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Metric version of flatness and Hahn–Banach type theorems
for normed modules over sequence algebras

by

A. Ya. Helemskii (Moscow)

Abstract. We introduce and study the metric or extreme versions of the notions
of a flat and an injective normed module. The relevant definitions, in contrast with the
standard known ones, take into account the exact value of the norm of the module. The
main result gives a full characterization of extremely flat objects within a certain category
of normed modules. As a corollary, some Hahn–Banach type theorems for normed modules
are obtained.

Introduction: Formulation of the main results and comments.
The concepts of a flat module and of an injective module are among the
most important in algebra. In particular, they are two of the three pillars
of the whole building of homological algebra; the remaining one is the no-
tion of a projective module. The first functional-analytic versions of the
three above mentioned notions appeared about 40 years ago (see [6] and
the references therein). They were introduced in connection with the rise in
functional analysis of interest in such topics as derivations of Banach alge-
bras, their extensions and amenability. The relevant definitions were given in
the framework of a certain kind of relative homology, adapted to the context
of functional analysis. They were formulated in terms of the norm topology
of the modules in question rather than the norm itself.

Quite recently, the birth of new areas of analysis, notably of the so-
called quantum functional analysis (= operator space theory), has caused
the introduction and study of metric or extreme versions of these notions
(cf. [10]–[18]). The specific feature of the new versions is that they take into
account the exact value of the norm.

Before proceeding to our main definitions, we recall and fix some termi-
nology and notation.

Let A be a normed algebra, generally speaking, not unital. We denote
by A-mod (respectively, mod-A) the category of all left (respectively, right)
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normed A-modules and their bounded morphisms. Throughout this paper,
all normed algebras and modules are always supposed to be contractive;
this means that the norms of all relevant inner and outer multiplications, as
bilinear operators, are ≤ 1.

If X ∈ A-mod, we denote the closure of the linear span of the set {a ·x :
a ∈ A, x ∈ X} by Xes and call it the essential part of X. It is, of course, a
submodule. X is called essential (or ‘non-degenerate’) if X = Xes. The quo-
tient normed A-module X/Xes is denoted by Xan; obviously it has zero outer
multiplication. The annihilator of A in X is the closed left submodule {x :
a·x = 0 for all a ∈ A} inX, denoted by Ann(X). The quotient left normedA-
module X/Ann(X) is called the reduced module of X and denoted by Xred.

As usual, we call a left A-module X faithful if Ann(X) = 0. Of course,
the reduced module of every module is faithful.

Let A be a normed algebra. We shall use the symbol ⊗A for the non-
completed projective tensor product of A-modules and of their bounded mor-
phisms. (See, e.g., [9] or, for the initial ‘completed’ version, the pioneering
paper of Rieffel [12] or the textbooks [6, II.3], [7, VI.3.2].)

If A is commutative, then, as usual, we identify both types of mod-
ules and say just ‘A-module’. Accordingly, we speak about projective ten-
sor products of normed A-modules and of bounded morphisms of normed
A-modules.

Recall that in this situation the tensor product of two modules, say X
and Y , is itself a normed contractive A-module with the outer multiplication,
well defined by a · (x ⊗A y) := (a · x) ⊗A y (or := x ⊗A (a · y)). Moreover,
the tensor product of two bounded morphisms of normed A-modules is itself
a bounded morphism of appropriate modules.

The identity operator on a linear space (or a module) Z will be denoted
by 1Z , or just 1, if there is no danger of misunderstanding.

Finally, let us distinguish a class, so far arbitrary, of right normed A-
modules and denote it by K. In the spirit of the old definitions of a flat or
strictly flat Banach module ([6, VII.1], [7, VII.1.3]), we give the following

Definition I. A normed left A-module Z is called extremely flat with
respect to (or relative to) the class K if, for every isometric morphism i :
X → Y of right modules belonging to K, the operator i ⊗A 1Z : X ⊗A Z →
Y ⊗A Z is also isometric.

If we deal with just normed spaces, the well known theorem of Grothen-
dieck [5, Thm. 1], adapted to non-complete spaces, gives the following de-
scription of extremely flat objects. A normed space (‘unital normed C-
module’) is extremely flat with respect to the class of all normed spaces
if and only if it is isometrically isomorphic to a dense subspace of L1(Ω,µ)
for some measure space (Ω,µ).
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Definition II. A normed right A-module Z is called extremely injective
with respect to the class K if, for every isometric morphism i : X → Y of
right modules belonging to K, and for every bounded morphism ϕ : X → Z
of right A-modules, there exists a bounded morphism ψ : Y → Z of right
modules such that the diagram

X
i //

ϕ

��

Y

ψ~~}}
}}

}}
}

Z

is commutative, and ‖ϕ‖ = ‖ψ‖. In other words, every bounded morphism
of right modules from X into Z can be extended, after the identification of
X with a submodule of Y , to a morphism from Y to Z with the same norm.

Thus the assertion that a certain Z is extremely injective with respect to
K can be considered as a ‘Hahn–Banach type’ theorem for given A and K,
with Z playing the role of C.

If again A := C, then the extremely injective objects are described by
a theorem, connected with the names of Nachbin, Goodner, Hasumi and
Kelley (see [2, p. 123] or [17, Thm. 25.5.1]), which can be easily adapted
to the non-complete case. Namely, a normed space is extremely injective
with respect to the class of all normed spaces if and only if it is isometrically
isomorphic to the space C(Ω), where Ω is an extremely disconnected compact
space.

Remark. The word ‘extremely’ in both definitions is chosen because iso-
metric operators or morphisms are exactly the so-called extreme monomor-
phisms in some principal categories of spaces or modules in functional anal-
ysis (cf., e.g., [1, p. 4], [8, Ch. 0.5]).

The two notions introduced are closely connected. A link is provided by
a proper functional-analytic version of the algebraic ‘law of adjoint asso-
ciativity’, established by Rieffel [13]. With its help, we shall prove (see the
beginning of Section 2) the following easy statement.

Proposition. Let A, K and Z be as above. Then Z is extremely flat with
respect to K if and only if its dual normed left A-module Z∗ is extremely
injective with respect to K.

The notions defined above were actually introduced in [10], but only for
some special algebras and modules. The role of a base algebra was played by
B(H), and K consisted of the so-called semi-Ruan B(H)-modules. (Speak-
ing informally, these are modules satisfying a proper one-sided version of
Ruan axioms for an operator space; cf. [9]). It was shown that certain B(H)-
modules are extremely flat with respect to that K, and certain Hahn–Banach
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type theorems for modules over B(H) were obtained as corollaries. These
theorems, in their turn, led to a conceptually new proof of one of the ba-
sic theorems of operator space theory, the Arveson–Wittstock theorem on
extensions of completely bounded operators (see, e.g., [4] or [9]).

Afterwards the results of [10] were generalized and considerably strength-
ened by Wittstock [18], who, in particular, replaced B(H) by an arbitrary
properly infinite C∗-algebra and established that every semi-Ruan module
is extremely flat with respect to the above-mentioned class. As an applica-
tion, Wittstock presented a new transparent proof of the Arveson–Wittstock
theorem in its more sophisticated version, that for operator modules.

After the cited papers it seemed natural to look for extremely flat mod-
ules over other classes of normed algebras and, accordingly, for related
Hahn–Banach type theorems. In the present paper we consider another class
of ‘popular’ algebras, which is opposite, in a sense, to those in [10], [18].
We mean commutative normed algebras, consisting moreover of sequences.
These algebras apparently represent the next degree of complication after C.
Nevertheless we hope to show that even in this case, after the proper choice
of K, there is something to say.

Denote by pn the sequence (0, . . . , 0, 1, 0, . . . ) with 1 as the nth entry,
and by c00 the linear space of finite sequences, i.e., span{pn : n = 1, 2, . . . }.

Definition III. Let A be a normed algebra consisting of some complex-
valued sequences and equipped with the coordinatewise operations. We say
that A is a sequence algebra if it contains c00 as a dense subalgebra, and
‖pn‖ = 1 for all n.

We see that the class of sequence algebras includes c0, all lp, 1 ≤ p <∞,
(but not l∞), the Fourier algebras of discrete countable groups (after re-
arranging the relevant domains as sequences), and many other alge-
bras.

The main result of the paper gives, within a certain reasonable class of
normed modules over a sequence algebra, a full characterization of extremely
flat modules with respect to that class. After some preliminary notes, we
proceed to define this class.

