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Spectral analysis of subordinate Brownian motions
on the half-line

by

MATEUSZ KWASNICKI (Warszawa and Wroctaw)

Abstract. We study one-dimensional Lévy processes with Lévy—Khintchine expo-
nent 1 (£2), where 1 is a complete Bernstein function. These processes are subordinate
Brownian motions corresponding to subordinators whose Lévy measure has completely
monotone density; or, equivalently, symmetric Lévy processes whose Lévy measure has
completely monotone density on (0,c0). Examples include symmetric stable processes
and relativistic processes. The main result is a formula for the generalized eigenfunctions
of transition operators of the process killed after exiting the half-line. A generalized eigen-
function expansion of the transition operators is derived. As an application, a formula for
the distribution of the first passage time (or the supremum functional) is obtained.

1. Introduction and statement of main results. In a recent pa-
per [49], the spectral problem for the one-dimensional Cauchy process (that
is, the symmetric 1-stable process) killed upon exiting a half-line or an inter-
val was studied. For the half-line, an explicit formula for generalized eigen-
functions of transition operators was obtained using methods developed in
the theory of linear water waves. The argument of [49] relies on some proper-
ties specific to the Cauchy process, and it does not easily generalize to other
Lévy processes. The purpose of this article is to derive a similar formula
for generalized eigenfunctions in a more general setting, using a modified
method.

The class of processes considered here consists of the symmetric (one-
dimensional) Lévy processes X; with Lévy measure having a completely
monotone density function on (0,00). Alternatively, this class can be de-
scribed as the (one-dimensional) subordinate Brownian motions correspond-
ing to subordinators with Lévy measure having a completely monotone den-
sity function. Yet another characterization is given by the condition that the
Lévy-Khintchine exponent of X; has the form 1(£2) for a complete Bernstein
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function 1(§). The equivalence of the above is given in Proposition This
class of Lévy processes have attracted much attention in the last decade; see,
for example, [10] 16 17, B35, 40, [41], 43], 44, [68], 69] for some recent develop-
ments. There is also an extensive literature focused specifically on symmetric
a-stable processes ([2, 3, 9, 11}, (15 19, 20, 211, [36} 147, 148, [59]) and relativistic
a-stable processes (|12} [13] 14}, 50} [63]), which are included here as examples.

We consider the process X; killed upon leaving the half-line (0, 00). Let
Pt(o’oo), A(0,00) and D(A(g o0); L>) denote the corresponding transition op-
erators, the L°°((0,00)) generator, and the domain of A ), respectively
(formal definitions are given in the Preliminaries). The following general-
ization of Theorem 2 from [49] is the main result of the article. Its main
advantage is the explicit description of the eigenfunctions.

THEOREM 1.1. Suppose that the Lévy—Khintchine exponent of X; has

the form (€2) for a complete Bernstein function . For all X\ > 0, there
)

is a bounded function F on (0,00) which is an eigenfunction of Pt(o’OO
and A 00)-
POF\ (@) = e YR (@) and A e Fa(z) = —0(\)Fi(x)

for all x > 0. The function F) is characterized by its Laplace transform:
1% TO2) (A2 — (2

7 @1 02 i)

for £ € C such that Re& > 0. Furthermore, for x > 0 we have

(1.2) F\(z) =sin(Az + 0)) — Ga(z),

where ¥y € [0,7/2), and Gx(z) is a bounded, completely monotone function
on (0,00). More precisely,

A
(1.1) LE\(E) = >\2+§26XP<

1T A PN - P)
1.3 Iy =—— log
1-3) B A T e ()
and Gy 1is the Laplace transform of a finite measure vy on (0,00). If (&)
extends to a function YT (&) holomorphic in the upper complex half-plane
{£ € C:Im¢& > 0} and continuous in {£ € C: Im¢& > 0}, and furthermore
(=€) # P(N) for all € > 0, then the measure 7y, is absolutely continuous,

and
1 MY (A%)
(14) PY)\(df) - ;(Im w(AQ) —_ w+(_§2))

1% 6 -
<o( - Ve et e ic) d

dg,

for £ > 0.
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In some cases, the above formulae can be substantially simplified. For
example, when X is the symmetric a-stable process, then 9y = (2 — a)7/8
and F)(z) = Fi(\z); see Section [6]

Any complete Bernstein function (&) extends holomorphically to C \
(—00,0]. Hence, the assumption in the last part of Theorem concerns
the existence of boundary values of 1 (approached from the upper complex
half-plane) along the branch cut (—oo,0]. A formula similar to can be
given in the general case, as discussed in Remark

It should be emphasized that although Theorem extends the result
of [49], its proof is essentially different.

REMARK 1.2. An entirely analytical formulation of Theorem [I.1]is avail-
able; see [37] for the analytical definition of A ). Also, our arguments are
purely analytical, with the exception of probabilistic proofs of Lemmas [2.10]

and 2111

The eigenfunctions F) never belong to L?((0,00)): this reflects the fact
that the spectrum of the transition operators Pt(o’oo), considered as operators

on L?((0,00)), is purely continuous. Nevertheless, the functions F\ yield a

generalized eigenfunction expansion of Pt(o’oo). In classical eigenfunction ex-
pansions, a function is decomposed with respect to a complete orthonormal
set of eigenfunctions, and the operator acts at each component indepen-
dently. Informally, in generalized eigenfunction expansions, the principle is
the same, but the eigenfunctions are no longer square-integrable and there
are uncountably many of them. A formal statement is given in the follow-
ing result, which generalizes Theorem 3 in [49], and explicitly provides a
functional calculus for A ). Here A(g ) and D(A(07OO);L2) denote the

L?((0,00)) generator of the semigroup Pt(o’oo) and the domain of A ),

respectively (again, see Preliminaries for formal definitions).

THEOREM 1.3. With the notation of Theorem [I.1], let

(1.5) mf\) = | f(x)Fa(x)dz  for x>0, f € Ce((0,00)).
0

Then \/2/7 II extends to a unitary operator on L*((0,00)), and
P f(3) = e WOITFQ)  for f € L2((0,0)).
Furthermore, f € D(A(g,00); L?) if and only if (N*)I1f(X) is in L*((0,00)),
and
A0 f(N) = =0OITFA) - for f € D(Af,00) L)-

REMARK 1.4. Below we provide a complete proof of Theorem [T.3 under
the additional condition that IT is injective, and we verify that IT is injective
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when X; is the symmetric a-stable process, a € (0,2] (that is, (&) = £%/2).
In the preliminary version of this article, a relatively easy to check, but rather
restrictive sufficient condition for injectivity of IT was given (Lemma 19
in [53]), and it was conjectured that in fact IT is always injective. After a
few months, this conjecture was confirmed by Jacek Matecki, and the proof
of injectivity of IT is given in the recent preprint [56]. We announce the result
of [56] and state Theorem [1.3]in full generality.

REMARK 1.5. There is a striking similarity between formulae and
on one hand, and some formulae in fluctuation theory of Lévy processes
on the other. More precisely, the exponent in and resembles known
formulae for the Laplace exponent of ladder processes (see Corollary 9.7
in [28]) and the Laplace transform of the supremum functional (Theorem 1
in [4]). This phenomenon can be easily explained at the analytical level: in
both cases explicit formulae are obtained using the Wiener—Hopf method,
a technique for solving some integral equations on the half-line via Fourier
transform. The fluctuation theory of Lévy processes relies upon the Wiener—
Hopf factorization of the A-potential operator (that is, the resolvent) of the
transition semigroup of a Lévy process. The Fourier symbol of this operator
is 1/(\ + ¥(€?)). In the proof of Theorem the operator with Fourier
symbol (p(A?) — 1 (£2))/(A? — £2) is factorized.

A probabilistic formulation of the fluctuation theory is available through
local times, excursion theory and ladder processes; see [, 23] 57, [64]. It is an
interesting open problem whether there is a similar probabilistic derivation
of the formula for F}.

The proof of Theorem (under the assumption that IT is injective)
follows the lines of [49]. The proofs of Theorems and are rather
technical. Therefore, it may be helpful to keep in mind the following well-
recognized example.

EXAMPLE 1.6. Suppose that X; is the Brownian motion with variance 2t
(so that the generator of X is the one-dimensional Laplace operator d?/dx?,
and ¥(§) = &). In this case A ) is the Laplace operator in (0,00) with

Dirichlet boundary condition at 0, and Pt(o’oo) is the classical heat semigroup

on (0,00) with Dirichlet boundary condition at 0. The eigenfunctions of
A(0,00) and Pt(o’oo) are simply F)\(x) = sin(\x), with corresponding eigenval-
ues —\? and e_t)‘z, respectively. The integral transform I is the Fourier sine
transform on (0, 00), and Theorem [1.3|states that the Fourier sine transform
is the unitary mapping (up to a constant factor y/2/7), which diagonalizes
the action of the heat semigroup.

To the author’s knowledge, no results similar to Theorems and
have been available for Lévy processes other than the Brownian motion (pos-
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sibly with drift; this requires a minor modification to the above example)
and the Cauchy process (studied in [49]). Although generalized eigenfunction
expansions similar to Theorem have been studied for various classes of
operators (see [30] for the case of general Markov processes, and [61], [67] for
diffusion processes with Feynman—Kac potential), the explicit description
of eigenfunctions was not available. Consequently, their applications were
limited. The novelty of Theorem [I.3] is in that the generalized eigenfunc-
tions F)\(x) are given in a fairly explicit form, allowing various estimates,
asymptotic analysis and numerical approximation. For this reason, one can
expect that Theorems and will find a variety of applications; some
are discussed below.

