Commutators on $\left(\sum \ell_{q}\right)_{p}$

by
Dongyang Chen (Xiamen), William B. Johnson (College Station, TX) and Bentuo Zheng (Memphis, TN)

Abstract

Let T be a bounded linear operator on $X=\left(\sum \ell_{q}\right)_{p}$ with $1 \leq q<\infty$ and $1<p<\infty$. Then T is a commutator if and only if for all non-zero $\lambda \in \mathbb{C}$, the operator $T-\lambda I$ is not X-strictly singular.

1. Introduction. When studying derivations on a general Banach algebra \mathcal{A}, a problem that arises is to classify the commutators in the algebra, i.e., elements of the form $A B-B A$. A natural class of algebras to consider are spaces $\mathcal{L}(X)$ of all (always bounded, linear) operators on the Banach space X. After the breakthrough by Brown and Pearcy [BP] who gave a classification of the commutators in $\mathcal{L}(X)$ when X is a Hilbert space, Apostol A1 initiated the study of commutators in $\mathcal{L}(X)$ for X a general Banach space and gave a complete classification when $X=\ell_{p}, 1<p<\infty$ A1] and $X=c_{0}$ A2], and he proved partial results for other Banach spaces. This topic was resuscitated $30+$ years later by Dosev [D , who classified the commutators in $\mathcal{L}\left(\ell_{1}\right)$ and other spaces, and this line of investigation was continued in DJ and DJS.

It seems to the authors that there are two reasons for this $30+$ year gap. First, Apostol's papers, while containing the germs of many general facts, were focused on special spaces, and it is quite difficult to discern from his proofs what is needed in more general spaces X to understand the structure of commutators in $\mathcal{L}(X)$. Secondly, the geometry of most Banach spaces is much more complicated than that of $\ell_{p}, 1<p<\infty$, and c_{0}, and this makes it much more difficult to determine which operators on them are commutators. Although the papers [D], [DJ], and [DJS], as well as this paper, are focused on classifying the commutators in $\mathcal{L}(X)$ for special spaces X, part of their value consists in building a machine that tells one for certain classes of Banach

[^0]spaces what geometrical facts about a space are needed in order to classify the commutators on the space.

For a general Banach algebra \mathcal{A}, the only known obstruction for an element to be a commutator was proved in 1947 by Wintner [W]. He showed that the identity in a unital Banach algebra is not a commutator, which immediately implies that no element of the form $\lambda I+K$, where K belongs to a norm closed (proper) ideal of \mathcal{A} and $\lambda \neq 0$, is a commutator in the Banach algebra \mathcal{A}. While in some Banach algebras there are other obstructions (such as the existence of traces), Wintner's obstruction is the only one known for $\mathcal{L}(X)$ for any infinite-dimensional Banach space X.

We say that a Banach space X is a Wintner space provided that every non-commutator in $\mathcal{L}(X)$ is of the form $\lambda I+K$, where $\lambda \neq 0$ and K lies in a proper ideal. (In [DJ] the property of being a Wintner space was called property \mathbf{P}.)

Wild Conjecture. Every infinite-dimensional Banach space is a Wintner space.

We do not believe that this Wild Conjecture is true. In fact, there may be an infinite-dimensional Banach space such that every finite rank commutator on X has zero trace! Nevertheless, every infinite-dimensional Banach space on which the commutators are classified is a Wintner space, and the conjecture that every Banach space that admits a Pełczyński decomposition (defined below) is a Wintner space is much tamer. In this paper we verify that the spaces $Z_{p, q}:=\left(\sum \ell_{q}\right)_{p}$ with $1 \leq q<\infty$ and $1<p<\infty$ are Wintner spaces. Each of these spaces does admit a Pełczyński decomposition; in fact, it is clear that $Z_{p, q}$ is isometrically isomorphic to $\left(\sum Z_{p, q}\right)_{p}$. Recall that, given a sequence $\left(X_{n}\right)$ of Banach spaces and $p \in$ $[1, \infty] \cup\{0\},\left(\sum X_{n}\right)_{p}$ is the space of all sequences $\left(x_{n}\right)$ with $x_{n} \in X_{n}$ and $\left\|\left(x_{n}\right)\right\|:=\left\|\left(\left\|x_{n}\right\|\right)\right\|_{p}<\infty$, and the formula $\left\|\left(x_{n}\right)\right\|:=\left\|\left(\left\|x_{n}\right\|\right)\right\|_{p}$ $<\infty$ for $p=0$ is used in the sense $\left(\left\|x_{n}\right\|\right) \in c_{0}$. The space X is said to have a Pełczyński decomposition provided X is isomorphic to $\left(\sum X\right)_{p}$ for some p.
2. The Main Theorem. For a Banach space X denote by S_{X} the unit sphere of X. We say that a linear operator between two Banach spaces $T: X \rightarrow Y$ is an isomorphism if T is an injective bounded linear map with closed range. If in addition T is surjective then we will say that T is an onto isomorphism. Let X, Y and Z be Banach spaces. An operator from X to Y is said to be Z-strictly singular provided that there is no subspace Z_{0} of X which is isomorphic to Z for which $\left.T\right|_{Z_{0}}$ is an isomorphism. Thus an operator is strictly singular in the usual sense if and only if it is Z-strictly singular for every infinite-dimensional space Z. For any two subspaces (pos-
sibly not closed) M and N of a Banach space X let $d(M, N)=\inf \{\|m-n\|$: $\left.m \in S_{M}, n \in N\right\}$, so that when $M \cap N=\{0\}$, the projection from $M+N$ onto M with kernel N has norm $d(M, N)^{-1}$.

Main Theorem. Let T be an operator on $X:=Z_{p, q}, 1 \leq q<\infty$, $1<p<\infty$. Then T is a commutator if and only if for all non-zero $\lambda \in \mathbb{C}$ the identity on X factors through $T-\lambda I$. Consequently, X is a Wintner space.

Remark 2.1. For $p=q=2$, the Main Theorem is of course a restatement of the classical Brown-Pearcy theorem $\overline{\mathrm{BP}}$. The case when $p=q$ was proved by C. Apostol [A1]. So, by duality (see the proof of Corollary 2.17), it is enough to look at $Z_{p, q}$ when $1 \leq q<p<\infty$.

The strategy for proving the Main Theorem is the same as that in [D], [DJ], and [DJS]. The main problem is to prove structural results for $Z_{p, q}$, $1 \leq q<p<\infty$, so that [DJ] can be applied. To get started, we show in Proposition 2.9 that the $Z_{p, q}$-strictly singular operators coincide with the set $\mathcal{M}_{Z_{p, q}}$ of those operators T on $Z_{p, q}$ such that the identity on $Z_{p, q}$ does not factor through T. We also need that $\mathcal{M}_{Z_{p, q}}$ is closed under addition, so that $\mathcal{M}_{Z_{p, q}}$ is the largest (proper) ideal in $\mathcal{L}\left(\mathcal{M}_{Z_{p, q}}\right)$. This is part of Proposition 2.9.

We begin with a discussion of how isomorphic copies of ℓ_{q} in $Z_{p, q}, 1 \leq$ $q<p<\infty$, are situated in $Z_{p, q}$. We are primarily interested in passing to a subspace which is situated in a canonical fashion. Much of what we need is known and for $Z_{p, 2}$ is partly contained in (O). We do not assume familiarity with arguments involving $Z_{p, q}$, but we do assume a basic knowledge of techniques using block basic sequences, gliding hump arguments, small perturbations of operators, and how they are applied in the study of ℓ_{q}. This material can be found in standard texts, including [LT1, Chapter 1]. This allows us in many places to avoid writing long strings of inequalities when an argument is standard.

