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Involutions on the second duals of group algebras
versus subamenable groups

by

Ajit Iqbal Singh (New Delhi)

Abstract. Let L1(G)�� be the second dual of the group algebra L1(G) of a locally
compact group G. We study the question of involutions on L1(G)��. A new class of
subamenable groups is introduced which is universal for all groups. There is no involution
on L1(G)�� for a subamenable group G.

1. Introduction. Let A be a complex Banach algebra, A� its dual and
A�� its second dual. We follow R. Arens ([A1], [A2]) and equip A�� with the
first Arens product � or the second Arens product ♦ defined as follows.

For ϕ,ψ ∈ A, f ∈ A�, and F,H ∈ A��,

fϕ(ψ) = f(ϕψ), Ff(ϕ) = F (fϕ), H � F (f) = H(Ff);

whereas

ϕf(ψ) = f(ψϕ), fF (ϕ) = F (ϕf), F ♦H(f) = H(fF ).

The Banach algebra A is said to be Arens regular if � = ♦.
For a continuous conjugate linear map T : AÑ A, the conjugate-adjoint

T c : A� Ñ A� and the second conjugate-adjoint T cc : A�� Ñ A�� are defined
via

T cf = f � T , T ccF = F � T c for f ∈ A�, F ∈ A��.

Both T c and T cc are conjugate linear mappings and can very well be called
the first adjoint and the second adjoint of T respectively. We will denote
them by T � and T �� respectively only if no confusion can arise.

P. Civin and B. Yood [CY] noted that a continuous (algebra) involution
on A, i.e. a continuous conjugate linear anti-homomorphism of period two,
can be extended to an involution on A�� if A is Arens regular. The converse
is also true. On the other hand, M. Grosser [G] showed that a necessary
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condition for the bidual A�� of A with bounded approximate right iden-
tity to admit an involution with respect to the first Arens product is that
A�A = A�. To get an idea for the case of A = L1(G), the group algebra
of a locally compact (Hausdorff) group (with left Haar measure), we just
mention that (i) A is Arens regular if and only if G is finite, as proved by
Civin and Yood [CY] for the abelian case and by N. J. Young [Y] for the
general case; and (ii) A�A = A� if and only if G is discrete as indicated by
Civin and Yood for the abelian case in the proof of Theorem 3.12 of [CY]
and proved by Grosser [G] for the general case. We record the important
consequence due to Grosser.

Theorem 1.1 ([G]). If L1(G)�� admits an involution then G is discrete.

The background for L1(G)�� for discrete G is well set by M. M. Day [Da]
and Civin and Yood [CY], and an important role is played by the Stone–Čech
compactification βG of G identified as a semigroup under the multiplication
� of L1(G)��. See also R. G. Douglas [Do].

The question of involutions on the second duals of group algebras was
initially given attention by J. Duncan and S. A. R. Hosseiniun [DH] and
further studied by H. Farhadi and F. Ghahramani [FG]; see also the related
paper by M. Neufang [N].

Our interest in this short paper is to further strengthen Theorem 1.1
above. We confine our attention to the first Arens product only. We define
the notion of subamenability for a locally compact (Hausdorff) group G and
prove

Theorem 1.2. Let G be a subamenable non-compact locally compact
group. Then L1(G)�� has no involution.

We also show that the class of subamenable groups properly contains
that of amenable groups. Another interesting fact is that every discrete
group G is a subgroup of a subamenable discrete group rG with cardinality
# rG ≤ 2#G.

We refer to E. Hewitt and K. A. Ross [HR], J.-P. Pier [Pi], T. W. Palmer
[Pal], N. Hindman [H] and N. Hindman and D. Strauss ([HS1], [HS3]), M. Fi-
lali and A. I. Singh [FSi] and H. G. Dales, A. T.-M. Lau and D. Strauss [DLS],
for instance, for basics and some further details. These sources permit us to
concentrate on our new results utilizing the relevant formulations of known
results rather than tracing their history.

2. Subamenable groups and the question of involutions on
L1(G)��. We begin with a bit of prevalent notation and a variant of the
notion of amenability for a locally compact (Hausdorff) group G with iden-
tity e and left Haar measure λ, simply denoted by dx at times.
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Let k(G) be the minimal number of compact sets required to cover G.
Clearly, k(G) is an infinite cardinal number except when G is compact, and
in that case k(G) = 1. Further, for an infinite discrete group, k(G) = k, the
cardinality #G of G.