Let A be a sequence algebra, and X a normed A-module. Often, when
there is no danger of confusion, for x ∈ X we shall write xn instead of pn ·x
and call it the nth coordinate of x. Of course, pn · xn = xn. Further, we set
Xn := {pn · x : x ∈ X} for every n ∈ N. We see that Xn is a submodule
of X. It will be called the nth coordinate submodule of X.

Definition IV. An A-module X is called homogeneous if, for every
x, y ∈ X, the inequalities ‖xn‖ ≤ ‖yn‖ for all n ∈ N imply that
‖x‖ ≤ ‖y‖.
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It immediately follows that for any elements x, y in a homogeneous mod-
ule, the equalities ‖xn‖ = ‖yn‖, n ∈ N imply that ‖x‖ = ‖y‖. Thus in a
homogeneous module the norm of an element is completely determined by
the norms of its coordinates.

For many typical sequence algebras the class of homogeneous modules
is fairly wide. In particular, it is easy to show that all essential normed
modules over c0, consisting of complex-valued sequences, are homogeneous.
Moreover, lp-sums, 1 ≤ p ≤ ∞, of arbitrary families of normed spaces are
obviously homogeneous lq-modules for all 1 ≤ q < ∞. The module l2 over
the Fourier algebra of a countable discrete Abelian group is also, of course,
homogeneous. (In all examples we mean the coordinatewise outer multipli-
cation.)

On the other hand, it is obvious that a homogeneous normed A-module
X is necessarily faithful.

In this paper, we denote by H the class of all homogeneous normed
A-modules, and by Hes its subclass consisting of the essential modules.

Theorem I. Let A be a sequence algebra, and Z be an essential (respecti-
vely, arbitrary) homogeneous normed A-module. Then Z is extremely flat
relative to H (respectively, Hes) if and only if, for every n, its nth coordinate
submodule is isometrically isomorphic to a dense subspace of L1(Ωn, µn) for
some measure space (Ωn, µn).

Note that ‘only if’ part of this theorem is a rather easy corollary of the
theorem of Grothendieck, cited above. Our proof of the ‘if’ part is more
complicated, and it does not use the Grothendieck theorem. Indeed, the
emphasis is shifted: the main thing now is to show that the answer depends
not on the norm on the whole module but only on the norms of its coordinate
subspaces.

In fact, we shall prove this theorem in a slightly stronger form; see Propo-
sition 3.2 and Theorem 3.6 below.

Of course, if we wish to deal with Banach modules only, then in the
criterion of extreme flatness which is an immediate corollary of Theorem I,
we must replace the words ‘dense subspace of L1(Ωn, µn)’ by (just)
‘L1(Ωn, µn)’.

Remark. This theorem enables one to indicate various subclasses of H
where the operation of projective tensor product has the so-called injective
property: ϕ ⊗A ψ is isometric provided ϕ and ψ are. It follows from the
factorization ϕ ⊗A ψ = (ϕ ⊗A 1)(1 ⊗A ψ) = (1 ⊗A ψ)(ϕ ⊗A 1). In
particular, this is true for the subclass of Hes consisting of the modules with
all coordinate submodules isometrically isomorphic to dense subspaces of
L1(·) spaces.
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As an easy corollary of Theorem I, we obtain

Theorem II (see the end of Section 3). Let A be a sequence algebra, and
Z be an essential (respectively, arbitrary) homogeneous normed A-module.
Then the dual module Z∗ is extremely injective relative to H (respectively,
to Hes) if and only if for every n the nth coordinate submodule Zn is iso-
metrically isomorphic to a dense subspace of L1(Ωn, µn) for some measure
space (Ωn, µn).

Thus, speaking informally, in both theorems the answer depends not on
the norm on the whole module but only on the norms of its coordinate
subspaces. In particular, all A-modules lp, 1 ≤ p < ∞, (and all sequence
modules over A := c0) are extremely flat with respect to H, whereas the
same lp and also l∞ are extremely injective with respect to H.

Remark. Suppose that Z satisfies the conditions of the above theorem,
and, for some n, the measure space (Ωn, µn) is localizable in the sense of
I. Segal [16, Def. 2.6]. Then, as shown in the cited paper (part of Theo-
rem 5.1 there), the dual space L1(Ωn, µn)∗ is isometrically isomorphic to
L∞(Ωn, µn). Therefore the same is true for (Zn)∗ and hence, by Proposi-
tion 1.4, for the nth coordinate submodule of Z∗.

In both theorems we have assumed that some of the modules involved are
essential. Such a condition cannot be omitted: a non-essential homogeneous
normed module (being always extremely flat with respect to Hes) need not
be extremely flat with respect to H. As a matter of fact, the A-module l∞
(apparently the first faithful non-essential module that comes to mind) is
not extremely flat with respect to the class of all homogeneous modules. This
is Theorem 4.3.

Let us make some comments on the proof of the main result. At the
very beginning we observe that, under some conditions, tensor products of
modules over a sequence algebra, and of their morphisms, can be described
in a rather transparent and ‘workable’ form (Proposition 1.7). In particular,
this is helpful in the principal preparatory step, Lemma 3.3, of somewhat
technical character. At the end of our argument, we use the following fact:
under a mild assumption on X or Z the (mere) injectivity of ϕ : X → Y
implies the same property of ϕ ⊗A 1Z .

Thus we have come across another typical question of the theory of
normed algebras, this time about the preservation, under tensor multiplica-
tion of modules, of the injectivity of given morphisms. Of course, it sounds
similar to its well known pure algebraic prototype, which leads to the funda-
mental notion of (algebraic) flatness. But here we deal with bounded mor-
phisms and a kind of functional-analytic tensor product. This profoundly
affects the situation.
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Even in the case when A is a ‘very good’ sequence algebra (c0, say), and
X,Y, Z are normed A-modules consisting of sequences, it can well be that
a bounded morphism ϕ : X → Y is injective whereas ϕ ⊗A 1 : X ⊗A Z
→ Y ⊗A Z is not. However, if a given sequence algebra is indeed good
and we are given arbitrary normed A-modules X,Y, Z and a topologically
injective (in particular, isometric) morphism ϕ : X → Y then the operator
ϕ ⊗A 1 : X ⊗A Z → Y ⊗A Z is also injective. (Note that at the same time
it is not necessarily topologically injective.) This is Theorem 2.4.

Remark. We want to emphasize that we work in this paper, in a similar
way to [10], [18], with the non-completed version of the projective tensor
product. If we replace the latter by its completed version, Theorem 2.4 fails
to be true. One can easily construct suitable counter-examples, taking some
spaces without the approximation property.

1. Some preparations. We begin with a proposition of somewhat gen-
eral character. In particular, it will enable us to derive Theorem II from
Theorem I (cf. Introduction). This proposition actually appeared in [10,
Prop. 9], but in a certain special case and in a slightly disguised form.

In what follows, A is a normed algebra, so far arbitrary, and hA(·, ·)
denotes the space of all bounded morphisms between right normed modules.
Such spaces are equipped with the operator norm.

Proposition 1.1. Let X and Y be right normed A-modules, Z a left
normed A-module, i : X → Y an isometric morphism, and Z∗ the right
Banach A-module dual to Z. Then the following statements are equivalent:

(i) the operator i ⊗A 1Z : X ⊗A Z → Y ⊗A Z is an isometry,
(ii) for every bounded morphism ϕ : X → Z∗ of right A-modules, there

exists a bounded morphism ψ : Y → Z∗ of right modules such that
the diagram

X
i //

ϕ

��

Y

ψ~~||
||

||
||

Z∗

is commutative and ‖ϕ‖ = ‖ψ‖.

Proof. According to the functional-analytic version of the law of adjoint
associativity (cf. Rieffel [13], or [9, Ch. 8.0]) the normed space hA(X,Z∗)
coincides with the space (X ⊗A Z)∗ up to the isometric isomorphism taking
a morphism ϕ : X → Z∗ to the functional f : X ⊗B Z → C well defined by
f(x ⊗A z) = [ϕ(x)](z). Similarly, hA(Y,Z∗) is identified with (Y ⊗A Z)∗.
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Moreover, one can easily check that we have a commutative diagram

hA(Y, Z∗)
i∗ //

��

hA(X,Z∗)

��
(X ⊗A Z)∗ i• // (Y ⊗A Z)∗

Here the vertical arrows are isometric isomorphisms of normed spaces, acting
as indicated above, i∗ acts as β 7→ βi, and i• is the operator adjoint to
i ⊗A 1Z : X ⊗A Z → Y ⊗A Z.