First, if X is a subspace of $Z_{p, q}$ that is isomorphic to ℓ_{q}, then for all $\varepsilon>0$ there is a subspace Y of X that is $(1+\varepsilon)$-isomorphic to ℓ_{q}. This follows from a general result of Krivine and Maurey [KM about stable Banach spaces, but can be proved in an elementary way using James' [J] proof of the non-distortability of the norm on ℓ_{1}. Indeed, by passing to a subspace and making a small perturbation, we can assume that $X=\overline{\operatorname{span}} x_{n}$ with $\left(x_{n}\right)$ a normalized block basis of the usual basis for $Z_{p, q}$ and where $\left(x_{n}\right)$ is equivalent to the usual basis for ℓ_{q}. James' argument shows that there is a normalized block basis $\left(y_{n}\right)$ of $\left(x_{n}\right)$ such that for all scalar sequences $\left(a_{n}\right)$,

$$
\begin{equation*}
\left\|\sum_{n} a_{n} y_{n}\right\| \geq(1+\varepsilon)^{-1}\left(\sum_{n}\left|a_{n}\right|^{q}\right)^{1 / q} \tag{2.1}
\end{equation*}
$$

Let us recall the argument for (2.1): Suppose that $\left(x_{n}\right)$ is a normalized basic sequence in some Banach space satisfying (2.1) with $1+\varepsilon$ replaced by $K>1$. Partition \mathbb{N} into infinitely many disjoint infinite sets $\left(\mathbb{N}_{k}\right)$. It may be that for some k and all scalars $\left(a_{n}\right)$,

$$
\left\|\sum_{n \in \mathbb{N}_{k}} a_{n} x_{n}\right\| \geq K^{-1 / 2}\left(\sum_{n \in \mathbb{N}_{k}}\left|a_{n}\right|^{q}\right)^{1 / q}
$$

If not, choose for each k a finitely non-zero sequence $\left(b_{n}\right)_{n \in \mathbb{N}_{k}}$ so that $y_{k}:=$ $\sum_{n \in \mathbb{N}_{k}} b_{n} x_{n}$ has norm one and $\left(\sum_{n \in \mathbb{N}_{k}}\left|b_{n}\right|^{q}\right)^{1 / q}>K^{1 / 2}$. It is easy to check that the sequence $\left(y_{k}\right)$ satisfies (2.1) with $1+\varepsilon$ replaced by $K^{1 / 2}>1$. Iterating, we get a normalized sequence $\left(y_{n}\right)$ in $\operatorname{span} x_{n}$ which is disjointly supported with respect to $\left(x_{n}\right)$ and which satisfies (2.1). Finally, pass to any subsequence of $\left(y_{n}\right)$ that is a true block basis of $\left(x_{n}\right)$. This does it, because if $\left(z_{k}\right)$ is a disjoint sequence in $Z_{p, q}$, then $\left\|\sum_{k} z_{k}\right\| \leq\left(\sum_{k}\left\|z_{k}\right\|^{q}\right)^{1 / q}$.

If $T: X \rightarrow Y$ is an operator between Banach spaces and Z is a subspace of X, define

$$
\begin{equation*}
f(T, Z)=\inf \{\|T z\|: z \in Z,\|z\|=1\} \quad\left(=\left\|T_{\mid Z}^{-1}\right\|^{-1}\right) \tag{2.2}
\end{equation*}
$$

Then $f(T, Z)>0$ iff $T_{\mid Z}$ is an isomorphism; $f(T, Z)=\|T\|>0$ iff $T_{\mid Z}$ is a multiple of an isometry; and $\|T\| \geq f\left(T, Z_{1}\right) \geq f\left(T, Z_{2}\right)$ if $Z_{1} \subset Z_{2} \subset X$.

Lemma 2.2. Let T be an operator from ℓ_{q} into $Z_{p, q}, 1 \leq q<p<\infty$. Then, for all $\varepsilon>0$, there exists a block subspace Z of ℓ_{q} (i.e. Z is the closed linear span of a block basis of the unit vector basis for ℓ_{q}) which is isometric to ℓ_{q} and such that $\left\|\left.T\right|_{Z}\right\| \leq f(T, Z)+\varepsilon$.

Proof. If T is strictly singular, which is to say that $f(T, Z)=0$ for all infinite-dimensional subspaces Z of ℓ_{q}, then this is a standard textbook exercise. So we can assume, by passing to a suitable block subspace spanned by a block basis of the unit vector basis $\left(\delta_{n}\right)$ of ℓ_{q}, that T is an isomorphism. Using the fact that subspaces of $Z_{p, q}$ which are isomorphic to ℓ_{q} contain smaller subspaces almost isometric to ℓ_{q}, and keeping in mind that the $\varepsilon>0$ gives wiggle room, Lemma 2.2 reduces to the case where the operator maps ℓ_{q} into an isometric copy of ℓ_{q}, which of course is easy and is contained e.g. in AK, Section 2.1].

LEMMA 2.3. Let $T: Z_{p, q} \rightarrow Z_{p, q}(1 \leq q<p<\infty)$ be an operator. Then, for every positive integer $m, \lim _{k \rightarrow \infty}\left\|\left.\left(P_{[1, m]} T\right)\right|_{P_{[k, \infty)} Z_{p, q}}\right\|=0$, where $P_{[m, n]}$ is the projection from $Z_{p, q}$ onto the direct sum from the m th ℓ_{q} to the nth ℓ_{q}.

Proof. Suppose not. Then there exist a positive integer m, a positive number δ and a normalized block basis $\left(x_{n}\right)$ of the natural basis for $Z_{p, q}$ which is equivalent to the unit vector basis of ℓ_{p} and such that $\left\|P_{[1, m]} T x_{n}\right\|$ $\geq \delta$. By passing to a subsequence of $\left(x_{n}\right)$, we may assume that $\left(P_{[1, m]} T x_{n}\right)$ is
equivalent to the unit vector basis of ℓ_{q}. This yields an obvious contradiction since $q<p$ and T is bounded.

Lemma 2.4. Let T be an operator from ℓ_{q} into $Z_{p, q}(1 \leq q<p<\infty)$. Then, for all $\varepsilon>0$, there exist a positive integer N and a block subspace X of ℓ_{q} which is isometric to ℓ_{q} and such that $\left\|\left.\left(P_{[N, \infty)} T\right)\right|_{X}\right\|<\varepsilon$.

Proof. If T is strictly singular then there is a normalized block basis $\left(x_{n}\right)$ of the unit vector basis $\left(\delta_{n}\right)$ of ℓ_{q} such that $\left\|T_{\mid \operatorname{span} x_{n}}\right\|<\varepsilon$, and we are done. Otherwise, by passing to a suitable block subspace of $\left(\delta_{n}\right)$, we can assume that T is an isomorphism and hence $f\left(T, \ell_{q}\right)>0$. By Lemma 2.2, for a value of $\delta=\delta(\varepsilon)$ to be specified momentarily, we can pass to another block subspace, say Z, such that

$$
\left\|T_{\mid Z}\right\|<f(T, Z)+\delta f\left(T, \ell_{q}\right) \leq(1+\delta) f(T, Z)
$$

and, by replacing T with $\left\|T_{Z}\right\|^{-1} T$, also $\left\|T_{\mid Z}\right\|=1$. Moreover, just as in Lemma 2.2, we can assume that $T \delta_{n}$ are disjointly supported in $Z_{p, q}$. This reduces to the case where $\|T\|=1$ and $f\left(T, \ell_{q}\right)>(1+\delta)^{-1}$.