Theorems andmyield formulae for the transition density pgD,oo) (z,9)
of X; killed upon leaving the half-line (0, 00), and for the distribution of the
first exit time 7(g o) from the positive half-line. These results are contained in
the following two theorems. By P, we denote the probability for the process
X, starting at a fixed point z > 0.

THEOREM 1.7. Lett > 0. If e g integrable in & > 0, then
[e.e]

0 2 -
w6)  p" ey =2 (e PYIR@A@) AN foray > 0.
0

THEOREM 1.8. Lett > 0. If

£[Y" (&)
) e <
and
T () ~t(€2) g
(1.8) § D) e £ < o0,
then

(1.9) Py (T(0,00) > 1) = % S ﬁ/((;\\j)) e_w()‘z)F,\(x) d\  forx > 0.
0

D(EDY (£2)e ) is integrable in € > 1 for all t > 0, then furthermore

o

(1.10) Py (T(0,00) € dt) = i(g V' (A2)9(\2) e—tl/)(AQ)F)\(x) d/\> dt
0

for xz,t > 0.

REMARK 1.9. Theorem in full generality is proved in the recent
preprint [56]. In this article we provide a much simpler proof, under a more
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restrictive condition

(1.11) lim sup EW(E)] <1, limsup>—=~ EW(e)] < 1.

£—0t W(@ £—o0 (4 (E)

This condition implies both and ., as well as integrability of
V(EDY (£2)e(E) (see the proof) The proof given below relies on The-
orem [I.3] It is noteworthy that many interesting examples, including sym-
metric a-stable processes and relativistic a-stable processes, satisfy .
By Corollary condition is satisfied when 1 is regularly varying

of positive order at 0 and at co.

It should be emphasized that the integrand in has two oscillatory
factors, and cancellations in the integral are essential. Hence, formula
is problematic for numerical computations. For the Cauchy process, a signif-
icant simplification of is possible (see Theorem 4 in [49]). It is an open
problem whether formula can be simplified in the more general case,
even for symmetric a-stable processes for general o € (0, 2].

Cancellation is of less importance in Theorem [1.8} see [56], where is
used to obtain estimates for the density function of the distribution of 7(0,00)

Since &["(€)]/¢¥'(€) < 2 for all £ > 0, the supremum in is always
not greater than 2 (see Preliminaries). The assumptions (1.7 and . are
rather mild regularity and growth conditions for ¥(§); examples are given in
Section [6l

REMARK 1.10. By symmetry, the first exit time 79 ) for X; starting
at x > 0 has the same distribution as the first passage time 7, through a
barrier at x for X; starting at 0. On the other hand, first passage times are
related to the supremum functional:

IPO( sup X < ac) =Po(7e > t) = Pu(T(0,00) > 1)-
s€[0,t]

Hence, Theorem gives, in a rather general setting, an explicit expression
for the distribution of first passage times and the supremum functional,
which are fundamental objects in fluctuation theory of Lévy processes. It is
noteworthy that the double Laplace transform (in ¢ and x) of the distribution
of 7, has been known for general Lévy processes since 1957 (Theorem 1
in [4]). However, explicit formulae for P, (7(g o) > t) are known only in some
special cases; see [24] 32, 35, 51l [52] for some recent developments in this
area. Also, a formula for the single Laplace transform (in ¢) of P(7, > t) for
a large class of symmetric Lévy processes was obtained only very recently
in [55].

Theorems [I.T] and [I.3] can be applied to certain systems of PDEs, related
to traces of two-dimensional diffusions, as discussed in Section [7] Further-
more, there are at least four recent preprints exploiting the results of the
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present article. An application of Theorem to the spectral theory of
symmetric a-stable process in the interval can be found in [54]. The case
of the relativistic 1-stable process on the half-line and on the interval is
studied in detail in [38]. This application may be of particular interest in
quantum physics; see [20, 29] 58] for related research. In [27], Theorems
and [I.3] are used to obtain refined semi-classical asymptotics for eigenvalues
of higher-dimensional isotropic a-stable processes in domains. Finally, the
proof of Theorems and in full generality, as well as their application
to a detailed analysis of first passage times, can be found in [56].

We conclude the introduction with a brief description of the structure
of the article. The Preliminaries section contains definitions and standard
properties used in the article, and auxiliary lemmas. It includes some back-
ground on distribution theory, Lévy processes and their generators, subor-
dinate Brownian motions and complete Bernstein functions. In Section [3] a
certain transformation related to the Wiener—Hopf factorization is studied.
Next, in Section [l we derive the formula for F) and prove Theorem [I.1]
Theorems and [L.§ are proved in Section [f] Examples, including sym-
metric a-stable processes and relativistic a-stable processes, are studied in
detail in Section [6] In Section [7] we give an application of our results to

systems of PDEs (Theorem [7.1)).

2. Preliminaries

2.1. Distribution theory. In the theory of partial differential equa-
tions, it is a common case that one first finds a weak solution to a problem,
and then, by showing that the solution is sufficiently regular, one argues
that it is in fact a strong solution. This approach will be used to prove The-
orem first we find a distributional eigenfunction of A ), and then we
show that in fact it belongs to the domain of A(g ). Our argument relies
heavily on Fourier methods, and the operators involved are typically non-
local, so the required background on distribution theory is slightly different
from the one used in partial differential equations. It should be emphasized
that the use of distributions could be avoided, at least partially, at the price
of less clear exposition. However, the language of distribution theory seems
to be well-suited for problems involving generators of killed Lévy processes.

Let S denote the class of Schwartz functions in R? (d = 1,2,...), and
let S’ be the space od tempered distributions in R%. If o € S and F € &,
we write (F, ) for the value of F' at ¢. Below we recall some well-known
properties of tempered distributions; for a detailed exposition of the theory,
see e.g. [71].

If ¢ € S, the Fourier transform of ¢ is Fp(&) = (za € %p(z) dz. For
F € 8, FF is the tempered distribution satisfying (FF, ¢) = (F, Fp).
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The convolution of 1, ps € S is defined in the usual way, ¢ * pa(z) =
§pa 01(y)p2(x —y) dy. When ¢ € S and F' € &', then F x ¢ is the infinitely
smooth function defined by

Fxp(x) = (F,¢z), where ¢z(y) =o(z—y).

The convolution of two distributions is not well defined in general. Suppose
that Fy, Fy € 8’. We say that Fy and Fy are S'-convolvable if for all p1, ps €
S, the functions F; * @1 and Fb * @9 are convolvable in the usual sense, i.e.
the integral {4 (F1 * 1) (y)(F2 * p2)(x — y) dy exists for all z. When this is
the case, the S8’-convolution Fy x Fy is the unique distribution F' satisfying
F x (o1 % p2) = (F1 % 1) * (Fy * @a) for ¢1,p2 € S. Note that there are
other non-equivalent definitions of the convolution of distributions, and S’-
convolution is often denoted by F; ® Fy; for the discussion of various notions
of convolvability, the reader is referred to [22] [71].

Recall that the support of a distribution F' is the smallest closed set
supp F' with the property that (F,¢) = 0 for all ¢ € S such that ¢(x) =0
for x € supp F. If any of the tempered distributions F}, F» has compact
support, or (in the one-dimensional case) if both F} and F, are supported
in [0,00), then F} and F, are automatically S’-convolvable.

It is well known that the distributions (F}* Fy)* F3 and Fyx(Fa* F3) need
not be equal; however, if the pairs (Fy, Fy) and (Fy, F3) are S’-convolvable,
and furthermore the functions Fj * @1, F5 * o, and F3 * @3 are convolvable
(that is, (F1 * ¢1)(y)(Fa * p2)(2)(F3 * ¢3)(z — y — 2) is integrable in y, z for
all z € RY) for any o1, @2, 03 € S, then the S’-convolution of Fy, F, and F3
is associative; see Section 4.2.8 in [71].

Any S’-convolvable distributions Fy, F» satisfy the exchange formula
F(Fy = Fy) = FFy - FFy, where the multiplication of distributions FF} and
FFy extends standard multiplication of functions in an appropriate manner
(see [34], [71]). Since we only use the exchange formula when FF; and FF
are genuine functions, or when FFj is a measure and FF5 is a function, we
do not discuss the notion of multiplication for general distributions and refer
the interested reader to [39, [66), [7T].

In the one-dimensional case d = 1, the Laplace transform can be defined
for tempered distributions. If ¢ € S is supported in [0, 00), then the Laplace
transform of ¢ is denoted by Lo(€) = [ e *%p(z) dz (Re& > 0). This is a
holomorphic function of £ in the right complex half-plane Re£ > 0, contin-
uous at the boundary. Clearly, Fo(¢&) = Lo(—i€). If F € S’ is supported in
[0,00), the Laplace transform of F' is defined for £ € C with Re& > 0 by

LF(§) = (Fech),

where e¢(z) = e ¢ and h is any infinitely smooth function such that
h(z) = 1 for z > 0 and h(x) = 0 for z < —1. This definition does not
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depend on the choice of h (see formula (9.1.4) in [7I]). The above defini-
tion of LF extends the usual definition of the Laplace transform of signed
measures on [0, 00).