It is obvious that assertion (ii) is equivalent to the following statement:
the operator i∗ maps the closed unit ball in the domain space onto the closed
unit ball in the range space. Because of the diagram above, this assertion is
in turn equivalent to the statement that i• has the same property. But, as an
obvious corollary (in fact, an equivalent formulation) of the Hahn–Banach
theorem, an adjoint operator has the indicated property if and only if the
original operator is isometric. The rest is clear.

An immediate corollary is the Proposition that was formulated at the
beginning of the Introduction.

As a byproduct, we have the following observation.

Proposition 1.2. Suppose that X,Y, Z and i are as before, and Z0 is a
dense submodule of Z. Then i ⊗A 1Z is an isometry if and only if the same
is true of i ⊗A 1Z0.

Proof. Indeed, the dual modules of Z and Z0 coincide, and therefore (ii)
above is valid if and only if it is valid after replacing Z by Z0.

Later we shall come across quite a few diagrams like the one above. To
write them all down would take too much space. Therefore the following
terminology is convenient. We shall say that the morphisms ϕ : X1 → X2

and ψ : Y1 → Y2, acting between normed A-modules, are isometrically
equivalent if there exist isometric isomorphisms of A-modules, I and J , such
that the diagram

(1.1)

X1
ϕ //

I
��

X2

J
��

Y1
ψ // Y2

is commutative (cf. [8]). In particular, we shall speak about the isometric
equivalence of two operators (C-modules). As to the isomorphisms I and J ,
we shall say that they implement the above equivalence.
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From now on we concentrate on the case where A is a sequence algebra.
We need some further notation and several elementary facts concerning A-
modules and their tensor products.

Let X be a normed A-module, and Xn, n = 1, 2, . . . , its coordinate
submodules (see Introduction). We denote by αXn : Xn → X the natural
embeddings, and by βXn : X → Xn the projections x 7→ xn. Clearly, these are
morphisms of A-modules that are isometries and, respectively, coisometries
(= quotient maps).

Consider the pure algebraic A-module X∞n=1Xn, consisting of all se-
quences (x1, . . . , xn, . . .) with xn ∈ Xn and endowed with the coordinatewise
operations. Introduce the map

σX : X →
∞
X
n=1

Xn : x 7→ (x1, . . . , xn, . . . );

it is, of course, an A-module morphism. Since c00 is dense in A, σX is injec-
tive if and only if X is faithful. Moreover, Ker(σX) coincides with Ann(X),
and hence it is closed. Therefore we can (and will) identify the submod-
ule Im(σX) in X∞n=1Xn with Xred (cf. Introduction) and endow it with the
appropriate quotient norm.

If x ∈ Xn, then the sequence σX(x) = (0, . . . , 0, x, 0, . . . ) belongs to
(Xred)n. Taking into account that ‖y‖ ≥ ‖x‖ for all y with σX(y) = σX(x),
we immediately obtain

Proposition 1.3. The birestriction σXn : Xn → (Xred)n of σX is an
isometric isomorphism.

Proof. Clear.

Proposition 1.4. For every n, the A-modules (X∗)n and (Xn)∗ are
isometrically isomorphic.

Proof. The morphisms (αXn )∗αX
∗

n : (X∗)n → (Xn)∗ and βX
∗

n (βXn )∗ :
(Xn)∗ → (X∗)n are contractive and inverse to each other.

Now let Z be another A-module. Our object of interest is the A-module
X ⊗A Z.

Throughout the paper, ⊗p stands for the non-completed projective ten-
sor product of normed spaces (= C-modules). The projective tensor norm
will be denoted by ‖ · ‖p.

Proposition 1.5. There exists an isometric isomorphism

ρX,Zn : Xn ⊗p Zn → (X ⊗A Z)n,

well defined by x⊗ z 7→ x ⊗A z.

Proof. Consider the contractive linear operators ρ :Xn⊗p Zn→X ⊗A Z
and π : X ⊗A Z → Xn ⊗p Zn, associated with the contractive bilinear op-



144 A. Ya. Helemskii

erator Xn × Zn → X ⊗A Z : (x, z) 7→ x ⊗A z and the contractive balanced
bilinear operator X ×Z → Xn ⊗p Zn : (x, z) 7→ pn · x⊗ pn · z, respectively.
Since πρ = 1, it follows that ρ is an isometry (whereas π is a coisometry).
Obviously, the image of ρ is exactly (X ⊗A Z)n. It remains to denote by
ρX,Zn the relevant corestriction.

Now we turn to the normed module (X ⊗A Z)red and to the coisometric
morphism σX,Z : X ⊗A Z → (X ⊗A Z)red, which is, by definition, the ap-
propriate corestriction of σX⊗AZ (cf. above). We want to describe them, up
to isometric isomorphism and, respectively, isometric equivalence, in terms
convenient for their study.

Consider the pure algebraic A-module X∞n=1(Xn ⊗ Zn) with the coordi-
nate-wise operations. For x ∈ X and z ∈ Z we shall denote by x � z the
sequence (x1 ⊗ z1, . . . , xn ⊗ zn, . . . ), belonging to this module. Denote by
X � Z the submodule of X∞n=1(Xn ⊗ Zn) defined as the linear span of all
such sequences.

The bilinear operator X×Z → X�Z : (x, z) 7→ x�z is clearly balanced.
Therefore it gives rise to a linear operator and, obviously, a surjective A-
module morphism �X,Z : X ⊗A Z → X�Z, well defined by x ⊗A z 7→ x�z.

For v ∈ X � Z we set

(1.2) ‖v‖� := inf
{ m∑
k=1

‖xk‖ ‖zk‖
}
,

where the infimum is taken over all representations of v in the form∑m
k=1 x

k � zk with xk ∈ X, zk ∈ Z.

Proposition 1.6. The function v 7→ ‖v‖� is a norm on X � Z. More-
over, with respect to this norm the module X�Z is isometrically isomorphic
to (X ⊗A Z)red, and �X,Z is isometrically equivalent to σX,Z . In more detail
there is a commutative diagram

(1.3)

X ⊗A Z
σX,Z

//

1

��

(X ⊗A Z)red

ιX,Z

��
X ⊗A Z

�X,Z // X � Z

where ιX,Z is an isometric isomorphism of A-modules.

Proof. Since �X,Z is surjective, X � Z is a seminormed module with
respect to the seminorm ‖v‖′ := inf{‖u‖ : �X,Z(u) = v}.

First, we show that ‖ · ‖� = ‖ · ‖′. From (1.2) we easily see that ‖v‖′ ≤
‖v‖�. On the other hand, for every ε > 0 we can take u ∈ X ⊗A Z with
�X,Z(u) = v and ‖v‖′ ≥ ‖u‖− ε, and then represent u as

∑m
k=1 x

k ⊗A zk so
that ‖u‖ >

∑m
k=1 ‖xk‖ ‖zk‖ − ε. Then we evidently have ‖v‖′ ≥ ‖v‖� − 2ε,

and the reverse inequality follows.
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Now take u ∈ X ⊗A Z. Let (. . . , un, . . . ) be the sequence �X,Z(u).
Obviously, ρX,Zn takes un to un := pn · u. It easily follows that Ker(σX,Z) =
Ker(�X,Z). Since both σX,Z and �X,Z are coisometries, there exists a unique
isometric isomorphism ιX,Z making the diagram (1.3) commutative. The rest
is clear.

Thus, by virtue of Propositions 1.3, 1.5 and 1.6, we have, for each n, a
chain of isometric isomorphisms

(1.4) Xn ⊗p Zn
ρX,Z

n−−−→ (X ⊗A Z)n
σX,Z

n−−−→ (X ⊗A Z)red
n

ιX,Z
n−−−→ (X � Z)n,

where the last map is the appropriate birestriction of ιX,Z . Denote by κX,Zn :
Xn ⊗p Zn → (X � Z)n their composition. It is, of course, an isometric
isomorphism of A-modules, well defined by taking x⊗ z to x� z.

Proposition 1.7. Suppose that at least one of the modules X and Z
has the following property: there is a sequence qm ∈ A consisting of finite
sequences and such that for each element, say x, of our module we have
x = limm→∞ qm · x. Then �X,Z is an isometric isomorphism of A-modules.

Before the proof, let us notice that for many sequence algebras every
essential module over such an algebra has the indicated property. Of course,
this is the case where A = c0 or A is the Fourier algebra of a discrete
countable Abelian group. However, more important for our aims is another
sufficient condition, expressed in Proposition 3.1 below.