Now if $\left\|P_{[N, \infty)} T_{\mid \operatorname{span}\left(\delta_{k}\right)_{k=n}^{\infty}}\right\|>\varepsilon$ for all N and n, we get $N_{1}<N_{2}<\cdots$ and a normalized block basis $\left(x_{n}\right)$ of $\left(\delta_{n}\right)$ such that for all k,

$$
\left\|P_{\left[N_{k}, N_{k+1}\right)} T x_{k}\right\|>\varepsilon .
$$

Keeping in mind that $\left(T x_{n}\right)$ is disjointly supported and thus has an upper q estimate and a lower p estimate, we see that for all m,

$$
\begin{aligned}
(1 & +\delta)^{-1} m^{1 / q} \\
& \leq\left\|\sum_{k=1}^{m} T x_{k}\right\| \leq\left\|\sum_{k=1}^{m}\left(I-P_{\left[N_{k}, N_{k+1}\right)}\right) T x_{k}\right\|+\left\|\sum_{k=1}^{m} P_{\left[N_{k}, N_{k+1}\right)} T x_{k}\right\| \\
& \leq\left(\sum_{k=1}^{m}\left\|\left(I-P_{\left[N_{k}, N_{k+1}\right)}\right) T x_{k}\right\|^{q}\right)^{1 / q}+\left(\sum_{k=1}^{m}\left\|P_{\left[N_{k}, N_{k+1}\right)} T x_{k}\right\|^{p}\right)^{1 / p} \\
& \left.\leq\left(\sum_{k=1}^{m}\left(\left\|T x_{k}\right\|^{p}-\| P_{\left[N_{k}, N_{k+1}\right.}\right) T x_{k} \|^{p}\right)^{q / p}\right)^{1 / q}+m^{1 / q} \\
& \leq\left(\sum_{k=1}^{m}\left(1-\varepsilon^{p}\right)^{q / p}\right)^{1 / q}+m^{1 / p}=m^{1 / q}\left(1-\varepsilon^{p}\right)^{1 / p}+m^{1 / p}
\end{aligned}
$$

which gives a contradiction if $(1+\delta)\left(1-\varepsilon^{p}\right)^{1 / p}<1$.
We also need that copies of ℓ_{q} in $Z_{p, q}$ contain almost isometric copies of ℓ_{q} which are almost norm one complemented in $Z_{p, q}$. This can be done using the special structure of $Z_{p, q}$, but in fact it follows from the general results of Lemmas 2.5 and 2.6 , which were proved by G. Schechtman and the second author recently when they discussed a preliminary version of this paper (and
probably also thirty years ago), and the lemmas may well be somewhere in the literature. We state the lemmas for spaces with an unconditional basis, but the same proofs (modulo incorporating some standard theory of Banach lattices into the proof) yield the same result for general Banach lattices. In the proofs we assume the reader is familiar with the notions of p-convex and p-concave function lattices and the related notions of p-convexification and p-concavification of spaces with a monotone unconditional basis; see, e.g., [LT2, 40-58].

Lemma 2.5 (W. Johnson and G. Schechtman). Suppose that X has an unconditionally monotone basis with p-convexity constant one, and $\left(x_{k}\right)_{k=1}^{n}$ $(n \in \mathbb{N} \cup\{\infty\})$ is a disjoint sequence in X such that for some $0<\theta<1$ and all scalars $\left(\alpha_{k}\right)$,

$$
\begin{equation*}
\theta\left(\sum_{k}\left|\alpha_{k}\right|^{p}\right)^{1 / p} \leq\left\|\sum_{k} \alpha_{k} x_{k}\right\| \leq\left(\sum_{k}\left|\alpha_{k}\right|^{p}\right)^{1 / p} \tag{2.3}
\end{equation*}
$$

Then there is an unconditionally monotone norm ! ! ! on X with p-convexity constant one such that for all scalars $\left(\alpha_{k}\right)$,
(1) $\theta!x!\leq\|x\| \leq!x!$ for all $x \in X$;
(2) $\left(\sum_{k}\left|\alpha_{k}\right|^{p}\right)^{1 / p}=!\sum_{k} \alpha_{k} x_{k}!$.

Proof. Without loss of generality we assume that $x_{k} \geq 0$ for all k so that the closed span of $\left(x_{k}\right)$ is a sublattice of X. Assume first that $p=1$. By the lattice version of the Hahn-Banach theorem and the hypothesis on $\left(x_{k}\right)$ there is a linear functional $x^{*} \geq 0$ on X with $\left\|x^{*}\right\| \leq \theta^{-1}$ so that $\left\langle x^{*}, x_{k}\right\rangle=1$ for all k. Define !.! on X by $!x!:=\|x\| \vee\left\langle x^{*},\right| x| \rangle$. This clearly does the job. In the general case, apply the case $p=1$ to the p-concavification of X and take the p-convexification of the resulting norm.

Lemma 2.6 (W. Johnson and G. Schechtman). Suppose that X has an unconditionally monotone basis with p-convexity constant one $(1 \leq p<\infty)$, and $\left(x_{k}\right)_{k=1}^{n}(n \in \mathbb{N} \cup\{\infty\})$ is a disjoint sequence of unit vectors in X which is isometrically equivalent to the unit vector basis for ℓ_{p}. Then $\overline{\operatorname{span}} x_{k}$ is norm one complemented in X.

Proof. Since the unit ball of ℓ_{p} is weak* compact, the case $n=\infty$ follows from the case $n<\infty$, so we assume $n<\infty$. We can also assume that $x_{k} \geq 0$ for all k and that the union of the supports of the x_{k} is the entire unconditional basis for X.

First proof. The idea is to situate X between $L_{1}(\mu)$ and $L_{\infty}(\mu)$ with μ a probability measure so that both inclusions have norm one. Since X has p-convexity constant one, it then follows from an argument in [JMST, p. 14] that in fact $L_{p}(\mu) \supset X$ with the inclusion having norm one. We set this up so that $\sum_{k} x_{k}$ is the constant $n^{1 / p}$ function and the norm of each x_{k} in
$L_{1}(\mu)$ is $n^{1 / p} / n=n^{-1 / p^{\prime}}$; this forces the $L_{p}(\mu)$ norm of each x_{k} to be one. Since in X the sequence $\left(x_{k}\right)$ is 1-equivalent to the unit vector basis for ℓ_{p}^{n}, the injection $I_{X, p}$ from X into $L_{p}(\mu)$ is an isometry on $\operatorname{span}\left(x_{k}\right)_{k=1}^{n}$. But of course span $\left(x_{k}\right)_{k=1}^{n}$ is norm one complemented in $L_{p}(\mu)$ and hence also in X.