Note that while the Fourier transform of a distribution is again a dis-
tribution, the Laplace transform is always a (holomorphic) function. For a
fixed ¢ > 0, the function LF(t — is) is the Fourier transform of the distri-
bution e;F (where again e;(r) = e~ @), and as t — 0T, the distributions
LF(t —is) converge to FF in §’. The exchange formula holds also for the
Laplace transform: if both Fy, F5 € 8" are supported in [0, 00), then they are
S’-convolvable and L(F) x F5)(§) = LF1(§)LF>(§) for all £ with Re > 0.

We say that two distributions Fi, F5 restricted to an open set D are
equal if (Fy, @) = (Fy,¢) for any ¢ € S vanishing in R? \ D. Equivalently:
Fy — Fy is supported in R\ D.

2.2. Transition semigroups and generators. Below we recall and ex-
tend some standard definitions and properties, which can be found, for exam-
ple, in [I, Bl [64]. In this article we are only concerned with one-dimensional
subordinate Brownian motions. However, Lemma below might be of
interest for general Lévy processes. For this reason, in this and the next
subsection, we work with the general case.

Let X; be a Lévy process in R?. We write P, and E, for the probability
and expectation for the process X; which starts at z € R?. The process X;
is completely determined by its Lévy-Khintchine exponent ¥: for £ € R? we
have

(2.1) Eoe’ Xt = ¢ (&),

where

(2.2) W(E) =BE-E—iv-E+ | (1— €% + 1, 1<13(2)i - 2) v(dz).
R4

Here (8 is a non-negative definite d x d matrix (the diffusion coefficient),
7 is a vector in R? (the drift), and v is the Lévy measure of X;, a Radon
measure on R? \ {0} such that {3, min(1, |z|?) v(dz) < oco. If v is absolutely
continuous, we denote its density function with the same symbol v(z).

The transition operators of X; are defined by

Pf(z) =Bo f(Xy) = | f(y) Po(X; €dy), t>0,z€R,
R4
whenever the integral is absolutely convergent. Each P, is a convolution

operator, with convolution kernel given by the distribution of —X; under Py.
By the Lévy-Khintchine formula (2.1J),

(2.3) Pree = e_w(g)eg for e¢(z) = €.
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Furthermore, for p € S,

(2.4) FPp(€) = e MOFp€), ¢eRY

see Theorem 3.3.3 in [I] (note that in [1], the Fourier transform is defined
with e~%® instead of €*® ). The operators P; form a contraction semigroup
on each of the Lebesgue spaces LP(R?) (p € [1,00]), on the space Cy(R%) of
bounded continuous functions, and on the space Co(R?) of continuous func-
tions vanishing at infinity (all equipped with the usual norms). On LP(R?)
(p € [1,00)) and on Cy(RY), this semigroup is strongly continuous (see Sec-
tion 3.4 in [1]). The generator of each of these semigroups is denoted by
the same symbol A, and we write D(A; X') for the corresponding domain,
where X is either LP(R?) (p € [1,00]), Cp(R?) or Co(R?). More precisely,
[ €D(A;X) if f € X and the limit

Af = lim Rf—1

t—0+ t

exists in the topology of X. Note that the limit, if it exists, does not depend
on the choice of X' (apart from the fact that in Co(R?) and Cj(R?) it is defined
pointwise, while in Lp(Rd) only up to a set of zero measure). Therefore, using
a single symbol A for operators acting on different domains D(A; X') causes
no confusion. The Schwartz class S is a core of A on each of the spaces
LP(RY) (p € [1,00)) and Cp(R?), and by (24), for ¢ € S,

(2.5) FAp(§) = —¥(§)Fp(§), ¢€R

We abbreviate, for example, D(A; LP(RY)) to D(A; LP).

REMARK 2.1. The spectral theory of P, and A is very simple, thanks to
the Lévy-Khintchine formula (2.3)). Indeed, the function % is an eigenfunc-
tion of P; with eigenvalue e=*(¢). Hence, €’¢® belongs to D(A; L>), and it is
an eigenfunction of A with eigenvalue —¥(&). The generalized eigenfunction
expansion of P, and A is given by and ; the Fourier transform
plays the same role as the integral transform IT in Theorem [I.3]

If X; is symmetric, then ¥(§) = ¥(—¢) is real. Since sin(§ - x + 9) is a
linear combination of €¢* and (=87 it is also an eigenfunction of P, and A.
Note that the eigenfunctions F) in Theorem [I.I] behave asymptotically as
sin(Az +9y) as z — oo.

When ¢ € S, the generator of X; can be written in the form
(26)  Ap(z) =BVe(z) Vo(x) +7- V()

+ | (p(@ + 2) = (@) — 115121y (2)2 - V() v(d2),
R4
where 3, v and v are as in (2.2) (Theorem 31.5 in [64]). Furthermore,

(2.7) Al oo way < Cllellczmay, ¥ €S,
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where C' depends only on the process X, and Hgo||cg(Rd) is the maximum of

L>®(R?) norms of ¢ and its first and second order partial derivatives (see the
proof of Theorem 31.5 in [64]).

We need the following extension of (2.6). For Co(R?) instead of Cy(R?),
this is well-known, see Theorem 31.5 in [64]. The statement given below is,
however, difficult to find in the literature, so we provide a proof. Let C}° (RY)
be the class of functions F' such that F' and all partial derivatives of F' (of
all orders) belong to Cy(R?).

LEMMA 2.2. If F € C°(RY), then F € D(A;Cy) and
(2.8) AF(xz) = VF(z) -VF(z)+~v -VF(x)

+ | (F(z+2) — F(z) — 1q.<1y(2)2 - VF(2)) v(dz).
R4

REMARK 2.3. Note that in contrast to the Co(R%) case, F may fail to
belong to D(A; Cp) when F and its first and second order partial derivatives
are in Cy(R?). A simple counterexample can be easily constructed for one-
dimensional Brownian motion: if F, F', F” € C,(R), but F” is not uniformly
continuous, then the convergence of (P.f — f)/t may fail to be uniform. We
omit the details.

Proof of Lemma . Let HfHC{j(Rd) denote the maximum of the L>°(R?)
norms of f and its partial derivatives of order not greater than k, and de-
note M = ||F ||C;‘(Rd)- There is a sequence ¢, € S such that ¢, and its first
and second order partial derivatives converge locally uniformly to F' and the
corresponding first and second order partial derivatives of F', and further-
more HgonHCg;(Rd) < CM (with C depending only on the dimension d). For
f € D(A; L>) and = € RY, we have (see [25])

t t
(2.9) Pif(z) — f(z) = | P Af(z)ds = SAPSf(a;) ds
0
In particular, ||Pf — fpoo(ray < [ Af Lo (may- Slnce on € S € D(A;Cp),

by ( . we have

t
0
t
1
< VIA(Pogn — on) (@) ds.
0
By (2.7),
P, n\L) — Pn T 1
tp ( )t ® ( ) — Agpn(ﬂj‘) Z S ||PsS0n - @n”Cg(]Rd) ds.
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Since P; and A commute with partial derivative operators on S, by ([2.9)),

PtQOn(-T) - (Pn(x) ;

1 t
7 — Agy(z)| < n S SHASOang(Rd) ds = 5 HAWnHCg(Rd)-
0
Finally, by (2.7),
Pipn(z) — on(x CtM
P =20l pion()] < Fllonlegien < Sy

As n — oo, we have ¢,(z) — F(z) and Pip,(z) — P.F(z) (by domi-
nated convergence). By (2.6)), Taylor’s theorem and dominated convergence,
Ap,(x) converges to the right-hand side of (2.8)), which we denote by G(x),
and the convergence is locally uniform in z € R?. It follows that
PF(x)—F CtM

t 2
Since z € R? was arbitrary, we have ' € D(A;Cy) and AF(z) = G(z), as
desired. =

Informally, the generator A is also a convolution operator, but the con-
volution kernel is a tempered distribution. We give this a precise meaning;
see also [0, [64], and [8] for the case of symmetric a-stable processes.

DEFINITION 2.4. The distributional generator of X; is the tempered dis-
tribution A € S’ defined by the formula

(4, ¢) = Ap(0), €S

Let ¢(z) = ¢(—x) for p € S. We define A (the reflection of A) by the
formula (A, ¢) = (A, @). Hence, (A, p) = Axp(0) and Ap = Axpforp € S
(see [T1]). By 2.3), ]—"A(f) = —(§) and FA(E) = —w(§) for € € RY

PROPOSITION 2.5. If F € D(A; L®), then AF = Ax F.
Proof. We have, by the definition of S’-convolution,
(A% F)x % 0g = (Ax 1) % (F*p2) = (Ap1) * F * py.

Recall that & C D(A;L'). Consequently, Ap; is the L'(R?) limit of
(Pyp1 — 1) /t. Since @1, p2 and the convolution kernel of P, are integrable,
and F' is bounded, by Fubini we have

(Ptgol—gol)*F*(pgz(PtF—F)*(pl*gOQ.