Proof. Since ‘horizontal’ morphisms in (1.3) are coisometric, it is suffi-
cient to check that σX,Z is injective. Suppose that for u ∈ X ⊗A Z we have
�X,Z(u) = 0 and hence σX,Z(pn(u)) = 0 for all n. Since pn(u) ∈ (X ⊗A Z)n,
we see, by (1.4), that pn(u) = 0 for all n and hence qm(u) = 0 for all m.
The rest is clear.

The indicated assumption cannot be omitted, even when both modules
are faithful:

Example 1.8. Consider X := Z := l∞ with the coordinatewise opera-
tions and uniform norm. Take the sequences x := (1, 0, 1, 0, 1, 0, . . .) ∈ X
and z := (0, 1, 0, 1, 0, 1, . . .) ∈ Z. Of course, �X,Z(x ⊗A z) = 0.

Now take two functionals f, g : l∞ → C of norm 1 such that f(ξ) =
g(η) = 0 for ξ, η ∈ c0 and f(x) = g(z) = 1; these are easily provided by the
Hahn–Banach theorem. Then the bilinear functional f × g : X × Z → C :
(ξ, η) 7→ f(ξ)g(η) is obviously balanced and contractive. Therefore it gives
rise to the contractive functional f ⊗A g : X ⊗A Z → C, well defined by
ξ ⊗A η 7→ f(ξ)g(η). Since (f ⊗A g)(x ⊗A z) = 1, we have x ⊗A z 6= 0. Thus
�X,Z is not injective.
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Now suppose that we have three A-modules X,Y and Z, so far arbitrary,
and a bounded A-module morphism ϕ : X → Y . The latter in an obvious
way generates the sequence of its birestrictions ϕn : Xn → Yn.

Consider the bounded morphism ϕ ⊗A 1 : X ⊗A Z → Y ⊗A Z; we
recall that it is well defined by x ⊗A z 7→ ϕ(x) ⊗A z. Clearly, ϕ ⊗A 1
maps Ann(X ⊗A Z) into Ann(Y ⊗A Z). Therefore ϕ ⊗A 1 gives rise to the
bounded morphism (ϕ ⊗A 1)red : (X ⊗A Z)red → (Y ⊗A Z)red, well defined
by (ϕ ⊗A 1)red(σX,Z(x ⊗A z)) = σY,Z(ϕ(x) ⊗A z) for x ∈ X, z ∈ Z.

Combining this with Proposition 1.6, we obtain the commutative dia-
gram

(1.5)
X ⊗A Z

�X,Z //

ϕ⊗A1

��

X � Z
ϕ�1

��
Y ⊗A Z

�X,Z // Y � Z
where ϕ� 1 is well defined by x� z 7→ ϕ(x)� z, that is, takes the sequence
(. . . , un, . . . ) with un ∈ Xn ⊗p Zn to (. . . , (ϕn ⊗ 1)un, . . . ).

Note that we obviously have

(1.6) ‖ϕ� 1‖ ≤ ‖ϕ ⊗A 1‖ ≤ ‖ϕ‖.
Being morphisms of A-modules, ϕ ⊗A 1 and ϕ � 1 have well defined

respective birestrictions (ϕ ⊗A 1)n and (ϕ � 1)n, for every n. Using the
identifications in (1.4), for the pairs (X,Z) and (Y,Z), we easily obtain

Proposition 1.9. Both (ϕ ⊗A 1)n and (ϕ�1)n are isometrically equiv-
alent to the operator ϕn ⊗ 1 : Xn ⊗p Zn → Yn ⊗p Zn.

Proof. Clear.

Proposition 1.10. Suppose that either both X and Y , or Z, satisfy the
condition in Proposition 1.7. Then the morphisms ϕ ⊗A 1 and ϕ � 1 are
isometrically equivalent.

Proof. Clear.

2. Tensoring injective morphisms. Let A be a sequence algebra,
X,Y, Z normed A-modules, and ϕ : X → Y a bounded morphism. Suppose
that ϕ is injective. When can we be sure that ϕ ⊗A 1 is also injective?

If we ask the same about ϕ� 1, the situation is clear:

Proposition 2.1. Let ϕ be injective. Then so is ϕ� 1.

Proof. Together with ϕ, its birestrictions ϕn are also injective. Therefore,
for purely algebraic reasons, the same is true for the operators ϕn ⊗ 1 :
Xn ⊗p Zn → Yn ⊗p Zn. It remains to recall the way ϕ� 1 acts.

Proposition 2.2. Suppose that X or Z satisfies the condition of Propo-
sition 1.7. Then, if ϕ is injective, so is ϕ ⊗A 1.
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Proof. By Propositions 1.7 and 2.1, both �X,Z and ϕ � 1 in the com-
mutative diagram (1.5) are injective. The rest is clear.

There is another kind of condition, this time in terms of ϕ itself, that
gives the same result. Suppose that ϕ is admissible, i.e. it has a bounded left
inverse operator, and A is an amenable Banach algebra. In this case every
A-module, in particular, our Z, is flat, that is, ϕ ⊗A 1 is not only injective,
but topologically injective; see, e.g., [6, Ch. VII]. (Actually, the cited book
deals with the ‘completed’ theory, but it is easy to observe that the indicated
property of ϕ ⊗A 1 is valid in the ‘non-completed’ case as well.)

However, if we have just an injective morphism between two normed
A-modules, even faithful, the situation is different:

Example 2.3. Take X := Z := l∞ and set Y := c0. Consider a se-
quence (ζ1, ζ2, . . .) ∈ c0 with non-zero terms and the map ϕ : X → Y :
(ξ1, ξ2, . . . .) 7→ (ζ1ξ1, ζ2ξ2, . . . .). Of course, ϕ is injective. Further, by Propo-
sition 1.7 applied to Y , the lower horizontal arrow in (1.5) is an injective
map. However, the upper arrow is not, as we know from Example 1.8. There-
fore ϕ ⊗A 1 cannot be injective.

Of course, such a ϕ is far from being admissible. But what can happen
in the ‘intermediate’ case, when ϕ is not necessarily admissible, but at least
topologically injective?

It is easy to show that ϕ ⊗A 1 need not be topologically injective. More-
over, as a related phenomenon, in the ‘completed’ theory such a morphism
need not even be injective. But the present paper deals with the ‘non-
completed’ theory, and it turns out that for some class of sequence algebras
we still have a positive result.

We recall the following elementary fact. If a normed algebra A has a
bounded approximate identity eν , ν ∈ Λ, and X is a normed, say left,
A-module, then for every x ∈ Xes we have x = limν eν · x.

Theorem 2.4. Suppose that a sequence algebra A has a bounded approx-
imate identity eν , ν ∈ Λ, X,Y, Z are normed A-modules, and ϕ : X → Y is
a topologically injective morphism. Then ϕ ⊗A 1 is also injective.

Proof. Take u ∈ X ⊗A Z, u 6= 0; we want to show that (ϕ ⊗A 1)(u)
is not 0. If �X,Z(u) 6= 0, that is, u /∈ Ann(X ⊗A Z), then the desired fact
follows from Proposition 2.1, combined with the commutative diagram (1.5).
Thus we are allowed to assume that u lives in Ann(X ⊗A Z).

Consider the quotient maps τX : X → Xan and τZ : Z → Zan (cf.
Introduction) and set, for brevity, τ := τX⊗τZ : X⊗Z → Xan⊗Zan. Recall
that X ⊗A Z, by its definition, is a quotient space of X ⊗ Z (actually, a
quotient normed space of X ⊗p Z) and denote by γ the relevant quotient
map. It is easy to see that Ker(τ) is the algebraic sum of Xes⊗Z and X⊗Zes.
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This obviously implies that

(2.1) γ(Ker(τ)) ⊆ (X ⊗A Z)es.

Fix an arbitrary v ∈ X ⊗ Z with γ(v) = u and set w := τ(v). We claim
that w 6= 0. Indeed, in the opposite case, by (2.1), we have u ∈ (X ⊗A Z)es

and hence (see above), u = limν eν ·u. This, together with u ∈ Ann(X ⊗A Z),
gives u = 0, a contradiction.

Thus w, being a non-zero vector in Xan ⊗ Zan, can be represented as
w =

∑n
k=1 x̃k ⊗ z̃k with x̃k ∈ Xan and z̃k ∈ Zan, where x̃1 6= 0, and z̃k are

linearly independent.
Take an arbitrary xk ∈ X such that τX(xk) = x̃k for k = 1, . . . , n. Our

next claim is that ϕ(x1) /∈ Yes. Suppose the contrary. Then

ϕ(x1) = lim
ν
eν · ϕ(x1) = lim

ν
ϕ(eν · x1).