For x ∈ G and a function f on G, let `xf be the function on G given
by `xf(y) = f(xy) for y in G. For F in L1(G)�� = L∞(G)� let LF be
the bounded linear operator from L∞(G) to itself given by LF f = Ff .
Let 1 be the constant function one on G. A mean M on G is a positive
linear functional on L∞(G) with M(1) = 1. In case G is discrete, L1(G),
L∞(G), L1(G)�� etc. will be denoted, at times, by `1(G), `∞(G), `1(G)��

etc. respectively. For a subset W of a vector space X, Γ (W ) will denote its
linear span.

Definition 2.1.

(i) A non-empty subset F of L1(G)�� will be called an invoid for G if
Γ (F) is a left ideal in L1(G)��.

(ii) An invoid for G containing at least one mean M will be called
a meanoid for G.

(iii) For a cardinal number α, G will be called α-amenable if G has
a meanoid with cardinality ≤ α.

(iv) G will be called subamenable if G is α-amenable for some 1 ≤ α

< 22k(G) , i.e., L1(G)�� has a left ideal which has dimension < 22k(G)

and contains a mean.

The definition is designed to have the following result.

Theorem 2.2. Let G be a subamenable non-compact locally compact
group. Then L1(G)�� has no involution.

Proof. By the definition of subamenability, L1(G)�� has a γ-dimensional
left ideal with 1 ≤ γ < 22k(G) . By Filali and P. Salmi [FSa, Theorem 6],
L1(G)�� has no non-trivial right ideal with dimension < 22k(G) . So L1(G)��

has no involution.

We now come to the reason for the nomenclature in Definition 2.1.

Remark 2.3. Let F be a non-empty subset of L1(G)��.

(i) The set F is an invoid for G if and only if for each F in F and
each non-zero H in L1(G)�� there exist Fj ∈ F , hj ∈ L∞(G), 1 ≤ j ≤ n,
satisfying H � (LF −

∑n
j=1 Fj bhj) = 0, i.e., for each f in L∞(G), H(Ff) =∑n

j=1H(hj)Fj(f). To see this, we have only to note that H �F (f) = H(Ff)
and for a scalar β there exists h ∈ L∞(G) with β = H(h). Hence the set F is
an invoid for G if and only if for each F in F and each closed hyperplane Π
in L∞(G) there is a finite rank bounded operator T in Γ (F)bL∞(G) from
L∞(G) to itself with the range of LF − T in Π.
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(ii) For a mean M on G, F = tMu is a meanoid for G if and only if
LM = Mb1, i.e.,Mf = M(f)1 for each f in L∞(G), i.e.M is topologically
left invariant. To see this, let H ∈ L1(G)�� = L∞(G)� be arbitrary. We note
that H � M = βHM for a scalar βH if and only if H(Mf) = βHM(f)
for each f in L∞(G). The basic fact that M1 = 1 gives that this is so
only if βH = H(1). Thus, H � M = βHM for a scalar βH if and only if
H(Mf) = H(1)M(f) for each f in L∞(G), i.e., H � (LM −M b 1) = 0.

(iii) By (ii) above, G is 1-amenable if and only if G is amenable.
(iv) If G is α1-amenable and α1 < α2, then G is α2-amenable.
(v)G is 22#G-amenable. To see this it is enough to note that forG infinite,

#L∞(G) ≤ 2#G and, therefore, #L1(G)�� ≤ 22#G .
(vi) We do not yet have any example of a non-subamenable group. A for-

tiori, we do not have an example of an infinite G with an involution on
L1(G)��. But Theorem 2.9 below gives a large class of subamenable groups.

Corollary 2.4. Let G be an amenable non-compact locally compact
group. Then L1(G)�� has no involution.

Proposition 2.5. If G is m-amenable for some m ∈ N, the set of nat-
ural numbers, then G is amenable.

Proof. Let F be a meanoid for G with cardinality m. Then F contains
a mean M . Since M �M(1) = 1, M is not a right annihilator of L1(G)��.

So Γ (F) is a finite-dimensional left ideal in L1(G)�� which is not gener-
ated by right annihilators of L1(G)��. By Filali [F2, Corollary (3) of Theo-
rem 3], G is amenable.