By dominated convergence,

(PLF — F) % o1 % @2
'

(Ax F)x @1 %o = lim = (AF) x @1 % p2,

as desired. =
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COROLLARY 2.6. If F € C°(R?) (as in Lemma, then AF € C2°(RY),
and A commutes with partial derivative operators on C°(RY).

Proof. Led D be a partial derivative operator (of arbitrary order). By
Proposition [2.5, we have DAF = D(Ax F) = A (DF) = ADF. u
If X is one-dimensional and symmetric, then ([2.2)) takes the form

(2.10) w(¢) =B+ | (1—cos(é2))v(dz), EE€R,
where 8 > 0 and {*_min(1,2?)v(dz) < co. For f € C;°(RY) (as in Lem-
ma [2.2)), we have

o0

(211)  Af(@) = Bf" (@) +pv | (fla+2) - f@)w(dz), @R

—0o0

Here pVS denotes the Cauchy principal value integral:

pv | (fz+2) = f(2) v(de) = limy | (fla+2) = f(2)v(d2).
—o0 TUUR\(—ee)

Of course, if X; is symmetric, then A = A.

2.3. Killed process and its generator. The main references for the
notion of a killed process (or part of a Markov process) are |7} 25], where gen-
eral strong Markov processes are studied. Here we consider a Lévy process X;
in RY. Let 7p be the time of first exit from D, 7p = inf{t > 0: X, ¢ D}. The
killed process XtD is a strong Markov process in D with lifetime 7p such that
XtD = Xy for all ¢ < 7p. The transition operators PtD , the generator Ap,
and domains D(Ap; X) corresponding to the killed process X are defined
in the same way as for the free process X;, that is,

Pth($) = E:):f(XtD) = Ex(f(Xt)1t<‘rD),
and 5
B
Apf = t£%1+ P
whenever the limit exists in the topology of the function space X’; in this case,
we write f € D(Ap; X). Again we abbreviate, for example, D(Ap; LP(D))
to D(Ap; LP).

When X; is the Brownian motion, then A is the Laplace operator in R,
and Ap is the Laplace operator in D with Dirichlet boundary condition.
Even in this case the relation between Ap and A is very delicate. On the
other hand, this relation is crucial for the proof of Theorem Hence, we
now discuss this topic in more detail.

Suppose first that X; is a compound Poisson process: 3 = 0, v = 0
and v is a finite measure. In this case, the situation is clear. The following
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result seems to be well-known to specialists, but it is difficult to find in the
literature (cf. Example 3.3.7 in [I] for the case D = R%).

LEMMA 2.7. Let X; be a compound Poisson process in RY, with Lévy
measure v, and let p € [1,00]. Then the semigroup PP is strongly continuous
on LP(D), the generator Ap is a bounded operator on each LP(D), and

Apf(x) = 1p()Af () = 1p(x) | (f(z+2) — f(x)) v(d2)
Rd

for all f € LP(D), with the usual extension f(x) =0 for x ¢ D.

Proof. Denote by M = v(R9\ {0}) the intensity of jumps of X;, and let
0 <71 <79 <--- be the sequence of (random) times when X; jumps. Let
f be in some LP(D) (p € [1,00]), and let x € D be the starting point of Xj.
Note that

PP f(x) = Eo(f(Xt)Li<ry)

= Eo(f(Xt)Licr,) + B (f(Xe)1ry <t<ry) + Ea(f (Xt) 1ry<i<rp )

indeed, in the first summand ¢ < 71 implies that ¢ < 7p, and in the second,
if m <t<mandt>7p, then f(X;) = 0. We have f(X;) = f(x) in the
first summand, and in the second, f(X;) = f(X,,) is independent of (71, 72).
Furthermore, P,(X,, € x + dz) = M~'v(dz). Hence, if 7(E) = v(—FE), we
have
E.f(X;) = S flx+2)v(dz) = S flx—2)v(dz) = f*v(x).

R4 R4

It follows that
PPf(z) = f()Pu(t <T1) + MLf 5 0(2)Pu(r1 <t < 13)
+ Er(f(Xt)1T2§t<TD)7

and so, finally,
PP f(z) - f(x)

1) |PHEOZIO - (o) - atsto)
< ‘IP’m(t < Tl)t— 1+ Mt f(x)‘ ‘M(n < tﬂ;tm) — Mt £ 0(x)
+ Ex(f(Xt)t17'2<t<‘rD) ]

The proof will be complete once we show that each of the summands on the
right-hand side converges to 0 in LP(D).

Since 71,79, ... are increase times of a Poisson process, we have
(Mt)* oMt

Pp(mp <t < Tpy1) = Y ;

t>0,k=0,1,...,
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where 79 = 0. In particular, |P,(t < 71) — 1+ Mt| = [e”M — 1+ Mt| <
(Mt)2/2 and |P.(11 <t < 79)—Mt| = |[Mte=M!—Mt| < (Mt)?, which shows
that the first two summands in (2.12)) converge to 0 in LP(R?). Furthermore,

[Eo(f(X)ry<tarp)| < Ea(|f(Xo)|Lr<e) = ) Ea(|f(Xn) [ Lne<tcnis)
k=2

- o ||+ (%) (@) (M)~ _
_éEx’f(XTk)‘Px(Tk St<7'k+1) _kz_2 MF A e Mt'

Since the total mass of 7** is M*, we conclude that

1B ([ f1(Xe)Lry <t<rp) | (0) <

[ (F) (M)F _
g MF o a

Lp(R?)

> Mtk
<3 ooy e
k=2 ’

= | Fll ogray(1 — e M — Mte™),

which is of order ¢? as t — 0%. Hence, also the third summand in (2.12))
converges to 0. m

If X; is not a compound Poisson process, then the generators of X; and
XtD are unbounded operators, and the relation between the domains of A
and Ap is much less obvious. A point z € 9D is said to be a regular boundary
point of D if inf{t > 0: X; ¢ D} = 0 a.s. with respect to P, (note that
here the inequality ¢ > 0 is strict, while £ > 0 is used in the definition
of 7p). Let Co(D) denote the space of Co(R?) functions vanishing in R?\ D.
If every x € 9D is a regular boundary point and X; has the strong Feller
property (that is, P, maps L>®°(R%) to Cy(R%)), then the operators PP form
a strongly continuous contraction semigroup on Cy(D) (that is, XtD has the
Feller property; see [18]). Note that if X; is a symmetric Lévy process in R
(and not a compound Poisson process) and D = (0,00), then 0, the only
boundary point of D, is regular (see Theorem 47.5 in [64]).

We have the following fundamental result due to Dynkin.

DEFINITION 2.8 (Dynkin characteristic operator, [25]). Let x € R? and
denote by 7, . the first exit time from the ball centered at x and with radius e.
If the limit

lef — lim El'f(XTa:,e) - f((l:)

e—0t ExT:E,E

exists, we write f € D(,). If f € D(™A;) for all x € D, we write f € D(Up),
and we define Ap f(z) = A, f.
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LEMMA 2.9 (Theorem 5.5 in [25] for Lévy processes). Suppose that X; is
a Lévy process in R% which is a strong Feller process. Suppose furthermore
that D C R? is open, and every boundary point of D is reqular. Let f €
Co(D). Then f € D(Ap;Cy) if and only if f € D(Ap) and Apf € Co(D).
In this case, Apf(z) =Apf(x) forx € D. m

The above lemma states that, in a sense, the operators Ap and A have
the same pointwise definition, but their domains are different. This can be
made even more explicit using the language of distribution theory, as we
now describe. Recall that A is the distributional generator, defined in Defi-
nition and A is the reflection of A.

LEMMA 2.10. Suppose that X; is a Lévy process in R® which is a strong
Feller process. Suppose furthermore that D C R? is open, and every boundary
point of D is reqular. Let F € Co(D). If the distribution Ax F restricted to D
is equal to a Co(D) function, then F' € D(Ap; Cy) and ApF(z) = Ax F(z)
forxz e D.

In the proof, we use Dynkin’s formula (formula (5.8) in [25]): if 7 is a
Markov time, E,7 < oo, and f € D(A;Cy), then

T

(2.13) B, f(X:) — f(2) = Bo (JAF(X,) ds), weR

0

We denote by B(x,e) and B(z,¢) the open and closed balls centered at z
and with radius €.

Proof of Lemmal[2.10. Fix x € D and let r > 0. Let g, € S be an approx-
imation to identity: g,(y) > 0, {za gr(y) dy = 1 and g,(y) = 0 when |y| > r.
We define f = F x g,. Then f € C°(R%) C D(A; Cp) (see Lemma [2.2)), and

(2.14) Af(y) = Ax (Fxg,) = (AxF)xg, = Fx(Axg,).
(The convolution of A, F and g, is associative because [’ is a bounded
function, g, has compact support, and A x ¢ is integrable for all ¢ € S.) In

particular, Af € Co(R?), and therefore f € D(A;Cp). Let 7, be the time
of first exit from B(z,¢). By Dynkin’s formula (2.13]),

Eef(X(72c)) — f(2)

Ewa,a

Tx,e

E, | (Af(X)) — Af(z))dt

ExTz €

- Af(w)‘ = §
(

< sup |Af(y) — Af()].

yEB(z,e)

Suppose that r + ¢ < dist(z,R%\ D). Then using (2.14) for the right-hand
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side, we obtain

‘Ezf(X(Tr,e)) — f(x)

Eme,a

—Af(z)| < sup  [AxF(y) - A= F(z)].

yEB(z,r+e)

If we let r — 0T, then g, approximates the Dirac delta measure §y. Hence,
[ = F x g, converges uniformly to F, and (again by (2.14))) Af(x) converges
to Ax F(x) (x € D is fixed). It follows that

‘EacF(X(TJ»‘,a)) — F(x)

E:(:Tx,a

—AxF(z)| < sup |AxF(y)— AxF(z)|.