But since ϕ is topologically injective, this implies that x1 = limν eν ·x1, and
hence x1 ∈ Xes. Thus x̃1 = 0, a contradiction.

This claim implies, by a standard corollary of the Hahn–Banach theorem,
that there exists a bounded functional f : Y → C such that f = 0 on
Yes, and f(ϕ(x1)) = 1. The same corollary provides a bounded functional
g̃ : Zan → C such that g̃(z̃1) = 1 and g̃(z̃k) = 0 for k = 2, . . . , n. Take
an arbitrary zk ∈ Z with τZ(zk) = z̃k for k = 1, . . . , n and consider the
bounded functional g := g̃τZ : Z → C. Then, of course, g(z1) = 1 and
g(zk) = 0 for k = 2, . . . , n.

Now introduce the bounded bilinear functional f × g : Y × Z → C :
(y, z) 7→ f(y)g(z). Since f = 0 on Yes and g = 0 on Zes, it is evidently
balanced. Therefore it gives rise to a bounded linear functional, say h :
Y ⊗A Z → C, well defined by h(y ⊗A z) = f(y)g(z).

We easily see that h = 0 on (Y ⊗A Z)es. At the same time the element v−∑n
k=1 xk⊗zk belongs to Ker(τ). Thus, by (2.1), we have u−

∑n
k=1 xk ⊗A zk

∈ (X ⊗A Z)es, and consequently (ϕ ⊗A 1)(u) −
∑n

k=1 ϕ(xk) ⊗A zk lies in
(Y ⊗A Z)es. Hence h(ϕ ⊗A 1(u)) = h(

∑n
k=1 ϕ(xk) ⊗A zk), and the latter

number is of course 1. It follows that (ϕ ⊗A 1)(u) 6= 0.

3. Tensoring isometric morphisms. In this section we deal with
homogeneous modules over sequence algebras, defined in the Introduction.

For every N = 1, 2, . . . we set PN :=
∑N

n=1 pn ∈ A. The following easy
observation is done in [11], but, for the convenience of the reader, we repeat
its short proof.

Proposition 3.1. If an A-module X is homogeneous, then for every
x ∈ Xes we have

x = lim
N→∞

PN · x.



Metric version of flatness and Hahn–Banach type theorems 149

Proof. Fix x and ε > 0. It follows from Definition III that there is y ∈ X
of the form

∑n
k=1 a

k · zk with ak ∈ c00, z
k ∈ X such that ‖x− y‖ < ε/2. For

all n ∈ N we have

‖x−PN · x‖ ≤ ‖x− y‖+ ‖y −PN · y‖+ ‖PN · y −PN · x‖.
But, because of the choice of y, for some M ∈ N we have y = PN · y for
all N > M . Moreover, the homogeneity of X implies that ‖PN · (y − x)‖ ≤
‖y − x‖. Therefore for all N > M we have ‖x−PN · x‖ < ε.

Proposition 3.2. Let Z be an A-module. Assume that, for any essential
homogeneous A-modules X and Y and an isometric morphism i : X → Y
the morphism i ⊗A 1 : X ⊗A Z → Y ⊗A Z is also isometric. Then,
for every n = 1, 2, . . . , the coordinate submodule Zn is, up to an isometric
isomorphism of normed spaces, a dense subspace of L1(Ωn, µn) for some
measure space (Ωn, µn).

Proof. Suppose that, for a certain n,Zn does not satisfy the stated con-
dition. Then it easily follows from the criterion of Grothendieck [5, Thm. 1]
that there are normed spaces X, Y and an isometric operator i : X → Y
such that the operator i ⊗p 1 : X ⊗p Zn → Y ⊗p Zn fails to be an isometry.

Set, for every ξ = (ξ1, . . . , ξn, . . .) ∈ A, x ∈ X, y ∈ Y , ξ · x := ξnx and
ξ ·y := ξny. In this way we make X and Y A-modules that are essential and
homogeneous. Moreover, i becomes an A-module morphism. It is sufficient,
by virtue of Propositions 1.7 and 3.1, to show that the operator i � 1 :
X � Z → Y � Z is not an isometry.

We see that Xm = Ym = 0 for m 6= n. Hence X � Z = (X � Z)n
and Y � Z = (Y � Z)n. Therefore the isometric isomorphisms κX,Zn and
κY,Zn (see Section 1) act between Xn ⊗p Zn and X � Z, and, respectively,
between Yn ⊗p Zn and Y � Z. Moreover, these isometric isomorphisms
obviously implement an isometric equivalence of the operators i ⊗p 1 and
i � 1 (cf. (1.1)). Consequently, since the former is not an isometry, neither
is the latter.

Our principal aim is to show the converse.
The main step in our proof is the following technical lemma. In what

follows, S is an arbitrary homogeneous normed A-module with the following
properties:

(i) up to a linear isomorphism, we have S =
⊕N

n=1 Sn for some N ∈ N
(in other words, PN · x = x for every x ∈ S),

(ii) for every n = 1, . . . , N , Sn is a normed subspace of L1(Ωn, µn),
for some measure space (Ωn, µn), consisting of all step functions
(= linear combinations of characteristic functions of µn-measurable
subsets in Ωn).
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Lemma 3.3. Let X,Y be normed A-modules, Y be homogeneous and
i : X → Y a morphism. Let u ∈ X � S. Let v := (i � 1S)(u) ∈ Y � S
be represented as v =

∑m
k=1 y

k � gk with yk ∈ Y , gk ∈ S. Then for every
n = 1, . . . , N there exists a natural number M , xkl ∈ Xn and gkl ∈ S,
k = 1, . . . ,m, l = 1, . . . ,M such that for

(3.1) ykl := yk1 + yk2 + · · ·+ ykn−1 + in(xkln ) + ykn+1 + · · ·+ ykN

we have

(3.2) v =
m∑
k=1

M∑
l=1

ykl � gkl

and

(3.3)
m∑
k=1

M∑
l=1

‖ykl‖ ‖gkl‖ ≤
m∑
k=1

‖yk‖ ‖gk‖.

Proof. Let
∑m′

s=1
′xs � fs be an arbitrary representation of u. Remem-

bering what Sn is, we can find M ∈ N and a partition Ωn =
⊔M
l=1∆l, where

∆l, l = 1, . . . ,M , are µn-measurable subsets of Ωn such that all gkn, f
s
n are

constant functions on each ∆l. In particular, for every k = 1, . . . ,m, gkn has
the form

∑M
l=1 λ

klχl, where λkl ∈ C and χl is the characteristic function
of ∆l.

Now for every k = 1, . . . ,m and l = 1, . . . ,M we set
(3.4)

gkl :=
‖λklχl‖
‖gkn‖

gk1 +· · ·+ ‖λ
klχl‖
‖gkn‖

gkn−1+λklχl+
‖λklχl‖
‖gkn‖

gkn+1+· · ·+ ‖λ
klχl‖
‖gkn‖

gkN ,

provided gkn 6= 0, and gkl := 0 otherwise. In the first case, since ‖λklχl‖ =∥∥‖λklχl‖
‖gk

n‖
gkn
∥∥ and S is homogeneous, we see that

‖gkl‖ =
∥∥∥∥‖λklχl‖‖gkn‖

gk
∥∥∥∥

for all k, l. But, living in L1(·), we have
∑M

l=1 ‖λklχl‖ = ‖gkn‖. Therefore for
all k we have

∑M
l=1 ‖λklχl‖/‖gkn‖ = 1. Hence gk =

∑M
l=1 g

kl and

‖gk‖ =
M∑
l=1

∥∥∥∥‖λklχl‖‖gkn‖
gk
∥∥∥∥ =

M∑
l=1

‖gkl‖.

The same, of course, is true if gkn = 0.
From this we have

(3.5) v =
m∑
k=1

M∑
l=1

yk � gkl and
m∑
k=1

M∑
l=1

‖yk‖ ‖gkl‖ =
m∑
k=1

‖yk‖ ‖gk‖.
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Let us concentrate on vn. It follows from (3.5) and (3.4) that

(3.6) vn =
m∑
k=1

M∑
l=1

ykn ⊗ λklχl =
M∑
l=1

( m∑
k=1

λklykn

)
⊗ χl.