We now prepare to show that there exist subamenable non-amenable
groups. In fact, we will show that each discrete group G is a subgroup of
some subamenable group G with k(Gσ) = #Gσ ≤ 2#G. Hence the class of
subamenable groups is universal for all groups.

Remark 2.6. In view of Grosser’s Theorem 1.1 in the first section, we
can confine our attention to discrete groups. From now onwards, G is an
infinite discrete group with cardinality k unless otherwise stated.

(i) The result on the dimension of non-trivial right ideals in L1(G)�� by
Filali and Salmi used in the proof of Theorem 2.2 is needed only for discrete
groups. In that case the theorem also follows from Filali and J. Pym [FP,
Theorem 5] simply because for discrete G, LUC(G)� = L1(G)��.

(ii) An independent proof of Corollary 2.4 can be given using the relevant
part and version of an earlier result of Filali [F1, Theorem 3], viz., for an
infinite discrete group G, L1(G)�� has no non-trivial finite-dimensional right
ideal, together with the basic fact that for amenable G, L1(G)�� has non-
trivial finite-dimensional left ideals.
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Proposition 2.7. Let G be a discrete group and α be a cardinal number.

(i) If π is a homomorphism from G onto a discrete group S and G is
α-amenable then S is α-amenable. Equivalently, the quotient group
S of G by a normal subgroup N is α-amenable if G is so.

(ii) If S is a subgroup of G and G is α-amenable then so is S.
(iii) If N is an amenable normal subgroup of G with the quotient G/N

α-amenable then G is α-amenable.

Proof. Some basic ingredients for the proof are taken from the well-
known amenable version. We may refer to Pier [Pi, §13], for instance.

(i) Let F be a meanoid for G with #F ≤ α and M a mean present in F .
For ξ ∈ `∞(S), let pξ = ξ � π. Then pξ is in `∞(G) and is constant on

π−1tbu for each b in S.
We put `∞π (G) = tf ∈ `∞(G) : f is constant on π−1tbu for each b in Su

= tpξ : ξ ∈ `∞(S)u = {`∞(S). In fact, ξ ÞÑ pξ is a 1-1 correspondence be-
tween `∞(S) and `∞π (G). For Φ ∈ `1(S)�� = `∞(S)�, let pΦ be any Hahn–
Banach extension to `∞(G) of Φ1 on `∞π (G) given by Φ1(pξ) = Φ(ξ). For
H ∈ `1(G)�� = `∞(G)�, we define qH ∈ `1(S)�� by qH(ξ) = H(pξ). Then
(Φ)∧∨ = Φ for Φ ∈ `1(S)��. Next, for ξ ∈ `∞(S), a ∈ G, b = π(a), we have
`apξ = (`bξ)∧, and therefore, for H ∈ `1(G)��,

(Hpξ)(a) = H(`apξ) = H((`bξ)∧) = qH(`bξ) = ( qHξ)(b) = ( qHξ)∧(a).
So, Hpξ = ( qHξ)∧, and further, Hpξ is in `∞π (G). Moreover,

|M(1s) = M(1) = 1 = }M} = }|M}.

Hence |M is a mean on S. Now let qF = t qF : F ∈ Fu. Let F ∈ F and
Φ ∈ `1(S)��. Put H = pΦ. Since F is an invoid for G, there exist Fj ∈ F ,
βj ∈ C, 1 ≤ j ≤ n, satisfying

H � F =
n∑
j=1

βjFj .

So for ξ ∈ `∞(S),

H(F pξ) =
n∑
j=1

βjFj(pξ),
which in turn gives

H(( qFξ)∧) =
n∑
j=1

βj(Fj)∨(ξ), i.e., qH( qFξ) =
� n∑
j=1

βj(Fj)∨
	
(ξ).
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It follows that

Φ( qFξ) =
� n∑
j=1

βj(Fj)∨
	
(ξ).

Therefore,

Φ � qF =
n∑
j=1

βj(Fj)∨ .