YEB(x.¢)

As ¢ — 07, the right-hand side tends to zero. Therefore, F' € D(2l;) and
AF = Ax F(x)v Since x € D was arbitrary, we conclude that F' € D(2p),
and ApF(z) = Ax F(z) for x € D. The result follows from Lemma .

Lemma|2.10|seems to be new. However, a related distributional approach
to generators of the free and killed processes was used for example in [§],
in the study of harmonic functions with respect to symmetric a-stable pro-
cesses.

We need the following auxiliary result. Its L? analogue is relatively easy to
prove using Dirichlet forms. The uniform version seems to be new, especially
in the case of unbounded D and F' not vanishing at infinity.

LEMMA 2.11. Suppose that v > 0, D C R? is an open set, F € Cgo(Rd),
and F(x) = 0 whenever dist(z,R% \ D) < r. Suppose furthermore that
AF(z) =0 for all z € 0D. Then F € D(Ap;Cy) and ApF(x) = AF(x) for
zeD.

Recall that B(z,¢) is the open ball centered at x and with radius ¢. In
the proof, the following well-known result is used. For completeness, we give
a simple proof.

PROPOSITION 2.12. For all ¢ > 0, Po(t > Tp(o))/t is bounded in t > 0.

Proof. Let h € S satisfy h(0) =1, h(z) = 0 for z ¢ B(0,¢), and h(z) <1
for all x. Define 7 = min(¢, 7). Then, by Dynkin’s formula (2.13)),

Po(t 2 Tp(0,e) =1 = Po(t < 7p(0,e)) < h(0) — Eoh(X7)
- —ExQ Ah(Xs)ds) < ) AR oo - m
0
Proof of Lemma|2.11]. Since there are few tools to handle functions non-
vanishing at infinity, we use the definition of Ap. For e € (0, r|, denote by D,
the set of x such that dist(x,R?\ D) > ¢, and D. = R%\ D.. Our strategy
is to show that away from the boundary of D (in D.) we have PP F ~ P, f,
while near the boundary (in D\ D.), PPF =~ 0.
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Let ge(t) = Px(t > Tp(s,))- Note that g.(t) does not depend on x € RY,
and by Proposition [2.12} ¢.(t)/t is a bounded function of ¢ > 0.

First, we consider x € D., where ¢ € (0,r] will be specified later. By
Lemma F € D(A;Cy). Since F vanishes on D, for x € D, we have

|PF(x) — PPF(2)] = [Bo(F(Xe)Lizrp)| < 1F |l e m)Ee(Lx,en, Lizrp)-

Observe that the condition X; € D, and t > 7p implies that before time ¢,
the process first exits D, and after that it exits D... Furthermore, B(X,,,¢)
C D! a.s. Hence, by the strong Markov property,

E:(1x,ep, li>r,) < Py(X; first exists D and then B(X,,,¢) before time t)
= Es(g:(t — m0) Lizrp )-
Since g, is increasing, and B(x,e) C D, we have
Ey(1x,ep, Lizrp) < g-()Po(t > 7p) < g ()P (t > Th(a ) = (9:(1))%.
We conclude that for z € Dy,

PPF(x) — F(x)
t

P,F - F

(2.15) «—AF@ﬂg‘ — AF

Lo (R4)

1 F || oo ) (9e ()
; :

+

Now we consider z close to the boundary. Fix (small) n > 0. By Corol-
lary [2.6] AF is Lipschitz continuous. Hence, we can choose € € (0,7/2] small
enough, so that [AF(y)| < n when dist(y, D \ D) < €. Let ¢, € S be the
sequence approximating F' as in the proof of Lemma Let x € D\ D,
and 7 = min(¢, 7p). By Dynkin’s formula (2.13),

Baipn(X7) — (o)) = [Eo (| Apn(X0) )] < Ex(ﬁ [Apa(X,)|ds).
0 0

When ¢ < 7p(, ), we use the estimate

t
V[ Apn (Xo)|ds <t sup [Apa(y)l.
0 yEB(x,)

When ¢ > 7p(; <), we simply have

t
V1 Apn(Xs)| ds < tl| Apnl| oo ey
0

It follows that
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|Ex90n(XT) - ¢n($)‘ < ﬂpx(t < TB(m,s)) sup |~A90n(y)|
yEB(z,e)

+ tPo(t = T .e) )| AP Lo (ra)
<t sw | Apa()] + 9Ol Apall ) ).
yEB(z,¢)
Recall that ¢, and Ay, converge to F and AF, respectively, locally uni-
formly, and that || Agnl[czre < Cllenllcamey < C2||FHC;}(]Rd) for some

C > 0. By taking the limit as n — oo and applying dominated convergence,
we find that for x € D\ Dy,

E.F(Xr) = o) < t( sup [AF(y)] + C2e(t)| Flls e )
yEB(z,€)
We have |AF( )| <nfory € B(z,e) (because dist(y, D \ D;) < ¢). Hence,
“ECEF(XT) — F(.’L‘)|
t

(X t) F(z) AP <

+ |AF(z)|

<20+ C?g: (DI F |l carey-
Finally, F(X,,) = 0 a.s., and therefore
E.F(X;) = Eu(F(X¢)lt<rp) = PPF(2).
We conclude that
’PtDF(x) — F(x)

(2.16) — AF(z)

< 20+ Cge (D)1 Fll o2 (ray-

Recall that as ¢ — 071, g-(¢)/t is bounded. Furthermore, (P.F — F)/t con-
verges uniformly to AF. Hence, (2.15) and (2.16) imply that for ¢ small
enough,

Since 1 > 0 was arbitrary, the proof is complete. m

PPF - F

; —1pAF

< 3n.

L>=(D)

2.4. Subordinate Brownian motions. From now on, we only consider
one-dimensional Lévy processes. The process X; corresponding to =1,y =
0 and v vanishing, is the Brownian motion, running at twice the usual speed
(that is, Var X; = 2t). We denote the transition density of the Brownian
motion by ks(z),

1 22
2.1 ko(2) = _Z), z€eR.
(2.17) (2) mexp( 45) s>0,z¢€

A Lévy process X, is said to be a subordinate Brownian motion if it can be
written in the form X; = Byz,, where By is the Brownian motion, Z; is a sub-
ordinator (a non-decreasing Lévy process), and B and Z; are independent
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processes. We assume that under P, B, starts at x and Z; starts at 0 a.s.
To avoid trivialities, we assume that X; is non-constant, that is, 8 > 0 or v
is non-zero.

The subordinator Z; is completely described by its Laplace exponent
Y(€): we have Ege 6% = ¢~ (¢ € C, Re& > 0), where

o
(2.18) U(§) = BE+ | (1—e ) u(ds), Re&>0.
0
Here 8 > 0 is the same as in , and p is the Lévy measure of Z;, a
Radon measure on (0,00) satisfying {;° min(1,s) u(ds) < oo. The relation
between the Lévy measures u and v of Z; and X; is
(0.9)
(2.19) v(z) = | ki(2) p(ds), =z €R\{0},
0
with k4(z) defined in (2.17). The Lévy—Khintchine exponent of the subordi-
nate Brownian motion X; satisfies ¥ (&) = 1(£2).

The class of subordinate Brownian motions is naturally divided into com-
pound Poisson processes (with bounded Laplace exponents 1) and processes
corresponding to unbounded 1. The latter class consists of strong Feller pro-
cesses: if Z; > 0 a.s., then X; = Bg, has absolutely continuous distribution.
This property is important for applications of Lemma See |10l 44}, 65]
for more information on subordinate Brownian motions.

REMARK 2.13. One needs to distinguish the killed subordinate and the
subordinate killed processes. The first one is XtD introduced above, while the
other one is obtained by subordination of the killed Brownian motion. We
emphasize that these two processes are essentially different. In particular, the
spectral theory for the subordinate killed process is trivial: its eigenfunctions
are the same as the eigenfunctions of the (insubordinate) killed Brownian
motion, and only the corresponding eigenvalues are different. For a discussion
of the relation between killed subordinate and subordinate killed processes,
see e.g. [69].

We recall some standard definitions; see [65] for further information.
A function f : (0,00) — R is said to be completely monotone on (0,00)
if f™(z)>0forall z>0andn=0,1,2,.... A function f : (0,00) — R
is a Bernstein function if f is non-negative and f’ is completely monotone.
By Bernstein’s theorem, every completely monotone function is the Laplace
transform of some Radon measure on [0,00), and every Bernstein function

has the form

(2.20) fz)=citcz+ |(1—e™)m(ds), z>0,
0
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for some c¢1,c2 > 0 and a Radon measure m on (0,00) satisfying
§o_ min(1,s) m(ds) < oo. Whenever we write f(0) when f is a Bernstein
function, we mean lim, .o+ f(2). Note that if f(0) = 0, then f has the
form ; hence, a Bernstein function f is the Laplace exponent of a sub-
ordinator if and only if f(0) = 0.

