ∈ σ1(θ(g)) such that |z1−1| ≥
√

2, and thus there
exists z ∈ σ(θ(g)) such that |z − 1| ≥

√
2 − ε. Hence, ρ(θ(g) − I) ≥

√
2 − ε

for all g ∈ Vε.
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