To effect this situation, use the lattice version of the Hahn-Banach theorem to get $x^{*} \geq 0$ in X^{*} such that for each $k,\left\langle x^{*}, x_{k}\right\rangle=n^{-1 / p^{\prime}}$. Define a seminorm on X by $\|x\|_{1}:=\left\langle x^{*},\right| x| \rangle$. This is an L_{1} (semi)norm on X and the inclusion from X into this L_{1} space has norm one. The L_{∞} structure on X is defined by specifying $n^{-1 / p} \sum_{k} x_{k}$ to be the constant one function; i.e., by taking the unit ball to be those vectors x in X such that $|x| \leq n^{-1 / p} \sum_{k} x_{k}$.

Second proof. As in the proof of Lemma 2.5, we use p-concavification to reduce to the case $p=1$, but in a different way. In the p-concavification $X^{(1 / p)}$ of X, the sequence $\left(x_{k}^{p}\right)$ is a disjoint sequence that is 1-equivalent to the unit vector basis of ℓ_{1}^{n}, so there is a norm one functional $x^{*} \geq 0$ in $\left(X^{(1 / p)}\right)^{*}$ such that $\left\langle x^{*}, x_{k}^{p}\right\rangle=1$ for all k. The (semi)norm $\|x\|_{p}:=$ $\left.\left.\left\langle x^{*},\right| x\right|^{p}\right\rangle^{1 / p}$ turns X into an abstract L_{p} space and $\left(x_{k}\right)$ are disjoint unit vectors in this abstract L_{p} space, hence in it $\left(x_{k}\right)$ is 1-equivalent to the unit vector basis for ℓ_{p}^{n} and $\operatorname{span}\left(x_{k}\right)$ is norm one complemented (either do a direct argument or use the deeper fact [LT2, Theorem 1.b.2] that an abstract L_{p} space is isometrically lattice isomorphic to $L_{p}(\mu)$ for some measure $\left.\mu\right)$. Since $\|\cdot\|_{p} \leq\|\cdot\|_{X}$ and in X the sequence $\left(x_{k}\right)$ is 1-equivalent to the unit vector basis for ℓ_{p}^{n}, we conclude that span $\left(x_{k}\right)$ is also norm one complemented in X.

LEMmA 2.7. Let X be a subspace of $Z_{p, q}, 1 \leq q<p<\infty$, which is isomorphic to $Z_{p, q}$. Then for all $\varepsilon>0$, there is a subspace Y of X that is $(1+\varepsilon)$-isomorphic to $Z_{p, q}$ and $(1+\varepsilon)$-complemented in $Z_{p, q}$.

Proof. Write $X=\sum_{k} X_{k}$ where each X_{k} is isomorphic to ℓ_{q} and the sum is (isomorphically) an ℓ_{p}-sum. By the remarks at the beginning, we can assume by passing to subspaces of each X_{k} that X_{k} has a normalized basis $\left(x_{n, k}\right)_{n=1}^{\infty}$ that is $\left(1+\varepsilon_{k}\right)$-equivalent to the unit vector basis of ℓ_{q} with $\varepsilon_{k} \downarrow 0$ as fast as we like. Also, by doing a small perturbation we can assume that $\left(x_{n, k}\right)_{n, k}$ are disjointly supported with respect to the canonical basis for $Z_{p, q}$. Finally, using Lemmas 2.3 and 2.4 we can assume, by passing to a subsequence of subspaces of $\left(\overline{X_{k}}\right)$, that there are $N_{1}<N_{2}<\cdots$ such that for all $k,\left\|P_{\left[N_{k}, N_{k+1}\right)} x-x\right\| \leq \varepsilon_{k}\|x\|$ for all x in X_{k}. Doing one more perturbation, we might as well assume in fact that $P_{\left[N_{k}, N_{k+1}\right)}$ is the identity on X_{k}. Using Lemmas 2.5 and 2.6 , we get a projection Q_{k} from $P_{\left[N_{k}, N_{k+1}\right)} Z_{p, q}$ onto X_{k} with $\left\|Q_{k}\right\| \leq 1+\varepsilon_{k}$. Then $\sum_{k} Q_{k} P_{\left[N_{k}, N_{k+1}\right)}$ is a projection from $Z_{p, q}$ onto X of norm at most $1+\varepsilon_{1}$.

Remark. Note that the argument for Lemma 2.7 also shows that if T is a $Z_{p, q^{-}}$-strictly singular operator on $Z_{p, q}=\left(\sum Y_{k}\right)_{p}$ with each Y_{k} isometrically isomorphic to ℓ_{q}, then $f\left(T, Y_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$.

Proposition 2.8. Let T be a $Z_{p, q}$-strictly singular operator on $Z_{p, q}$, $1 \leq q<p<\infty$. Then for all $\varepsilon>0$, there is a subspace X of $Z_{p, q}$ which is isometrically isomorphic to $Z_{p, q}$ and such that $\left\|\left.T\right|_{X}\right\|<\varepsilon$. Consequently, the set of $Z_{p, q}$-strictly singular operators on $Z_{p, q}$ is a linear subspace of $L\left(Z_{p, q}\right)$.

Proof. As usual, write $Z_{p, q}=\left(\sum Y_{k}\right)_{p}$ with each Y_{k} isometrically isomorphic to ℓ_{q}. By passing to subspaces of each Y_{k}, we can by Lemma 2.2 assume that for each $k,\left\|T_{\mid Y_{k}}\right\|<f\left(T, Y_{k}\right)+2^{-k}$, so that $\left\|T_{\mid Y_{k}}\right\| \rightarrow 0$ by the Remark after Lemma 2.7. Let $X=\left(\sum_{n} Y_{k_{n}}\right)_{p}$, where $k_{n} \uparrow$ is chosen so that $\sum_{n}\left\|T_{\mid Y_{k_{n}}}\right\|<\varepsilon$.

Proposition 2.9 below is an immediate consequence of Lemma 2.7 and Proposition 2.8. Actually Proposition 2.8 says that the set of all $Z_{p, q}$-strictly singular operators on $Z_{p, q}$ is an ideal and Lemma 2.7 tells us that it is maximal.

Proposition 2.9. Let $1 \leq q<p<\infty$. The set of all $Z_{p, q}$-strictly singular operators on $Z_{p, q}$ is equal to $\mathcal{M}_{Z_{p, q}}$ and forms the unique maximal ideal in $\mathcal{L}\left(Z_{p, q}\right)$.

Let $\left(X_{i}\right)_{i=0}^{\infty}$ be a sequence of Banach spaces. In our case, all the $\left(X_{i}\right)$'s are uniformly isomorphic to $Z_{p, q}$ so that their ℓ_{p} direct sum $\left(\sum_{i=0}^{\infty} X_{i}\right)_{p}$ is isomorphic to $\left(\sum_{i=0}^{\infty} Z_{p, q}\right)_{p}$, which in turn is isometrically isomorphic to $Z_{p, q}$. We are interested in the case when $\left(X_{i}\right)$ is a sequence of subspaces of $Z_{p, q}$ which are uniformly isomorphic to $Z_{p, q}, \operatorname{span} \bigcup_{i=0}^{\infty} X_{i}$ is dense in $Z_{p, q}$ and the mapping that identifies $X_{i}, 0 \leq i<\infty$, in $Z_{p, q}$ with X_{i} in $\left(\sum_{j=0}^{\infty} X_{j}\right)_{p}$ extends to an isomorphism from $Z_{p, q}$ onto $\left(\sum_{j=0}^{\infty} X_{j}\right)_{p}$. Since commutators are preserved under similarity transformations, without confusion we will identify an operator on $\left(\sum_{i=0}^{\infty} X_{i}\right)_{p}$ with the corresponding operator on $\overline{\operatorname{span}}\left(X_{i}\right)_{i=0}^{\infty}=Z_{p, q}$. For $x=\left(x_{i}\right) \in\left(\sum_{i=0}^{\infty} X_{i}\right)_{p}$ with $x_{i} \in X_{i}$, we define the right and left shifts as follows:

$$
R(x)=\left(0, x_{0}, x_{1}, \ldots\right), \quad L(x)=\left(x_{1}, x_{2}, \ldots\right)
$$