2.5. Complete Bernstein functions and Stieltjes functions. A
Bernstein function f for which the measure m in the representation has
a completely monotone density function is said to be a complete Bernstein
function (CBF for short; also known as an operator monotone function).
Recall that X; is a subordinate Brownian motion, p is the Lévy measure
of the underlying subordinator, and 1) is its Laplace exponent (so that the
Lévy-Khintchine exponent of X; is 1(£2)).

PROPOSITION 2.14. The following conditions are equivalent:

(a) ¥ is a complete Bernstein function;
(b) w(ds) has a completely monotone density function u(s);
(¢) for a Radon measure o on (0,00) such that the integral

SSO min(¢ 1, ¢72) po(dC) is finite,

(2.21) wie) = pe+ 1| o 1)

SE+e ¢

(d) v extends to a holomorphic function in C\ (—o0,0], which leaves the
upper and the lower complex half-planes invariant;
(e) v(z) is a completely monotone function on (0,00).

A symmetric Lévy process satisfying (e) is automatically a subordinate Brow-
nian motion.

Proof. Equivalence of (a) and (b) is just the definition of complete Bern-
stein functions. Equivalence of (b)-(d) is standard: see [65, Chapters 6
and 11]. Equivalence of (c¢) and (e) seems to be well-known to specialists
(cf. [62]), but a direct reference to the literature is difficult to find. The
proof is a rather straightforward calculation involving Fourier transform and
an application of Bernstein’s representation theorem; for completeness, we
provide the details.

Suppose that (c) holds. Then, for £ € R,

17 ¢ d
0

By an explicit calculation, for ¢ > 0,

1 —VC|z 2 2 2 2
) (@ cos(geFlds = 77 - 5216( Y £2£+c‘

N

—00
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Hence, by Fubini,
B ) i 0o 00 - Vi ,uo(dC
U(&) =pe*+ 5 S ( S (1 —cos(&z))e dz)

0 —oo

~—

=

o0 [e.9]

=8¢+ | (1—Cos(§z))(217T [ emvar MO\(;?))dz.

—0o0 0

Comparing this with (2.10), we obtain

(2.22) V(z) = ;ﬂosoemﬂ MO\%)’
0

which proves that v(z) is completely monotone on (0, 00). Conversely, if (e)
holds, that is, if v(2) is completely monotone on (0, 00), then, by Bernstein’s
theorem, v(z) has the representation , and the above reasoning can be
reversed to prove that X is a subordinate Brownian motion, and that (c)
holds. =

The assumptions of the main theorems can be put in the following form.

AssUMPTION 2.15. The process X; is a subordinate Brownian motion
satisfying any of the equivalent conditions of Proposition [2.14]

We note the following immediate consequence of Proposition [2.14]
COROLLARY 2.16. The following conditions are equivalent:

(a) f is a complete Bernstein function; that is, (2.20) holds for some
c1,co > 0 and a measure m with a completely monotone density;
(b) for some c1,ca > 0 and a Radon measure mg on (0,00) such that
00 =1 2
§o min(s~', s7%) mo(ds) < oo,
1T 2z mo(ds
(2.23) f(z)=c1+coz+ — S _z_ molds)

T z+s s
o 2t

(c) f(z) > 0 for z > 0 and either f is constant, or f extends to a
holomorphic function in C\ (—o0,0], which leaves the upper and the
lower complex half-planes invariant;

(d) f(£€2) — f(0) is the Lévy-Khintchine exponent of a symmetric Lévy
process, whose Lévy measure has a completely monotone density
function on (0,00). m

The right-hand side of formula defines a holomorphic function in
C\ (—o0,0]. We often denote this extension by the same symbol f. We will
also use the related notion of a Stieltjes function: f is said to be a Stieltjes
function if there are ¢1, ¢ > 0 and a Radon measure mg on (0, co) satisfying

, 2> 0
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(o” min(1, s71) mg(ds) < oo such that

0

& 1T 1
2.24 = —+ = :
(2.24) f(2) 61+Z+7r§)z+smo(ds), 2> 0

Since 1/(z+s) = 880 e~$%e78% d¢, we see that f has the representation (2.24])
if and only if it is the Laplace transform of the measure

100(d€) + (&9 + w1 Ling(€)) dé

on [0,00), where dy is the Dirac delta measure. In other words, f is the
Laplace transform of a completely monotone function, plus a non-negative
constant.

We list some standard properties of complete Bernstein and Stieltjes
functions.

PROPOSITION 2.17 (Chapter 3 in [37] and Chapter 7 in [65]). Suppose
that f and g are not constantly equal to 0.

(a) The following conditions are equivalent: f(z) is a CBF; z/f(z) is a
CBF; 1/f(z) is a Stieltjes function; f(z)/z is a Stieltjes function.

(b) If f, g are CBF, a,C > 0 and « € (0,1), then f(z) + g(2), Cf(z),
f(C2), (z—a)/(f(z)—f(a)) (extended continuously at z = a), f(g(2))
and (f(2%)) are CBF. u

One of the fundamental properties of complete Bernstein and Stieltjes
functions is that the characteristics in representations (2.23)) and ([2.24)) can
be easily recovered from (the holomorphic extension of) the function. We
illustrate this for Stieltjes functions.

PROPOSITION 2.18. Let f be (the holomorphic extension of ) a Stieltjes
function with representation (2.24). Then

(2.25) a=lim f(2), &= lim (2f(2)),
and
(2.26) mo(ds) 4+ méa0p(ds) = lir&(— Im f(—s +ig)ds),

with the limit understood in the sense of weak convergence of measures.

Formula is well-known in complex analysis, it is a variant of the
Sokhotskii—Plemelj formula for the Cauchy—Stieltjes transform in the upper
complex half-plane. The proof of a version for complete Bernstein functions is
contained in Theorem 6.2 in [65] (see Corollary 6.3 and Remark 6.4 therein).
We provide a simple argument based on the representation theorem for har-
monic functions in half-plane.

Proof of Proposition[2.18. Since —Im f is a non-negative harmonic func-
tion in the upper complex half-plane, it can be represented using the Poisson
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kernel,
(2.27) —Im f(z +iy) = C +lo§$m(d5)
for the unique costant C' = limy,_.o(—Im f(iy)/y) and unique measure

m(ds) = lim, o+ (— Im f(s +i€)ds). On the other hand, by (2.24),

Coy Y

100
1 Y W
m f(z+iy) Y242 T (S) Y2 + (z + 5)2

mo(ds).

Formula (2.26]) follows simply by comparing the above two representations.
The expressions ([2.25)) are direct consequences of (2.24]) and dominated con-

vergence. m
We need three more properties of complete Bernstein functions.

ProrosiTION 2.19. If f is a complete Bernstein function and a > 0,

then g(z) = (1 — z/a)/(1 — f(2)/f(a)) and h(z) = logg(z) are complete
Bernstein functions.

Here we extend g and h continuously at z = a, g(a) = f(a)/(af'(a)) and
h(a) = log(f(a)/(af'(a))).

Proof. By Proposition 2.17(b), g(z) = (f(a)/a)(xz — a)/(f(z) — f(a)) is
a CBF. Note that g(0) = 1, and so also g(z) — 1 is a CBF. Furthermore,

log(1+2) is a CBF. Again by Proposition[2.17(b), h(z) = log(1+ (g(z) — 1))
is a CBF. =

LEMMA 2.20. Let f be (the holomorphic extension of) a complete Bern-
stein function, and let a > 0. Define

o) = e (L) _ S

2ia \ z — ia zZ+1a

>, z € C\ {—ia,ia}.

Then g(z) = f*(2)—f(2)/(2%+a?) is a Stieltjes function, and it is the Laplace
transform of a completely monotone function G on (0,00). Furthermore, G
is the Laplace transform of a finite measure on (0, 00).

Proof. Let f have the representation (2.23), and let h(z) = f(z)—c1 —coz.
Fix z € C\ (—o0,0]. Since

1 r 1 1a
z4+s5 a2+ 52 \2ia(z —ia) s +ia

n —ta 1 z \1
2(—ia)(z +ia) s—ia a?+22z+4+s)s’
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we have

1? 1 mo(ds) 1(mm)_m%@>_ h(z)

z4+sa?2+s2 2ia\z—ia z+ia a? 4 22’

0
Furthermore,

=0.