Thus F is an invoid for S.
As |M ∈ qF we conclude that qF is a meanoid for S. The result follows on

noting that # qF ≤ α.
The second part follows from the first just by applying it to the canonical

homomorphism of G onto G/N .
(ii) Let G/S be the set of left cosets [x] = xS. Let h be any function from

G/S to G with h([x]) ∈ [x] for each [x] in G/S and h([e]) = e, the identity
of G. Let C be the range of h. Then h0 = χC is a Bruhat function attached
to the pair (G,S). For ξ ∈ `∞(S), let pξ(x) = ξ(xh[x−1]) for x in G. Thenpξ ∈ `∞(G). Also, for a ∈ S, pξ(a) = ξ(ah([a−1])) = ξ(ae) = ξ(a). So pξ|S = ξ.
For H ∈ `1(G)��, let qH ∈ `1(S)�� = `∞(S)� be defined by qH(ξ) = H(pξ).
Consider any H ∈ `1(G)��, ξ ∈ `∞(S) and a ∈ S. Then for x ∈ G,

(`aξ)∧(x) = `aξ(xh([x−1])) = ξ(axh([(ax)−1])) = pξ(ax) = `apξ(x),
and therefore (`aξ)∧ = `apξ. So

(Hpξ)(a) = H(`apξ) = H((`aξ)∧) = qH(`aξ) = qHξ(a).
Hence qHξ = (Hpξ)|S. For Φ ∈ `1(S)��, let pΦ : `∞(G) Ñ C be given bypΦ(f) = Φ(f |S). Then pΦ ∈ `∞(G)� = `1(G)��. Also

(pΦ)∨(ξ) = pΦ(pξ) = Φ(pξ|S) = Φ(ξ) .

So (pΦ)∨ = Φ.
Let F be a meanoid for G with #F ≤ α andM a mean present in F . Let

F ∈ F and Φ ∈ `1(S)��. Since F is a meanoid, there exist Fj ∈ F , βj ∈ C,
1 ≤ j ≤ n, such that pΦ � F =

∑n
j=1 βjFj . So, for ξ ∈ `∞(S),

pΦ(F pξ) =
n∑
j=1

βjFj(pξ), i.e., Φ(F pξ|S) =
n∑
j=1

βj(Fj)∨(ξ),

which in turn gives

Φ( qFξ) =
n∑
j=1

βj(Fj)∨(ξ).
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So

Φ � qF =
n∑
j=1

βj(Fj)∨.

Thus qF = t qF : F ∈ Fu is an invoid for S. Also |M(1s) = M(p1s) = M(1) = 1.
Therefore, qF is a meanoid for S and # qF ≤ α. Hence S is α-amenable.

(iii) Let M be a left invariant mean on N , F a meanoid for G/N with
#F ≤ α, and Φ a mean present in F . Consider any f ∈ `∞(G). For x ∈ G,
the function f

(x)
1 = `xf restricted to N is in `∞(N). Also, for a ∈ N ,

`af
(x)
1 = f

(xa)
1 . We define rf ∈ `∞(G) by rf(x) = M(f (x)

1 ) for x in G. Then,
for x ∈ G and a ∈ N , rf(xa) = M(f (xa)

1 ) = M(`af
(x)
1 ) = M(f (x)

1 ) = rf(x).
So rf is constant on the left coset xN . Thus we may define pf ∈ `∞(G/N) by
putting pf(xN) = rf(x).

For x, y ∈ G and f ∈ `∞(G),

(`yf)∧(xN) = (`yf)∼(x) = M((`yf)(x)
1 ) = M(f (yx)

1 )

= rf(yx) = pf(yxN) = pf((yN)(xN)) = `yN pf(xN).

Now for Ψ ∈ `1(G/N)��, let qΨ ∈ `1(G)�� = `∞(G)� be given by qΨ(f) =
Ψ( pf). Then for f ∈ `∞(G), y ∈ G we have

qΨf(y) = qΨ(`yf) = Ψ((`yf)∧) = Ψ(`yN pf) = (Ψ pf)(yN).

Thus, qΨf is constant on each left coset xN for x ∈ G. Let Y = tf ∈ `∞(G) :
f is constant on left cosets of Nu = tξ � π : ξ ∈ `∞(G/N)u, where π is the
canonical map given by π(x) = xN . Then `∞(G/N) can be identified with
Y by ξ ÞÑ pξ = ξ � π. For H ∈ `1(G)�� let pH ∈ `1(G/N)�� = `∞(G/N)� be
given by pH(ξ) = H(pξ).