Let $\mathcal{A}=\left\{T \in \mathcal{L}\left(\left(\sum_{i=0}^{\infty} X_{i}\right)_{p}\right): \sum_{n=0}^{\infty} R^{n} T L^{n}\right.$ is strongly convergent $\}$. By Lemma 3 in [D], if T is in \mathcal{A}, then T is a commutator. The proof of the next theorem shows that if T is a $Z_{p, q}$-strictly singular operator on $Z_{p, q}$ then there is an ℓ_{p}-decomposition of $Z_{p, q}$ such that T is in \mathcal{A} and hence is a commutator.

Theorem 2.10. Let $1 \leq q<p<\infty$. If $T: Z_{p, q} \rightarrow Z_{p, q}$ is $Z_{p, q}$-strictly singular, then T is a commutator.

Proof. We first make a partition of the natural numbers to infinitely many infinite subsets, denoted by $\mathbb{N}=\bigcup_{n=0}^{\infty} I_{n}$. For each $n \geq 1,\left(\sum_{i \in I_{n}} Z_{p, q}\right)_{p}$
is isometric to $Z_{p, q}$ and the restriction of T to $\sum_{i \in I_{n}} Z_{p, q}$ is $Z_{p, q^{-}}$-strictly singular. By Proposition 2.8, for each n there is a subspace X_{n} of $\sum_{i \in I_{n}} Z_{p, q}$ such that X_{n} is isometric to $Z_{p, q}$ and $\left\|\left.T\right|_{X_{n}}\right\|<\varepsilon_{n}$. Moreover, by Lemma 2.6 X_{n} can be chosen 1-complemented in $\sum_{i \in I_{n}} Z_{p, q}$. By passing to appropriate subspaces of X_{n}, we can assume that the complement Z_{n} to X_{n} in $\sum_{i \in I_{n}} Z_{p, q}$ contains a 1-complemented subspace that is uniformly isomorphic (actually even isometric) to $Z_{p, q}$ and hence Z_{n} is uniformly isomorphic to $Z_{p, q}$ by the Pełczyński decomposition method [LT1, p. 54] (the decomposition method applies because $Z_{p, q}$ is isometric to $\left.\left(\sum_{i=0}^{\infty} Z_{p, q}\right)_{p}\right)$. So we get a sequence $\left(X_{n}\right)_{n=1}^{\infty}$ of subspaces of $\left(\sum_{n=0}^{\infty} Z_{p, q}\right)_{\ell_{p}}$ such that
(1) X_{n} is isometric to $Z_{p, q}$ and 1-complemented in $Z_{p, q}$;
(2) $\left\|\left.T\right|_{X_{n}}\right\|<\varepsilon_{n}$;
(3) $\left\|\sum_{n=1}^{\infty} x_{n}\right\|=\left(\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{p}\right)^{1 / p}$ for all $x_{n} \in X_{n}$;
(4) $Z_{p, q}=\left(\sum_{n=1}^{\infty} X_{n}\right)_{p} \oplus X_{0}$ and X_{0} is isomorphic to $Z_{p, q}$.

Let R and L be the right shift and left shift with respect to the $\ell_{p^{-}}$ decomposition $\left(X_{n}\right)_{n=0}^{\infty}$ of $Z_{p, q}$. Then it is easy to see [D, Lemma 3] that $\sum_{n=0}^{\infty} R^{n} T L^{n}$ is strongly convergent if $\sum_{n} \varepsilon_{n}<\infty$.

The following lemma is a direct consequence of Lemmas 2.3 and 2.4. We omit the proof.

LEMMA 2.11. Let T be an operator on $Z_{p, q}, 1 \leq q<p<\infty$. Then for any sequence $\left(\varepsilon_{i}\right)$ of positive numbers, there exist an infinite subset M of positive integers and a subspace Z_{i} of the i th ℓ_{q} which is isometric to ℓ_{q} for all $i \in M$ and such that for all $k \in M,\left\|\left.\sum_{i \in M, i \neq k} P_{i} T\right|_{Z_{k}}\right\|<\varepsilon_{k}$, where P_{i} is the projection from $Z_{p, q}$ onto the i th ℓ_{q}.

Let T be an operator on a Banach space X. The left essential spectrum of T is defined to be the set

$$
\sigma_{\text {l.e. }}(T)=\left\{\lambda \in \mathbb{C}: \inf _{x \in S_{Y}}\|(\lambda-T) x\|=0 \text { for all } Y \subset X \text { with } \operatorname{codim} Y<\infty\right\} .
$$

Apostol proved in A1] that $\sigma_{\text {l.e. }}(T)$ is non-empty for all operators T on any infinite-dimensional X.

Proposition 2.12. Let T be an operator on $Z_{p, q}, 1 \leq q<p<\infty$. Then either there is a $\lambda \in \mathbb{C}$ and a subspace Y of $Z_{p, q}$ that is isomorphic to $Z_{p, q}$ and $\left.(T-\lambda I)\right|_{Y}$ is $Z_{p, q}$-strictly singular, or there is a $\lambda \in \mathbb{C}$ and a subspace Y of $Z_{p, q}$ that is isomorphic to $Z_{p, q}$ and such that $\left.(T-\lambda I)\right|_{Y}$ is an isomorphism and $d((T-\lambda I)(Y), Y)>0$.