But, as we remember, v = (i�1S)(u), and u has the representation indicated
above. Therefore v =

∑m′

s=1 i(′xs)� fs. Moreover, by the choice of ∆l for all
s we have fsn =

∑M
l=1 ν

slχl for some νsl ∈ C. Thus

(3.7) vn =
M∑
l=1

( m∑
s=1

νslin(′xs)
)
⊗ χl =

M∑
l=1

in(xl)⊗ χl,

where we have set xl :=
∑m

s=1 ν
sl(′xs).

But χl, l = 1, . . . , M , are linearly independent in Sn. Thus, comparing
(3.7) and (3.6), we see that

(3.8)
m∑
k=1

λklykn = in(xl) for all l.

Now define

αkl := (λkl)−1 ‖λklykn‖∑m
t=1 ‖λtlytn‖

provided λkl
m∑
t=1

‖λtlytn‖ 6= 0

and αkl := 0 otherwise. Finally, set xkln := αklxl.
Take ykl as in (3.1). Look at v′ :=

∑m
k=1

∑M
l=1 y

kl�gkl. By (3.1) and (3.5),
v′n′ = vn′ for all n′ 6= n. As to v′n, it is equal to

m∑
k=1

M∑
l=1

ykln ⊗ gkln =
M∑
l=1

m∑
k=1

in(xkln )⊗ λklχl =
M∑
l=1

m∑
k=1

in(αklλklxln)⊗ χl

=
M∑
l=1

m∑
k=1

in

(
‖λklykn‖∑m
t=1 ‖λtlytn‖

xln

)
⊗ χl =

M∑
l=1

in(xln)⊗ χl =
M∑
l=1

m∑
k=1

λklyln ⊗ χl,

that is, by (3.8), to vn. Thus v and v′ have the same coordinates and hence,
since Y � S is essential, they coincide. The equality (3.2) follows.

It remains to obtain (3.3). For this, we want to show that for all l,

(3.9) ‖in(xkln )‖ ≤ ‖ykn‖.
If αkl = 0, this is immediate. Otherwise we have

‖in(xkln )‖ = ‖αklin(xln)‖ =
∥∥∥∥ ‖ykn‖∑m

t=1 ‖λtlytn‖

( m∑
t=1

λtlytn

)∥∥∥∥,
and (3.9) follows from the triangle inequality for norms.

Now it is time to use that (not only S, but) Y is homogeneous. We have
just shown that ‖ykln ‖ ≤ ‖ykn‖, and, of course, we have ‖ykln′‖ = ‖ykn′‖ for all
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n′ 6= n. Therefore

(3.10) ‖ykl‖ ≤ ‖yk‖.
Consequently,

m∑
k=1

M∑
l=1

‖ykl‖ ‖gkl‖ ≤
m∑
k=1

M∑
l=1

‖yk‖ ‖gkl‖,

and, because of (3.5), we are done.

Lemma 3.4. Let X,Y, S be as in the previous lemma, and i : X → Y an
isometric morphism. Then the morphism i ⊗A 1S : X ⊗A S → Y ⊗A S is
also isometric.

Proof. Of course, S is essential. Therefore, by Propositions 1.7 and 3.1,
it is sufficient to show that i� 1S : X � S → Y � S is isometric.

Fix an arbitrary u ∈ X � S and set v := (i� 1)(u) ∈ Y � S. Our task is
to show that ‖u‖ = ‖v‖.

Take an arbitrary representation v =
∑m

k=1 y
k � gk with gk ∈ S. Set

n := 1 in the previous lemma. Getting rid of double sums, we can say that
this lemma gives us a representation

v =
m1∑
k=1

y1k � g1k,

where, for some x1k
1 ∈ X1, k = 1, . . . ,m1, and y1k

s , s = 2, . . . , N , we have

y1k = i1(x1k
1 ) + y1k

2 + y1k
3 + · · ·+ y1k

N

and
m1∑
k=1

‖y1k‖ ‖g1k‖ ≤
m∑
k=1

‖yk‖ ‖gk‖.

Now apply Lemma 3.3 to the representation of v just obtained and
n := 2. Looking at the form of the relevant ykl in the situation when the
role of yk is played by y1k and again getting rid of double sums, we obtain
a representation

v =
m2∑
k=1

y2k � g2k,

where, for some x2k
1 ∈ X1, x2k

2 ∈ X2, k = 1, . . . ,m2, and y1k
s , s = 3, . . . , N ,

we have
y2k = i1(x2k

1 ) + i2(x2k
2 ) + y3k

3 + · · ·+ y2k
N ,

and
m1∑
k=1

‖y2k‖ ‖g2k‖ ≤
m1∑
k=1

‖y1k‖ ‖g1k‖ (and hence ≤
m∑
k=1

‖yk‖ ‖gk‖).
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Next we apply Lemma 3.3 to the last representation of v and n := 3, and
so on. At the Nth step, again (the last time) getting rid of double sums, we
come to a representation

v =
mN∑
k=1

yNk � gNk,

where, for some xNk1 ∈ X1, x
Nk
2 ∈ X2, . . . , x

Nk
N ∈ XN , k = 1, . . . ,mN , we

have
yNk = i1(xNk1 ) + i2(xNk2 ) + · · ·+ iN (xNkN )

and
mN∑
k=1

‖yNk‖ ‖g2k‖ ≤
m∑
k=1

‖yk‖ ‖gk‖.

Finally, define xk := xNk1 + · · · + xNkN ∈ X, k = 1, . . . ,mN . Obviously,
yNk = i(xk) and hence (i� 1S)(

∑mN
k=1 x

k � gNk) = v. But i� 1S is injective
(see Proposition 2.1). Therefore

∑mN
k=1 x

k � gNk is exactly u. Recalling that
i is isometric, we have

‖u‖ ≤
∑
‖xk‖ ‖gNk‖ =

∑
‖yNk‖ ‖gNk‖,

and hence

‖u‖ ≤
m∑
k=1

‖yk‖ ‖gk‖.

Taking the infimum as in (1.2), we have the estimate ‖u‖ ≤ ‖v‖. Since,
by (1.6), i� 1 is contractive, the desired equality follows.

Lemma 3.5. The assertion of the previous lemma remains true if we
replace the module S by an arbitrary module Z such that

(i) there exists a natural N such that Z is linearly isomorphic to⊕N
n=1 Zn,

(ii) for every n = 1, . . . , N , Zn is, up to an isometric isomorphism,
a dense normed subspace of L1(Ωn, µn) for some measure space
(Ωn, µn).

Proof. Denote by Z and Zn, n = 1, . . . , N , the completions of the A-
modules Z and Zn, respectively. Take z ∈ Z. Obviously,

max{‖zn‖ : n = 1, . . . , N} ≤ ‖z‖ ≤
N∑
n=1

‖zn‖.

Therefore a sequence zm is a Cauchy sequence in Z if and only if for every
n = 1, . . . , N the sequence zmn is a Cauchy sequence in Zn. It easily follows
that Z is isometrically isomorphic to the algebraic direct sum

⊕N
n=1 Zn,

endowed with the norm, well defined by ‖z‖ = limm→∞ ‖zm‖, where zm is an
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arbitrary sequence in Z such that limm→∞ z
m
n = zn for every n. Obviously,

Zn is isometrically isomorphic to the space L1(Ωn, µn), mentioned in the
formulation. It easily follows that Z contains a dense submodule S satisfying
the condition of Lemma 3.4. By virtue of that lemma, i ⊗A 1S is an isometry.
Therefore, by Proposition 1.2, the same is true for i ⊗A 1Z̄ , which in turn
gives the desired property of i ⊗A 1Z .

Theorem 3.6. Let Z be a homogeneous A-module such that, for every
n = 1, . . . , N , Zn is, up to an isometric isomorphism, a dense normed sub-
space of L1(Ωn, µn) for some measure space (Ωn, µn). Further, let X and
Y be two other homogeneous A-modules, and i : X → Y an isometric mor-
phism. Suppose that at least one of the modules X and Z is essential. Then
the morphism i ⊗A 1 : X ⊗A Z → Y ⊗A Z is also isometric.

Proof. Fix N ∈ N for a time, and denote by ZN the submodule {PN ·u :
u ∈ Z} of Z. Consider the diagram

X ⊗A ZN
1X⊗A i //

i′N
��

X ⊗A Z

i′

��
Y ⊗A ZN

1Y ⊗A i // Y ⊗A Z

where i′N := i ⊗A 1NZ , i′ := i ⊗A 1Z , and i : ZN → Z is the natu-
ral embedding. Since ZN is, of course, essential, Lemma 3.5 together with
Propositions 3.1, 1.7 and 1.10 implies that i′N is an isometric morphism.
Further, 1X ⊗A i is contractive and has a contractive right inverse. The
latter is 1X ⊗A j, where j : Z → ZN acts as z 7→ PN · z. (It is contractive
since Z is homogeneous.) Therefore 1X ⊗A i is an isometry, and the same
is true of 1Y ⊗A i.