Let qF = tqΨ : Ψ ∈ Fu. Then for Ψ ∈ F , H ∈ `1(G)��, there exist Ψj ∈ F ,
βj ∈ C, 1 ≤ j ≤ n, with pH � Ψ =

∑n
j=1 βjΨj .

Now for f ∈ `∞(G),

(H � qΨ)(f) = H(qΨf) = H((Ψ pf)∧) = pH(Ψ pf) = ( pH � Ψ)( pf)

=
� n∑
j=1

βjΨj



( pf) =

n∑
j=1

βjΨj( pf) =
n∑
j=1

βj(Ψj)∨(f) .

So H � qΨ =
∑n

j=1 βj(Ψj)
∨.

Therefore, qF is an invoid for G. Also qΦ is a mean on G, and as a con-
sequence, qF is a meanoid for G. As # qF ≤ #F ≤ α we have the desired
result.
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Corollary 2.8. Let G be an infinite discrete group with #G = k.

(i) Let G be subamenable. Let S be a discrete group with #S = k. If S
is a homomorphic image of G (equivalently, a quotient group of G by
a normal subgroup N) or a subgroup of G, then S is subamenable.

(ii) Let N be an amenable normal subgroup of G such that G/N is suba-
menable. Then G is subamenable. In particular, it is so if N is taken
to be GFC , the subgroup of G consisting of elements in G with finite
conjugacy classes.

Proof. We have only to note that subamenability of G or S can be re-
placed by α-amenability for some α < 22k and then we can apply Proposi-
tion 2.7 above. For the second part of (ii) we use the well-known fact that
GFC is amenable (cf. [Pi, Proposition 12.9]).

Theorem 2.9.

(i) Every discrete group G is a subgroup of a subamenable discrete group
Gσ with #Gσ ≤ 2#G.

(ii) There exist non-amenable subamenable groups of any infinite cardi-
nality ≥ c, the cardinality of the continuum.

(iii) Every discrete group G is a subgroup of a non-amenable subamenable
discrete group GΣ with #GΣ ≤ 2#Gα0. Here α0 is the cardinality of
the set N of natural numbers.

Proof. (i) Let G be any discrete group. If G is finite then it is amenable
(and therefore subamenable). Now let G be infinite with k = #G ≥ α0.
Then by Remark 2.3(v), G is α-amenable for some α ≤ 22k . Let ` > k be
any cardinal number. Let N be any discrete amenable group with #N = `.
We may take N to be any abelian group with cardinality `, the free abelian
group with ` generators, for instance. Let G` be the product group N×G. By
Proposition 2.7(iii) above, G` is α-amenable. Now k` = #G` = ` �k = ` > k.
So 22k` = 22`

> 22k ≥ α. So G` is subamenable. We put Gσ = G` with
` = 2k = 2#G.

(ii) We take G to be any non-amenable countable group, say the free
group F2 with two generators, and then take ` to be any infinite cardinal
number ≥ c in the proof of (i) above. Then G` is not amenable simply
because it has a non-amenable subgroup G, whereas every subgroup of an
amenable discrete group is amenable.

(iii) Given any group G, we let Γ = G×F2 and then apply part (i) to Γ
(in place of G) and put GΣ = Γσ.

Remark 2.10. (i) Obviously, in Theorem 2.9(i) above, if G is suba-
menable we may take Gσ = G; but we have divided the proof of Theo-
rem 2.9(i) above into easily checkable cases of G finite and G infinite rather
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than G subamenable and G non-subamenable. If G is a non-subamenable
group and G1 is a group containing G as a subgroup then, in view of Corol-
lary 2.8(i), #G1 = #G forces G1 to be non-subamenable, and therefore if G1

is a subamenable group we must have #G1 > #G. In the statement and the
last step (sentence) of the proof of Theorem 2.9(i) we have used the cardinal
number 2#G to avoid any questions regarding the truth of the generalized
continuum hypothesis (GCH) or otherwise.

(ii) Theorem 2.9(i) has no amenable counterpart because of the well-
known fact that a subgroup of an amenable discrete group is amenable (al-
ready used in the proof of part (ii) of Theorem 2.9 above) and the fact that
there exist non-amenable groups.