1 [fc14+cota ¢ —cota c1 + 2z
z—1ia z+1a

2ia a2 + 22
We conclude that
1 OSO 1 mo(ds) 1 (f(ia) 3 f(—ia)) f(z)

T 24+sa?2+s2 22ia\z—ia z+ia a? + 22

= g(2).
0

By the definition, g is a Stieltjes function, and by the remark following ([2.24]),
g is the Laplace transform of a completely monotone function G(z) = Lv(z),
where v(ds) = (1/7)(a® + s?)~'mg(ds) is a finite measure on (0,00). =

ProrosiITION 2.21. If f is a complete Bernstein function, then
a) 0<2f'(2) < f(2) for z > 0;

(

(b) 0 < —zf"(z) <2f'(z) for z>0;

E?) (:j:)| < (sin(e/2))7 f(|2]) for z € C, |Argz| <7 —¢, e € (0,7);
(e)

F'(2)| < (sin(e/2)) 7" f(|2]) for 2 as in (c);
(2)] < C(f,e)(1 + |z|) for z as in (c).
In (c)—(e), the holomorphic extension of f is denoted by the same symbol.
Proof. All statements follow easily from the representation ([2.23) and
differentiation under the integral sign. Indeed, (a) reduces to

|f
|z
|f

17 sz mo(ds 17 2 mo(ds
0<coz+— | 5 ol )§01+C2Z+*87L,
T (s+2) s TStz oS

which follows from the inequality sz/(s + 2)? < z/(s + 2) for s,z > 0. In a
similar manner, (b) follows from 2sz/(s+2)3 < 2s/(s+2)%. To prove (c)—(e),
observe that for z € C with Argz € [-7 +¢&,m — €],

s+ 2|? = 82 + 25 Re z + |22 > 8% — 2s|z| cos(e) + |2]*.
Hence, by a simple calculation,
1 — cos(e .
) (s 4+ 122 = (sin(e/2))(s + [21)%
Therefore, (c) is a consequence of |z/(s + 2)| < (sin(e/2))7|z|/(s + |2]),
and (d) is proved using |sz/(s+ 2)?| < |z|/|s + 2| < (sin(e/2)) 72| /(s +|2]).
Finally, to prove (e), use (c) and the inequality |z|/(s+|z|) < (1+]z])/(s+1),
verified easily by a direct calculation. =

\3+z|2 >

For further properties of complete Bernstein functions and related no-
tions, see Chapters 6 and 7 in [65], or Chapter 3 in [37].
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3. Transformation of the Laplace exponent. Recall that X; = Bz,
is a subordinate Brownian motion, ¥ () is the Laplace exponent of the sub-
ordinator Z;, and ¥ (¢) = (&?) is the Lévy-Khintchine exponent of Xj.
Assumption [2.15]is in force; that is, v is assumed to be a complete Bernstein
function. In this section we introduce the operation ¢ — . Although it will
be used for complete Bernstein functions only, the definition is quite general.

DEFINITION 3.1. When 9 is a positive function on (0, 00), and the inte-
gral {°min(1,£72)log () d¢ is finite, we define

Frey 1 T logy(€2¢?) >
(31) oH(©) = exo £ | ) a0
PROPOSITION 3.2. For v as Definition |3.1
t(e) = ox looélog"‘/’(@) >
(32) vig) =e p<7r §§2+<2 dc),  €>0.

Proof. Substitute £¢ = s in (3.1]). =

Note that (3.2) defines a holomorphic extension of 9 to the half-plane
Re& > 0. We denote this extension by the same symbol 91 (&).

REMARK 3.3. The definition of ' lies at the very heart of the Wiener—
Hopf method. Roughly speaking, if ¢T(£) can be extended continuously to
the boundary of the region Re& > 0, that is, to the imaginary axis, then
we have 1(£2) = T (i€)yt(—i), a Wiener-Hopf factorization of 1(£2). For
complete Bernstein functions, this is formally proved in Lemma [3.8] below.
The Wiener-Hopf method is described in Section [4

The function ¥ plays an important role in fluctuation theory of Lévy pro-
cesses. If Xy is a symmetric Lévy process, then its Lévy—Khintchine exponent
¥ is symmetric, ¥(£) = ¥(£2) for some non-negative ¥ on [0, 00). Suppose
that X; is not a compound Poisson process. By Corollary 9.7 in [28§], the
Laplace exponent k(z, &) of the bivariate ascending ladder process satisfies

w(z8) = (z+¥)1(€),  2>0,£>0.
This relation was used extensively in [43], 44] [55].

The fundamental Lemma [3.8states that if 1 is a CBF, then ¢ is a CBF.
Before we prove it, we establish some simple properties of 1.

PROPOSITION 3.4. Whenever both sides of the following identities make
sense, we have:

(a) (1) =1/91, (v = (1) (a € R) and (Y1y2)t = ¥]o];
(b) (C*)t = Cyt for C > 0;
() if ¥(&) =&, then ¢T(€) = ¢;
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(d) if appropriate limits of 1 exist, then the corresponding limits of
wT exist, and hrﬂf—>0+ W(f) - (hlnf—>0+ w(g))1/2; hmﬁﬂoo W(f) -
(lime oo $(€))1/2.

Proof. Properties (a) follow immediately from formula (3.2). In (b), one

uses also {7(&/(£2 + ¢?)) d¢ = m/2. For ¢(&) = &, by (3.1) we have

Yl ) :eXp<7lr S 210g§+210ngC> —eXp<log§+ S log ¢ C) s
0

1+¢? 1+ 2
here we used the identity S (1+ s*)7tlogsds = 0, proved easily by the
substitution » = 1/s. Finally, to show (d), assume that a finite, posi-

tive limit ¢(0) = limg_,o+ ¥(§) exists. It can be proved that the functions
log1(£2¢?) /(1 4 ¢?) of ¢ are uniformly integrable as ¢ — 0% (this is clear
when 1 is a CBF; we omit the details in the general case). It follows that

_ Tlogyp(e2¢?) . Tlog(0) . mlog(0)
R e e

and hence limg_,o+ Y1(€) = /1 (0). When the limit of v is 0 or co, one uses
Fatou’s lemma similarly; we omit the details. Limits at co are dealt with in
a similar way. =

PROPOSITION 3.5. Let ¢ be as in Definition [3.1]. If C1,C2 > 0, a € R
and (&) < (O + C2€)™ for all € > 0, then, with the same constants,
[T (€)] < |C1+C2€|%, Re& > 0. In a similar manner, if (&) > (C?+C26)~
for € > 0 for some C1,Co > 0, a € R, then [4T(€)] > |C1 4+ C2£|%, Re & > 0.

Proof. For £ =t +is (t >0, s € R), we have
2€
52 + CZ

B 17 1 1 )
~ew (5 I Re(( 2+ g oevichac)

0
- exp(}r Og(t‘z T (é 2 ey (é + s>2> o1 dC)

00
—exp

(e 9]

GO = exp(i [ Re 25 logh(c?) dc)
0

S Mlogzﬁ(&)d{).

Suppose that (¢) < (C? + C3¢)® for ¢ > 0. Then
log (¢?) < alog(CF + C3¢%) = 2aRe(log(C1 — C»i()),

and the right-hand side extends to a bounded below harmonic function in the
upper half-plane Im ¢ > 0 (with vanishing linear term in the representation

3=
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similar to (2.27))). By the Poisson formula,

1 S _t
T3 2+ ((-s)2

[e.9]

Re(log(Cy — C2iQ)) d¢ = Re(log(C1 — Cai(s + it))).

Hence,
[0 (€)” < exp(2aRe(log(C1 — Cai(s + it))))
= ((C1 + Cat)? + C3s)™ = |C1 + Co€[**.

This proves the first statement. The other one follows by reversing the in-
equalities in the above argument. m

REMARK 3.6. In Proposition 2.1 in [55] it is proved that if ¥ (&) and
€/1p(€) are increasing, then ¥(£)/2 < 1 (€) < 2¢(€). For complete Bernstein
functions, this was independently proved in Proposition 3.7 of [44].

Recall that under Assumption [2.15] v is a complete Bernstein function.
Hence, 1 extends to a holomorphic function in C\ (—oo, 0]; we use the same
symbol %) for this extension. First, we define an auxiliary function

_ 1 T log9(£¢%)
33 1€ =e(; |G ) gt
so that ¥T(&) = f(€2). Note that (f(£))? is an (integral-type) weighted geo-
metric mean of the family of complete Bernstein functions 1 (£¢?) (¢ > 0),
so that (f(£))? is a complete Bernstein function. This is formally proved in
the following simple result.

LEMMA 3.7. If+ is a complete Bernstein function, then f(£) and (f(€))?
are complete Bernstein functions.

Proof. Clearly, f(£) > 0 for £ > 0. Furthermore,

Mdc_l?%
1+¢2 Comy o 14(?

When Im¢ > 0, we have Arg(£¢?) € (0,7). It follows that Arg f(€) €

(0,7/2), that is, Tm f(¢) > 0 and Tm(f(¢))* > 0. Finally, f(€) — ().
so Im f(€) < 0 and Im(f(£))? < 0 when Im¢ < 0. The result follows by

Corollary [2.16/c). =

Below we prove that 1T (¢) = £(£2) is a complete Bernstein function; this
is stronger than the assertion of Lemma (see Proposition 2.17(b)).

LEMMA 3.8. If 1) is a complete Bernstein function, then ¢t is a complete
Bernstein function. The holomorphic extension of ' (denoted by the same
symbol) satisfies

(3.4) PHEVI(-) =y(-€%), EeC\R.