Now take an arbitrary u ∈ X ⊗A Z, represent it as a sum of elementary
tensors and observe that for every x ∈ X and z ∈ Z we have

(3.11) PN · (x ⊗A z) = PN · x ⊗A z = x ⊗A PN · z.

The second of these equalities implies that PN · u ∈ Im(1X ⊗A i). From
this, since our diagram is obviously commutative and its three morphisms,
mentioned above, are isometries, we have

(3.12) ‖i′(PN · u)‖ = ‖PN · u‖

for allN ∈ N. Further, both equalities in (3.11), combined with the condition
on the pair (X,Z) and Proposition 3.1, imply that u = limN→∞PN · u.
Hence, using (3.12), we see that

‖i′(u)‖ = lim
N→∞

‖i′(PN · u)‖ = lim
N→∞

‖PN · u‖ = ‖u‖.
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Combining this theorem with Proposition 3.2, we immediately obtain
Theorem I of the Introduction, together with its corollaries for sequence
modules and some other modules.

Finally, Theorem I easily yields the Hahn–Banach type theorem, for-
mulated in the Introduction as Theorem II. Indeed, let A be a sequence
algebra, and Z an essential (respectively, arbitrary) homogeneous normed
A-module. In this case, according to Proposition 1.1 (more precisely, to its
direct corollary, the Proposition, at the beginning of the Introduction), the
dual module Z∗ is extremely injective relative to H (respectively, Hes) if and
only if Z is extremely flat relative to H (respectively, Hes). Then Theorem I
works, and we are done.

4. A counter-example. Here we want to show that the condition in
Theorem I, concerning the module being essential, cannot be omitted, even
within the class of homogeneous modules. Namely, we shall show that the
(non-essential) module l∞ is not extremely flat with respect to the above
mentioned class.

First let us make some observations of general character.
Let X be an A-module. A subset M of N is called the support of X

whenever Xn = 0 if and only if n /∈M .

Lemma 4.1. Let X and Z be two modules that have non-intersecting
supports. Then for every x ∈ X, x′ ∈ Xes, z ∈ Z, z′ ∈ Zes we have x′ ⊗A z
= x ⊗A z′ = 0 in X ⊗A Z.

Proof. By Proposition 3.1, we have

x′ ⊗A z = lim
N→∞

PN · x′ ⊗A z = lim
N→∞

N∑
n=1

pn · x′ ⊗A pn · z.

But the condition on supports implies that, for every n, either pn · x′ or
pn · z is 0.

For x ∈ X, we denote by x̃ the coset x+Xes ∈ Xan.

Proposition 4.2. Let X and Z be as before. Then there exists an iso-
metric isomorphism of normed spaces IX,Z : X ⊗A Z → Xan ⊗p Zan, well
defined by x ⊗A z 7→ x̃⊗ z̃.

Proof. Consider the bilinear operator X × Z → Xan ⊗p Zan : (x, z) 7→
x̃ ⊗ z̃; it is obviously contractive and balanced. Therefore it gives rise to a
contractive operator IX,Z , defined as stated.

Take v ∈ Xan ⊗p Zan, represented, say, as
∑n

k=1 x̃k ⊗ z̃k with xk ∈ X,
zk ∈ Z. Then we have v = IX,Z(u), where u =

∑n
k=1 xk ⊗A zk with arbitrary

xk, zk, taken in the appropriate cosets. Obviously, we have to show that
‖u‖ ≤ ‖v‖.
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Take some x′k ∈ Xes, z′k ∈ Zes. Lemma 4.1 implies that

u =
∑

(xk + x′k) ⊗A (zk + z′k).

Therefore

‖u‖ ≤
n∑
k=1

‖xk + x′k‖ ‖zk + z′k‖.

Since x′k, z
′
k can be chosen in an arbitrary way, we have

‖u‖ ≤
n∑
k=1

‖x̃k‖ ‖z̃k‖.

Finally, since the representation of v is also arbitrary, the very definition of
the projective tensor norm gives the desired inequality.

Now consider the normed quotient space (‘ultraproduct’) l∞/c0. Since
it is not isometrically isomorphic to any space of the class L1(Ω,µ), the
theorem of Grothendieck, cited in the Introduction, implies that there exist
normed spaces E, F and an isometric operator ĩ : E → F such that the
operator

ĩ ⊗p 1 : E ⊗p (l∞/c0)→ F ⊗p (l∞/c0)

is not an isometry. Let us fix such E, F and ĩ.
In what follows, we shall need, apart from the already used tensor prod-

uct ⊗p, the non-completed injective tensor product of normed spaces and
bounded operators, denoted by ⊗i (see, e.g., [3, Ch. I.4] or [15, Ch. 3]). The
injective tensor norm will be denoted by ‖ · ‖i.

Consider the normed space l∞ ⊗i E. Evidently, it is an A-module with
the outer multiplication well defined by ξ · (η ⊗ x) := ξη ⊗ x for ξ ∈ A,
η ∈ l∞, x ∈ E.

This module is contractive: if mξ : l∞ → l∞ acts as η 7→ ξη, then, for
every u ∈ l∞ ⊗i E, we have ξ · u = (mξ ⊗i 1E)(u), and hence

‖ξ · u‖i ≤ ‖mξ ⊗i 1E‖ ‖u‖ ≤ ‖mξ‖ ‖1E‖ ‖u‖ ≤ ‖ξ‖ ‖u‖.

Moreover, the module l∞ ⊗i E is homogeneous. This fact can be deduced
from the known properties of the operation ⊗i C(Ω) (see, e.g., ibid.) and
the identification of l∞ with C(βN). But we prefer to give a simpler proof.

Obviously, it suffices to show that for u ∈ l∞ ⊗i E with u =
∑n

k=1 ξ
k⊗xk

we have
‖u‖i = sup{‖pn · u‖i : n = 1, 2, . . .}.

Take f ∈ (l∞)∗ and g ∈E∗ with ‖f‖= ‖g‖= 1. Then (f ⊗ g)(u) = f(ηg),
where ηg :=

∑n
k=1 g(xk)ξk. Hence |(f ⊗ g)(u)| ≤ ‖ηg‖ = sup{|(ηg)n| :
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n = 1, 2, . . .}. But for every n we have

|(ηg)n|=
∥∥∥ n∑
k=1

pnξkg(xk)
∥∥∥=

∥∥∥(1⊗ g)
( n∑
k=1

pnξk ⊗ xk
)∥∥∥= ‖(1⊗ g)(pn · u)‖

≤ ‖pn · u)‖.
Therefore the number ‖u‖i, which is, by definition, sup{|(f⊗g)(u)| : f ∈(l∞)∗,
g ∈ E∗, ‖f‖ = ‖g‖ = 1}, does not exceed sup{‖pn ·u‖i : n = 1, 2, . . .}. Since
the reverse inequality is obvious, we are done.

In the same way we define the contractive homogeneous A-module
l∞ ⊗i F . Finally, consider the operator i := 1 ⊗i ĩ : l∞ ⊗i E → l∞ ⊗i F ,
which is evidently a morphism of A-modules. Because of the injectivity of ⊗i

(see, e.g., [3, Ch. I.4.3] or [15, p. 47]), i is an isometry.
From now on, it is convenient to use the notation X for l∞ ⊗i E and Y

for l∞ ⊗i F .

Theorem 4.3. The morphism i ⊗A 1 : X ⊗A l∞ → Y ⊗A l∞ is not an
isometry. As a corollary, the module l∞ is not extremely flat with respect to
the class of all homogeneous normed A-modules.

Proof. We shall write Z instead of l∞, and just 1 instead of 1Z . Note
that Zan = l∞/c0.

Denote by Zod and Zev the submodules of Z consisting of sequences with
the zero even terms and, respectively, zero odd terms. Moreover, denote by
1an and 1• the identity operators on Zan and (Zev)an, respectively. Our first
claim is

1o. The operator ĩ ⊗p 1• : E ⊗p (Zev)an → F ⊗p (Zev)an is not an
isometry.