Proof. Let $\left(\varepsilon_{i}\right)$ be a sequence of positive reals decreasing to 0 fast. Let $\left(\widetilde{Z}_{i}\right)_{i \in M}$ be a sequence of subspaces satisfying the conclusion of Lemma 2.11. By Lemma 2.6, for each $i \in M, \widetilde{Z}_{i}$ is 1 -complemented in the i th ℓ_{q}. Let
\widetilde{R}_{i} be a contractive projection from the i th ℓ_{q} onto \widetilde{Z}_{i}. Let P_{i} be the natural projection from $Z_{p, q}$ onto the i th ℓ_{q} and set $\widetilde{Q}_{i}=\widetilde{R}_{i} P_{i}$. Since for all $k \in M,\left\|\left.\sum_{i \in M, i \neq k} P_{i} T\right|_{\widetilde{Z}_{k}}\right\|<\varepsilon_{k}$ and $\widetilde{Q}_{i} P_{i}=\widetilde{Q}_{i}$, it follows that for all $k \in M$, $\left\|\left.\sum_{i \in M, i \neq k} \widetilde{Q}_{i} T\right|_{\widetilde{Z}_{k}}\right\|<\varepsilon_{k}$. For each $i \in M$, consider the operator $\left.\widetilde{Q}_{i} T\right|_{\widetilde{Z}_{i}}$: $\widetilde{Z}_{i} \rightarrow \widetilde{Z}_{i}$. Let λ_{i} be any number in $\sigma_{\text {l.e. }}\left(\left.\widetilde{Q}_{i} T\right|_{\widetilde{Z}_{i}}\right)$. Then there is a subspace Z_{i} of \widetilde{Z}_{i} which is isometric to ℓ_{q} and hence 1-complemented in the i th ℓ_{q} such that $\left\|\left(\widetilde{Q}_{i} T-\lambda_{i} I\right) \mid Z_{i}\right\|<\varepsilon_{i}$. Since $\left(\lambda_{i}\right)$ is uniformly bounded by $\|T\|$, by taking a limit of a subsequence of $\left(\lambda_{i}\right)$ and passing to an infinite subset J of M, we get a complex number λ such that for all $i \in J,\left\|\left.\left(\widetilde{Q}_{i} T-\lambda I\right)\right|_{Z_{i}}\right\|<\varepsilon_{i}$. Let R_{i} be a contractive projection from the i th ℓ_{q} onto Z_{i} and let $Q_{i}=R_{i} P_{i}$. Then for all $k \in J,\left\|\left.\sum_{i \in J, i \neq k} Q_{i} T\right|_{Z_{k}}\right\|<\varepsilon_{k}$ and $\left\|\left.\left(Q_{k} T-\lambda I\right)\right|_{Z_{k}}\right\|<\varepsilon_{k}$. This immediately implies that for all $k \in J,\left\|\left.\left(\left(\sum_{i \in J} Q_{i} T\right)-\lambda I\right)\right|_{Z_{k}}\right\|<2 \varepsilon_{k}$. Let $\widetilde{Y}=\left(\sum_{i \in J} Z_{i}\right)_{p}$. Then $Q=\sum_{i \in J} Q_{i}$ is a contractive projection from $Z_{p, q}$ onto \widetilde{Y} and $\left\|\left.(Q T-\lambda I)\right|_{\tilde{Y}}\right\|<2 \sum_{i} \varepsilon_{i}$. Since $\left\|\left.(Q T-\lambda I)\right|_{\left(\sum_{i \in J, i>k} Z_{i}\right)_{p}}\right\|<$ $\sum_{i \geq k} \varepsilon_{i}$, it is straightforward to check that $\left.(Q T-\lambda I)\right|_{\tilde{Y}}$ is $Z_{p, q}$-strictly singular if $\left(\varepsilon_{i}\right)_{i}$ is summable. Now consider the operator $\left.((I-Q) T)\right|_{\tilde{Y}}$. If it is $Z_{p, q}$-strictly singular, then $\left.(T-\lambda I)\right|_{\tilde{Y}}=\left.(Q T-\lambda I)\right|_{\tilde{Y}}+\left.((I-Q) T)\right|_{\tilde{Y}}$ is $Z_{p, q}$-strictly singular by Proposition 2.8. If it is not $Z_{p, q}$-strictly singular, then $\left.(T-\lambda I)\right|_{\tilde{Y}}$ is not $Z_{p, q}$-strictly singular and hence there is a subspace Y of \widetilde{Y} that is isomorphic to $Z_{p, q}$ and such that for some $\mu>0$ and all norm one vectors y in $Y,\|(T-\lambda I) y\|>\mu$. By Lemma 2.7 we may assume that Y is $1+\varepsilon$-isomorphic to $Z_{p, q}$ and by Proposition 2.8 we can assume that $\left\|\left.(Q T-\lambda I)\right|_{Y}\right\|<3^{-1} \mu$. So $\|(I-Q) T(y)\|>\mu-3^{-1} \mu=2 \mu / 3$ for all $y \in S_{Y}$. Hence if y_{1}, y_{2} are in Y and $\left\|(T-\lambda I) y_{1}\right\|=1$ (so that $\left\|y_{1}\right\| \geq \mu^{-1}$),

$$
\begin{aligned}
\left\|(T-\lambda I) y_{1}-y_{2}\right\| & \geq \frac{1}{2}\left\|(I-Q)\left[(T-\lambda I) y_{1}-y_{2}\right]\right\|=\frac{1}{2}\left\|(I-Q) T y_{1}\right\| \\
& \geq \frac{1}{2} \cdot \frac{2}{3} \cdot \mu\left\|y_{1}\right\| \geq \frac{1}{3} .
\end{aligned}
$$

This implies that $d((T-\lambda I)(Y), Y) \geq 1 / 3$.
To prove our last theorem, we use the following lemma which is an immediate consequence of Theorems 3.2 and 3.3 in [DJ.

Lemma 2.13. Let X be a Banach space such that X is isomorphic to $\left(\sum X\right)_{p}, p \in[1, \infty] \cup\{0\}$. Let T be a bounded linear operator on X such that there exists a subspace Y of X such that Y is isomorphic to $X,\left.T\right|_{Y}$ is an isomorphism, $d(T Y, Y)>0$ and $Y+T(Y)$ is complemented in X. Then T is a commutator.

An infinite-dimensional Banach space X is said to be complementably homogeneous if every subspace of X that is isomorphic to X must contain
a smaller subspace that is isomorphic to X and is complemented in X. It is clear that if X is complementably homogeneous then \mathcal{M}_{X}, the set of operators T on X such that the identity does not factor through T, is equal to the set of X-strictly singular operators on X. Lemma 2.7 implies that $Z_{p, q}$ is complementably homogeneous for $1 \leq q<p<\infty$. (We did not attempt to check that $Z_{p, q}$ is complementably homogeneous for other values of p and q because that is not needed to prove our Main Theorem.)

Let T be a bounded linear operator on the complementably homogeneous space X. An important fact which was used repeatedly in D, DJ, DJS is that in certain spaces of this type, if there exists a subspace Y of X such that Y is isomorphic to $X,\left.T\right|_{Y}$ is an isomorphism and $d(Y, T Y)>0$, then there is a subspace Z of Y isomorphic to X and such that $Z+T(Z)$ is complemented in X. The next lemma gives a formulation of this fact for a general class of spaces for which the statement is true.

Lemma 2.14. Let X be a complementably homogeneous Banach space. Let T be a bounded linear operator on X for which there is a subspace Y of X isomorphic to X such that $\left.T\right|_{Y}$ is an isomorphism and $d(Y, T Y)>0$. Then there is a subspace Z of Y isomorphic to X and such that $Z+T(Z)$ is complemented in X.

Proof. Since X is complementably homogeneous, there is a subspace W of $T Y$ that is isomorphic to X and is the range of some projection P_{W}. Then $\left(\left.T\right|_{Y}\right)^{-1} W$ is also isomorphic to X and is the range of the projection $\left(\left.T\right|_{Y}\right)^{-1} P_{W} T$. Consequently, without loss of generality we assume that Y and $T Y$ are complemented in X.

The main step of the proof consists in finding a subspace Y_{1} of Y that is isomorphic to X and such that there is a projection $P_{T Y_{1}}$ onto $T Y_{1}$ for which $P_{T Y_{1}} Y_{1}=\{0\}$. Having done that, we have, as mentioned above, a projection $P_{Y_{1}}$ onto Y_{1}. Then $P_{T Y_{1}}+P_{Y_{1}}\left(I-P_{T Y_{1}}\right)$ is a projection onto $Y_{1}+T Y_{1}$, so that $Z:=Y_{1}$ satisfies the conclusions of the lemma.