(iii) On the opposite side, if G has an element x of infinite order then
it contains the infinite cyclic group generated by x, which is abelian, and
therefore amenable; and, on the other hand, if G is a torsion group then also
it contains a finite (and therefore) amenable subgroup.

(iv) There is a vast standard literature on torsion groups (and other
groups) vis-à-vis amenability created by mathematicians such as S. I. Adian,
R. I. Grigorchuk, A. Y. Ol’shanskĭı, D. Osin, M. V. Sapir and J. Jits. We
have yet to properly utilize it for our purposes.

Remark 2.11. (i) Let us call a group G Arens-� if `1(G)�� has an invo-
lution. Every finite group is Arens-� and we have not been able to give an
example of an Arens-� infinite group.

(ii) Theorems 2.2 and 2.9 put together give that

(a) every infinite group G is a subgroup of some non-Arens-� group
Gσ with #Gσ ≤ 2#G,

(b) there are non-amenable non-Arens-� groups of all cardinalities
≥ c,

(c) every infinite amenable group is non-Arens-� and is a subgroup
of a non-amenable non-Arens-� group,

(d) every group G is a subgroup of a non-amenable non-Arens-�
group GΣ with #GΣ ≤ 2#Gα0 .

(iii) Every non-torsion group G is sandwiched between some pair of non-
Arens-� groups. To see this we only have to combine (ii)(a) above with
Remark 2.10(iii). In fact, there are infinitely many such pairs in view of the
observation that every infinite cyclic group has infinitely many infinite cyclic
subgroups, and on the other hand, (ii)(a) above indicates how to build up a
chain of non-Arens-� groups containing G as a subgroup.

(iv) An infinite torsion group G is sandwiched between some pair con-
sisting of a finite Arens-� group and a non-Arens-� group. Again, there are
infinitely many such pairs.
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Remark 2.12. (i) It is well-known (see [CY], [Do], [DLS] for instance)
that `1(G)�� can be identified with the space of finitely additive measures
on G, or equivalently, with the space M(βG) of complex regular Borel mea-
sures on the Stone–Čech compactification βG of G. Further, under the Arens
product � of `1(G)��, βG (identified with unit point masses) is a compact
right topological semigroup equipped with the weak� topology coming from
`∞(G).

(ii) [DLS, Proposition 7.5(i)] implies that if L is a closed left ideal in βG
then M(L) is a weak�-closed left ideal in M(βG).

(iii) There is an abundance of closed left ideals in βG: this follows as a
special case of discrete G from Proposition 2 of Lau and A. L. T. Paterson
[LPa]. Keeping in mind the proof of that proposition, particularly the proof
of Lemma 3 there, we record it as: If G is an infinite discrete group, then
βG contains at least 22#G minimal closed left ideals which are mutually
disjoint.

(iv) A combination of (ii) and (iii) above gives that M(βG) contains at
least 22#G weak�-closed left ideals whose pairwise intersection is t0u. Hence,
ifM(βG) has an involution then it must have at least 22#G right ideals whose
pairwise intersection is t0u. We do not know the situation in this regard.

(v) In the absence of involution on M(βG) for many groups (as seen
above), we may consider involutions on subalgebras of `1(G)��. The algebra
`1(G) and its (algebraic) centre (which, in fact, turns out to be the centre
of `1(G)�� as well, using [L], [LL], and is therefore invariant under an in-
volution, if any, on `1(G)��) have their own involutions (see [Pat]). There
is also an abundance of such subalgebras of `1(G)�� which do not inter-
sect `1(G) except for t0u. In fact, apart from the group G, the semigroup
βG very often contains several groups (considered as subsemigroups of βG)
contained in βG \G. Work of T. Budak, N. Işik and J. Pym [BIP], N. Hind-
man and D. Strauss ([HS2], [HS4]), I. V. Protasov [Pr] and E. G. Zelenyuk
[Z], for instance, gives concrete examples and some general results (see also
[DLS]).

(vi) This brings us to the question of involutions on subalgebras of
L1(G)�� for a locally compact group G as well (see [FG], [LPy], [S]).

(vii) Another idea is to consider a trivolution on L1(G)��, viz. a conju-
gate-linear anti-homomorphism ρ satisfying ρ3 = ρ. Then ρ is its own gen-
eralized inverse instead of being inverse. The name is motivated by a notion
studied by J. W. Degen [De]. One can find details in [FMS].
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