Indeed, mapping the sequence (0, ξ2, 0, ξ4, 0, . . .) to (ξ2, ξ4, . . .), we obtain
isometric isomorphisms of normed spaces (by no means of modules) j :
Zev → Z, jes : (Zev)es → Zes = c0 and, passing to appropriate cosets,
jan : (Zev)an → Zan. Then we easily see that the operators ĩ ⊗p 1• and
ĩ ⊗p 1an are isometrically equivalent. The rest is clear.

From now on we shall use the brief notation Xod for Zod ⊗i E,
Y od for Zod ⊗i F , 1od for the identity operator on Zod, and iod for
1od ⊗i ĩ : Xod → Y od. Similarly to what was said about X and Y , Xod and
Y od are contractive A-modules with respect to the same outer multiplication
as for X and Y (cf. above), and iod is an isometric morphism of A-modules.
Moreover, we introduce the operator ian : (Xod)an → (Y od)an, which is well
defined by mapping a coset x+ (Xod)es to iod(x) + (Y od)es.

Our next claim is
2o. The operator ian ⊗p 1• : (Xod)an ⊗p (Zev)an → (Y od)an ⊗p (Zev)an

is not an isometry.
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Denote the sequence (1, 0, 1, 0, 1, . . .) ∈ Zod by 1̃od. Consider the operator
sE : E → (Xod)an taking a vector x to the coset (1̃od ⊗i x) + (Xod)es), and
then sE ⊗p 1• : E ⊗p (Zev)an → (Xod)an ⊗p (Zev)an. First we shall show,
as an intermediate step, that the latter operator is an isometry.

To this end, using the Hahn–Banach theorem, introduce the functional
h : Zod → C of norm 1 which maps the subspace (Zod)es = c0∩Zod to 0 and
1̃od to 1. It gives rise to the operator t0

E := h ⊗i 1E : Zod ⊗i E → C ⊗i E,
that is, t0

E : Xod → E. The latter evidently takes (Xod)es to 0 and therefore
generates an operator tE := (Xod)an → E, well defined by mapping the coset
u+ (Xod)es, u ∈ Xod, to t0

E(u). Since sE and tE are, of course, contractive,
so are sE ⊗p 1• and tE ⊗p 1•. But the composition (tE ⊗p 1an)(sE ⊗p 1an)
is the identity operator on E ⊗p (Zev)an. This implies that the former of
the two factors is an isometry (and the latter is a coisometry).

In a similar way, we introduce the operator

sF ⊗p 1• : F ⊗p (Zev)an → (Y od)an ⊗p (Zev)an

and show that it is also an isometry. Consequently, in the diagram

E ⊗p (Zev)an
sE⊗p1• //

ei⊗p1•
��

(Xod)an ⊗p (Zev)an

ian⊗p1•
��

F ⊗p (Zev)an
sF⊗p1• // (Y od)an ⊗p (Zev)an

the horizontal arrows are isometries. Further, our diagram is obviously com-
mutative. It follows that the vertical arrows are simultaneously isometric or
not. Therefore the present claim follows from the previous one.

We turn to the next claim.

3o. The morphism iod ⊗A 1ev : Xod ⊗A Zev → Y od ⊗A Zev is not
isometric.

The set of odd natural numbers is the support of both Xod and Y od

whereas the set of even natural numbers is the support of Zev. Therefore
Proposition 4.2 provides isometric isomorphisms IXod,Zev : Xod ⊗A Zev →
(Xod)an ⊗p (Zev)an and IY od,Zev : Y od ⊗A Zev → (Y od)an ⊗p (Zev)an, well
defined as stated. Looking at the appropriate commutative diagram, we see
that these isomorphisms implement an isometric equivalence between the
operators iod ⊗A 1ev and ian ⊗p 1•. The rest is clear.

4o. The end of the proof.

Let ρod : Zod → Z and ρev : Zev → Z be the natural embeddings. Set
ρod
X := ρod ⊗i 1E , ρod

Y := ρod ⊗i 1F ; these maps are obviously morphisms of
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A-modules. Consider the diagram

Xod ⊗A Zev
ρod

X ⊗Aρ
ev

//

iod⊗A1ev

��

X ⊗A Z

i⊗A1

��
Y od ⊗A Zev

ρod
Y ⊗Aρ

ev

// Y ⊗A Z

Observe that its horizontal arrows are isometries. Indeed, introduce
the morphisms σod : Z → Zod : (ξ1, ξ2, ξ3, . . .) 7→ (ξ1, 0, ξ3, 0, ξ5, . . .), σev :
Z → Zev : (ξ1, ξ2, ξ3, . . .) 7→ (0, ξ2, 0, ξ4, 0, ξ6, . . .) and set σod

X := σod ⊗i 1E :
Z ⊗i E → Zod ⊗i E. Obviously, the operator σod

X ⊗A σev is contractive,
and the same is true of ρod

X ⊗A ρev. But the composition

(σod
X ⊗A σev)(ρod

X ⊗A ρev) = [(σodρod) ⊗i 1E ] ⊗A (σevρev)

is the identity operator on Xod ⊗A Zev. This implies that the right factor,
ρod
X ⊗A ρev, is an isometry (whereas the left factor is a coisometry). Similarly,
ρod
Y ⊗A ρev is an isometry as well.

Our diagram is clearly commutative, and, by the previous claim, its left
vertical arrow is not an isometry. Hence the same is true of its right vertical
arrow. The rest is clear.

Remark. Extreme flatness is a recent stronger version of a much older
notion of strict (or topological) flatness, mentioned in the Introduction. We
recall that, to define a strictly flat module, one just has to replace the word
‘isometric’ by ‘topologically injective’ in Definition I (see, e.g., [7]).

If A is an amenable Banach algebra, then the A-module l∞, as every
normed module over such an algebra, is (just) flat in the standard sense
of [6], [7], [14]. At the same time, by Theorem 4.3, it is not extremely flat.
Here we want to note that one can show, using practically the same argu-
ment as in the proof of the last theorem, that it is not strictly flat either.
The only difference is that at the very beginning one must use a somewhat
stronger property of Z := l∞/c0 than was employed before. Namely, there
exist normed spaces E,F and a topologically injective operator i : E → F
such that i ⊗p 1Z is not topologically injective. This is because l∞/c0, be-
ing, in the terminology of [3], an Lg∞-space, cannot be an Lg1-space (ibid.,
Cor. 23.3(4)). This means, by Cor. 23.5(1) there, that the operation ⊗p

l∞/c0 ‘does not respect subspaces isomorphically’ or, in our terminology,
l∞/c0 is not a strictly flat normed space (C-module). The subsequent con-
structions and claims are, up to obvious modifications, the same.
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[5] A. Grothendieck, Une caractérisation vectorielle-métrique des espaces L1, Canad.

J. Math. 7 (1955), 552–561.
[6] A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Kluwer, Dor-

drecht, 1989.
[7] —, Banach and Locally Convex Algebras, Clarendon Press, Oxford, 1993.
[8] —, Lectures and Exercises on Functional Analysis, Amer. Math. Soc., Providence,

RI, 2005.
[9] —, Quantum Functional Analysis: Non-coordinate Approach, Amer. Math. Soc.,

Providence, RI, 2010.
[10] —, Extreme flatness of normed modules and Arveson–Wittstock type theorems,

J. Operator Theory 64 (2010), 101–112.
[11] —, Metric version of projectivity for normed modules over sequence algebras,

arXiv:1104.2463v1 [math.FA] (2010).
[12] M. A. Rieffel, Induced Banach representations of Banach algebras and locally com-

pact groups, J. Funct. Anal. 1 (1967), 443–491.
[13] —, Multipliers and tensor products of Lp-spaces of locally compact groups, Studia

Math. 33 (1969), 71–82.
[14] V. Runde, Lectures on Amenability, Springer, Berlin, 2002.
[15] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer, Berlin,

2002.
[16] I. E. Segal, Equivalence of measure spaces, Amer. J. Math. 73 (1951), 275–313.
[17] Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa, 1971.
[18] G. Wittstock, Injectivity of the module tensor product of semi-Ruan modules, J. Op-

erator Theory 65 (2011), 87–113.

A. Ya. Helemskii
Faculty of Mechanics and Mathematics
Moscow State University
Moscow 119992, Russia
E-mail: helemskii@rambler.ru

Received April 26, 2011
Revised version August 17, 2011 (7175)

http://dx.doi.org/10.4153/CJM-1955-060-6
http://dx.doi.org/10.1016/0022-1236(67)90012-2
http://dx.doi.org/10.2307/2372178

	Some preparations
	Tensoring injective morphisms
	Tensoring isometric morphisms
	A counter-example