We now turn to the proof of the main step. Let P be a projection from X onto Y. Since $d(Y, T Y)>0$ and $\left.T\right|_{Y}$ is an isomorphism, it follows that $T^{\prime}:=(I-P) T P$ is an isomorphism on Y, where I is the identity operator on X. Let W be a subspace of $T^{\prime}(Y)$ that is isomorphic to X and complemented in X. Then $Y_{1}:=\left(\left.T^{\prime}\right|_{Y}\right)^{-1}(W)$ is also isomorphic to X and complemented in X. Let P_{W} be a projection from X onto W. Let S be the inverse of the isomorphism $T(y) \mapsto T^{\prime}(y), y \in Y$. Then it is straightforward to verify that $P_{T Y_{1}}:=S P_{W}(I-P)$ is a projection from X onto $T Y_{1}$ such that $P_{T Y_{1}} Y_{1}=\{0\}$.

The root of the proof of Theorem 2.15 goes back to [A1] see also [DJ, Lemma 4.1].

Theorem 2.15. Let X be a complementably homogeneous Banach space isomorphic to $\left(\sum X\right)_{p}, p \in[1, \infty] \cup\{0\}$, and suppose the set of all X-strictly singular operators on X form an ideal in $L(X)$. Let $T: X \rightarrow X$ be a bounded linear operator such that $T-\lambda^{\prime} I$ is not X-strictly singular for any $\lambda^{\prime} \in \mathbb{C}$. If there is a $\lambda \in \mathbb{C}$ and a subspace Y of X isomorphic to X and such that $\left.(T-\lambda I)\right|_{Y}$ is X-strictly singular then T is a commutator.

Proof. Since X is complementably homogeneous, by passing to a subspace of Y, we may assume that Y is complemented in X. Let $I-P$ be a bounded projection from X onto Y. By passing to a further subspace of Y, we can assume additionally that $P X$ contains a complemented subspace isomorphic to X and hence $P X$ is isomorphic to X by Pełczyński's decomposition method [LT1, p. 54]. To simplify the notation, set $T_{\lambda}:=T-\lambda I$. Then $T_{\lambda}(I-P)$ is X-strictly singular. Now we consider the operator $(I-P) T_{\lambda} P$. If it is not X-strictly singular, then there is a subspace Z of $P X$ that is isomorphic to X and such that $\left.(I-P) T_{\lambda} P\right|_{Z}$ is an isomorphism. By passing to a subspace of Z, we may assume that Z is complemented in X. By the construction, we immediately get $d\left(Z,(I-P) T_{\lambda} P Z\right)>0$ and hence $d\left(Z, T_{\lambda} Z\right)>0$. By Proposition 2.1 in [DJ], $d(Z, T Z)>0$. By Lemma 2.14 . we may assume $Z+T Z$ is complemented in X and hence T is a commutator in virtue of Lemma 2.13. If $(I-P) T_{\lambda} P$ is X-strictly singular, we write

$$
T_{\lambda}=T_{\lambda}(I-P)+(I-P) T_{\lambda} P+P T_{\lambda} P
$$

Since T_{λ} is not X-strictly singular, $P T_{\lambda} P$ is not X-strictly singular by the hypothesis that the X-strictly singular operators are closed under addition. Let A be an isomorphism from $P X$ onto $(I-P) X$ and let $B:(I-P) X \rightarrow P X$ be its inverse, so that $B A P=P$ and $A B(I-P)=I-P$. We define an operator S on X by

$$
\sqrt{2} S=P+A P-(I-P)+B(I-P)
$$

A direct computation shows that $S^{2}=I$.
Now we consider the operator $R:=2(I-P) S T_{\lambda} S P$. We claim that R is not X-strictly singular. To see this, substitute for S in the expression for R and compute

$$
R=A P T_{\lambda} P+[A P-(I-P)] T_{\lambda} A P-(I-P) T_{\lambda} P=: A P T_{\lambda} P+\alpha-\beta
$$

The operator β is X-strictly singular by assumption and α is X-strictly singular because $A P$ has range $(I-P) X$ and $T_{\lambda}(I-P)$ is X-strictly singular. We mentioned above that $P T_{\lambda} P$ is not X-strictly singular, so also $A P T_{\lambda} P$ is not X-strictly singular because A is an isomorphism on $P X$, and hence $R=2(I-P) S T_{\lambda} S P$ is also not X-strictly singular.

Therefore there is a complemented subspace Z of $P X$ such that Z is isomorphic to X and $d\left(Z, S T_{\lambda} S(Z)\right)>0$. That is, $d\left(S(Z), T_{\lambda} S(Z)\right)>0$. By

Proposition 2.1 in [DJ] again, $d(S(Z), T S(Z))>0$. Hence T is a commutator by Lemmas 2.14 and 2.13 .

Corollary 2.16. Let X be a complementably homogeneous Banach space such that X is isomorphic to $\left(\sum X\right)_{p}, p \in[1, \infty] \cup\{0\}$, and the set of all X-strictly singular operators on X form an ideal in $\mathcal{L}(X)$ and are commutators in $\mathcal{L}(X)$. Assume that for every operator T on X either there is a $\lambda \in \mathbb{C}$ and a subspace Y of X that is isomorphic to X and such that $\left.(T-\lambda I)\right|_{Y}$ is X-strictly singular, or there is $a \lambda \in \mathbb{C}$ and a subspace Y of X that is isomorphic to X and such that $\left.(T-\lambda I)\right|_{Y}$ is an isomorphism and $d((T-\lambda I)(Y), Y)>0$. Then $T \in \mathcal{L}(X)$ is a commutator if and only if $T-\lambda^{\prime} I$ is not X-strictly singular for every non-zero $\lambda^{\prime} \in \mathbb{C}$. Consequently, X is a Wintner space.

Proof. Let T be an operator on X such that $T-\lambda I$ is not X-strictly singular for all $\lambda \in \mathbb{C}$. If there is a $\lambda \in \mathbb{C}$ and a subspace Y of X that is isomorphic to X and such that $\left.(T-\lambda I)\right|_{Y}$ is an isomorphism and $d((T-\lambda I)(Y), Y)>0$, by Lemmas 2.14 and 2.13, T is a commutator. If there is a $\lambda \in \mathbb{C}$ and a subspace Y of X that is isomorphic to X and such that $\left.(T-\lambda I)\right|_{Y}$ is X-strictly singular, then by Lemma $2.15, T$ is a commutator.

Finally we complete the proof of our Main Theorem:
Corollary 2.17. The space $X:=Z_{p, q}$ with $1 \leq q<\infty$ and $1<p<\infty$ is a Wintner space. In fact, if T is an operator on X, then T is a commutator if and only if for all non-zero $\lambda \in \mathbb{C}$, the operator $T-\lambda I$ is not in \mathcal{M}_{X} (i.e., the identity on X factors through $T-\lambda I$).

Proof. For $1 \leq q<p<\infty$, Corollary 2.16 applies to give the desired conclusions. The other cases follow from the obvious facts that if X is reflexive and T is an operator on X, then T is in \mathcal{M}_{X} (respectively, is a commutator) if and only if T^{*} is in $\mathcal{M}_{X^{*}}$ (respectively, is a commutator).
3. Open problems. Our first question concerns general classes of Banach spaces.

Question 1. Is every infinite-dimensional Banach space a Wintner space?

As we mentioned in the introduction, there may be an infinite-dimensional Banach space on which every finite rank commutator has zero trace. A less striking negative example would be an infinite-dimensional Banach space on which every operator is of the form $\lambda I+T$ with T nuclear.

Question 1.1. If X admits a Pełczyński decomposition, is X a Wintner space?

Question 1.2. What if also \mathcal{M}_{X} is an ideal in $\mathcal{L}(X)$?

Question 1.3. What if also X is complementably homogeneous?
We next turn to special spaces.
Question 2. Is every $C(K)$ space a Wintner space when K is a compact Hausdorff space? What if also K is metrizable?

Question 2.1. Is $C[0,1]$ a Wintner space?
An affirmative answer to Question 1.3 gives an affirmative answer to Question 2.1, but we suspect that Question 2.1, while difficult, is much easier than Question 1.3.

QUESTION 3. Is every complemented subspace of $L_{p}:=L_{p}(0,1), 1 \leq p$ $<\infty$, a Wintner space?

In regard to Question 3, it is open whether every infinite-dimensional complemented subspace of L_{1} is isomorphic to either L_{1} or to ℓ_{1}. There are, on the other hand, uncountably many different (up to isomorphism) complemented subspaces of L_{p} for $1<p \neq 2<\infty$ [BRS], including the Wintner spaces L_{p} [DJS], ℓ_{p} [A1], $\ell_{p} \oplus \ell_{2}$ [D], and $Z_{p, 2}$. All of these are complementably homogeneous and have \mathcal{M}_{X} as an ideal, but $\ell_{p} \oplus \ell_{2}$, while the direct sum of two spaces that admit Pełczyński decompositions, does not itself admit a Pełczyński decomposition.

Question 3.1.2. Is Rosenthal's space X_{p} (see $\left.\overline{\mathrm{R}}\right)$ a Wintner space?
The space $X_{p}, 2<p<\infty$, was the first "non-obvious" complemented subspace of L_{p} and it has played a central role in the modern development of the structure theory of L_{p}. It is small in the sense that it embeds isomorphically into $\ell_{p} \oplus \ell_{2}$ (ℓ_{p} is the only complemented subspace of L_{p} that does not contain any subspace isomorphic to $\ell_{p} \oplus \ell_{2}$), but not as a complemented subspace. The space X_{p} does not admit a Pełczyński decomposition, but it does admit something analogous (a " $p, 2$ " decomposition) which might serve as a substitute. Not every operator in $\mathcal{M}_{X_{p}}$ is X_{p}-strictly singular because you can map X_{p} isomorphically into a subspace of X_{p} that is isomorphic to $\ell_{p} \oplus \ell_{2}$ and no isomorphic copy of X_{p} in $\ell_{p} \oplus \ell_{2}$ can be complemented. Probably the ideas in [JO can be used to show that $\mathcal{M}_{X_{p}}$ is an ideal in $\mathcal{L}\left(X_{p}\right)$, but we have not yet tried to check this.

The famous problem, due to Brown and Pearcy, whether every compact operator on ℓ_{2} is a commutator of compact operators, is still open. In fact, nothing is known in a more general setting, so we ask:

Question 4. For what Banach spaces X is every compact operator a commutator of compact operators? Is this true for every infinite-dimensional X ? Is it true for some infinite-dimensional X ?

Question 5. Assume that X is a complementably homogeneous Wintner space that has a Pełczyński decomposition and that \mathcal{M}_{X} is an ideal in \mathcal{L}_{X}. If T is not in \mathcal{M}_{X} and T is a commutator, does there exist a complemented subspace X_{1} of X that is isomorphic to X and such that $\left.\left(I-P_{X_{1}}\right) T\right|_{X_{1}}$ is an isomorphism? Here $P_{X_{1}}$ is a projection onto X_{1}.

For $X=\ell_{p}, 1 \leq p \leq \infty$, or c_{0} or $L_{p}, 1 \leq p \leq \infty$, or $Z_{p, q}, 1 \leq q<\infty$ and $1<p<\infty$, the proofs that X is a Wintner space show that Question 5 has an affirmative answer.

Finally there is the obvious problem to give an affirmative answer to.
Question 6. Is $Z_{p, q}$ a Wintner space for values of p and q not covered by the Main Theorem?

Acknowledgements. Dongyang Chen is a participant in the NSF Workshop in Analysis and Probability, Texas A\&M University and is supported in part by National Natural Science Foundation of China (grant Nos. 10526034, 10701063). The research of William B. Johnson is supported in part by NSF DMS-1001321. The research of Bentuo Zheng is supported in part by NSF DMS-1068838 and NSF DMS-0800061.

References

[AK] F. Albiac and N. Kalton, Topics in Banach Space Theory, Grad. Texts in Math. 233, Springer, New York, 2006.
[A1] C. Apostol, Commutators on ℓ_{p} spaces, Rev. Roumaine Math. Pures Appl. 17 (1972), 1513-1534.
[A2] -, Commutators on c_{0}-spaces and on ℓ_{∞}-spaces, ibid. 18 (1973), 1025-1032.
[BP] A. Brown and C. Pearcy, Structure of commutators of operators, Ann. of Math. 82 (1965), 112-127.
[BRS] J. Bourgain, H. P. Rosenthal and G. Schechtman, An ordinal L_{p}-index for Banach spaces, with application to complemented subspaces of L_{p}, ibid. 114 (1981), 193-228.
[D] D. Dosev, Commutators on ℓ_{1}, J. Funct. Anal. 256 (2009), 3490-3509.
[DJ] D. Dosev and W. B. Johnson, Commutators on ℓ_{∞}, Bull. London Math. Soc. 42 (2010), 155-169.
[DJS] D. Dosev, W. B. Johnson and G. Schechtman, Commutators on $L_{p}, 1 \leq p<\infty$, preprint.
[J] R. J. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.
[JMST] W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. 19 (1979), no. 217, v + 298 pp.
[JO] W. B. Johnson and E. Odell, Subspaces and quotients of $\ell_{p} \oplus \ell_{2}$ and X_{p}, Acta Math. 147 (1981), 117-147.
[KM] J.-L. Krivine et B. Maurey, Espaces de Banach stables, Israel J. Math. 39 (1981), 273-295.
[LT1] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I. Sequence Spaces, Springer, Berlin, 1977.
[LT2] -, 一, Classical Banach Spaces. II. Function Spaces, Springer, Berlin, 1979.
[O] E. Odell, On complemented subspaces of $\left(\sum \ell_{2}\right)_{\ell_{p}}$, Israel J. Math. 23 (1976), 353-367.
[R] H. P. Rosenthal, On the subspaces of $L_{p}(p>2)$ spanned by sequences of independent random variables, ibid. 8 (1970), 273-303.
[W] A. Wintner, The unboundedness of quantum-mechanical matrices, Phys. Rev. 71 (1947), 738-739.

Dongyang Chen
School of Mathematical Sciences
Xiamen University
Xiamen, 361005, China
E-mail: cdy@xmu.edu.cn

William B. Johnson
Department of Mathematics
Texas A\&M University
College Station, TX 77843, U.S.A.
E-mail: johnson@math.tamu.edu

Bentuo Zheng
Department of Mathematical Sciences
The University of Memphis
Memphis, TN 38152, U.S.A.
E-mail: bzheng@memphis.edu

Received July 11, 2011
Revised version September 9, 2011

[^0]: 2010 Mathematics Subject Classification: Primary 47B47; Secondary 46B20.
 Key words and phrases: commutators, maximal ideal, strictly singular operators.