Argf(©) =1 | .
0
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REMARK 3.9. The first statement of the above lemma was proved inde-
pendently in Proposition 2.4 of [43] using Theorem 6.10 of [65]. After the pre-
liminary version of the article was made available, Jacek Matecki pointed out
to the author that the other statement of the lemma, formula , at least
for purely imaginary &, can be deduced from the Wiener—Hopf factorization
of the Lévy-Khintchine exponent in fluctuation theory (see formula (VI.4)
in [5]). The novelty of Lemma [3.8] lies in the combination of the two parts,
which is one of the key steps in the derivation of the explicit formula for the
eigenfunctions F)\ in Theorem

Proof of Lemma . Let f be (the holomorphic extension of) the com-
plete Bernstein function defined in (see Lemma ; hence, wT(é) =
f(€?) for € > 0, and this identity defines a holomorphic extension of ¥ to
the half-plane Re& > 0. When Re& > 0, by we have

(e.9]
o (1T logh(€¢?) >
olie) = 1€ = e § 5 ),
For a fixed &, the integrand on the right-hand side is a meromorphic func-
tion of ¢ in the region Re(£¢) > 0 with a simple pole at —i. Furthermore,
by Proposition e), for any € > 0 the integrand decays at least as fast
as |¢|~2log |¢|? when |¢| — oo in the region —7/2 +¢ < Arg(&¢) < 7/2 —¢.
Hence, by a standard contour integration (using contours shown in Fig-
ure [I[(a) with » — oo; the pole at —i is outside the contour) and then the
parametrization ¢ = s/v/€ of [0,£1/200), we obtain

6-71/2OO

(LTI ) (1 VBt
o =eo(t ] B ) —en (1 T EE )
9// r/v/ €]
SN ¥

(a)

Fig. 1. Two contours used in the proof of Lemma[3.8] The dashed line depicts the boundary
of the region in which the integrand is meromorphic. In (a), Re£ > 0 and Im¢ > 0, and
the integrand log v (¢2¢?)/(1 4 ¢?) is meromorphic in the region Re(£¢) > 0 with pole at
—i, outside the contour of integration. In (b), Re§ < 0 and Im¢ > 0, and the integrand
log 1 (£2¢%)/(1 + ¢?) is meromorphic in Re(—£¢) > 0 with a simple pole at i.
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The formula on the right-hand side clearly defines a holomorphic function
in C\ (—o0,0] (integrability follows from Proposition [2.21e)), which is the
holomorphic extension of 1 (¢). Suppose that Re¢ < 0 and Im ¢ > 0. Using
the parametrization ¢ = —s/v/€ of [0, —£~1/200), we obtain

1 g ()
fe) = = dc|.
Pi(&) exp( - (S) e C)
For a fixed £, the integrand on the right-hand side is a meromorphic function
of ¢ in the region Re(—£¢) > 0 with a simple pole at i. Furthermore, again
by Proposition [2.21e), for any £ > 0, the integrand decays at least as fast
as (“2log|¢|? when [¢| — oo in the region —7/2+¢ < Arg(—&¢) < /2 —e.
Hence, again using standard contour integration (along contours shown in
Figure [I(b) with 7 — oo; this time the pole at i is inside the contour) and
the residue theorem, we obtain

Hey — exn L | log (&) Lo, (w»
P =e p( 7r§] e d¢ + 2i Res; e

00 2 2 2

=exp<—1 | bgﬂ(égf)dcﬂogw—s?)) o u)

Recall that Re¢ < 0 and Im¢ > 0. Hence Re(—¢) > 0, so that f(£2) =
f((=€)?) =t (=¢€). Formula follows when Re{ < 0 and Im¢ > 0.

Since ¥ and f are complete Bernstein functions, by Corollary (c),
hi(€) = Argy(—€2) and he(€) = Arg f(£€?) are bounded harmonic func-
tions in the region Re¢ < 0, Im¢ > 0, taking values in [0, 7] and [—, 0],
respectively. Hence, hy and hs are Poisson integrals of their (bounded, mea-
surable) boundary values g1, g2 (defined on (—o0,0]U|0,ic0)). Furthermore,
we have g1(is) = Arg1(s?) = 0 and go(—s) = Arg f(s%) = 0 for s > 0, and
g1(—s) € [0, 7], g2(is) € [—m,0] for almost all s > 0.

Observe that when Re¢ < 0, Im¢& > 0, we have

Arg )T (&) = Argp(—€?) — Arg £(£2) = h1 (&) — ha(§).

Hence, h(¢) = Argef(€) is a bounded harmonic function in the region
Re¢ < 0, Im& > 0, with boundary value g given by g = g1 on (—o0,0],
and g = —go on [0,i00). It follows that ¢g(&) € [0, 7] for almost every bound-
ary point &, and so h(§) € [0,7] for all £ such that Re& < 0, Im& > 0.
It follows that Imf(¢) > 0 in this region. We have already seen that

Im T (€) = Im f(£€2) > 0 when Re& > 0, Im¢ > 0. Finally, ¢7(€) = ¢f(¢),
and so Imf(¢) < 0 when Im¢ < 0. By Corollary (c), YT is a CBF,
and (3.4) extends to all § € C\ R. m
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We note a third formula for (the holomorphic extension of) 9f(¢), other
than (3.1)) and (3.2)): if ¥ is a complete Bernstein function, then

1 OSO VE€log p(€s?)

(3.5) 1/JT(§) = exp<7r £+ 52 dS), £eC\ (—o0,0];

0
see the above proof of Lemma
In Section , the transformation 1 — ¢ is applied to the function

1—¢/N?
@0 O = g

This definition is continuously extended at & = A? by letting 1) (\2) =

Y(A2)/ (A2 (A2)). We denote v} (€) = (1) (£).
By Proposition 2.19] 15 and log ¢, are complete Bernstein functions, and

9x(0) = 1. Tt is easy to see that P4(N) = ()" (O2)])/ AW/ (02))%)
(note that ¥"(A\?) < 0). Since 1 is concave, its graph lies below the tangent
line at & = A2, that is,

PN ()[R (A
GO O = g0 T
Formula . (plus € — A? <€) combined with Proposition E yields
YA " (A%)]
(3.8) % ’\/)\%,)\2 \/2)\2@,()\2 25‘ A>0, Re€ > 0.

We remark that more detailed estimates of ¢\ and sz can be found in [56].

A>0,&€C\ (—00,0).

(E=X%), XNE>O.

4. Derivation of the formula for eigenfunctions. Below we prove
Theorem [1.1] Our strategy is as follows. First we state a distributional ver-
sion of the spectral problem for A(g ), and in Lemma @ we prove that a
distributional solution is automatically a strong solution. The (simpler) case
of compound Poisson processes requires a different approach and is studied
separately in Proposition [£.4] Next, we rephrase the distributional problem
as a Wiener—Hopf equation, and we solve it using the Wiener—Hopf method.
Finally, we combine the two parts and prove Theorem [I.1} In addition, we
establish some basic properties of eigenfunctions.

4.1. Distributional and strong eigenfunctions. In this part, X;
can be an arbitrary one-dimensional symmetric Lévy process with Lévy—
Khintchine exponent ¥. We define 3 by the formula ¥(£) = 1¥(£2). Note
that 1(£) need not be a Bernstein function.

Recall that A is the generator of X, and A(g ) is the generator of the
process X; killed upon leaving (0,00), defined on an appropriate domain.
Here we only consider the L*°, Cy, and C generators; formal definitions are
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given in Preliminaries. Recall also that A € &’ is the distributional generator
of X; (see Definition [2.4). The Fourier transform of the distribution A is
—1(€?), and since A is symmetric, it is equal to its reflection A.

Let F' € L*°((0,00)). As usual, F' is extended to the entire real line by
setting F'(xz) = 0 for z < 0. Given some regularity of X, if F' € Cy((0,00))
then, by Lemma m the condition A(g o) F = —p(A?)F is equivalent to
the apparently weaker condition A * F(z) = —¢(\?)F(z) for z € (0, 00).
This motivates the following definition.

DEFINITION 4.1. Let A > 0. A tempered distribution F' is said to be a dis-
tributional eigenfunction of Ay ) corresponding to the eigenvalue —1p(\?)
if F is supported in [0, 00), S’-convolvable with A, and A * F + (\?)F is
supported in (—oo, 0]. Informally,

F=0 on (—o0,0),

Ax F=v(\)F on (0,00).

LEMMA 4.2. Suppose that X; is a symmetric Lévy process which has
the strong Feller property, and that 0 is a regular boundary point of (0, 00).
Let A > 0, and suppose that F is a distributional eigenfunction of Ao cc)

corresponding to the eigenvalue —y(\?). If F is bounded and continuous
on R, and if

(4.1)

lim (F(z) — Csin(Az + 1)) =0
Jor some C,9 € R, then F € D(A(g,c0); L) and A o) F = —(X*)F.

Proof. Since F does not vanish at infinity, we cannot apply Lemma [2.10
directly to F' to prove that F' € D(A(g s0); L>°). Thus, we decompose F into
the sum of a Cy((0,00)) function and a smooth bounded function.

Denote F*(z) = Csin(Az + ). By Remark F* € D(A;L*°) and
AF* = —(A\?)F*. By Proposition [2.5] A4 x F* = —(\2)F*. We choose an
infinitely smooth function h such that h(x) = 0 for x < 1 and h(xz) = 1 for x
large enough. Furthermore, we require that

(4.2) | n(2)F*(2)v(2) dz = 0.
1

(Note that such a choice is always possible, as we do not assume that 0 <
h(z) < 1.) We write F' = fi + fo, where fi = hF* and fo = F — hF™.
The function f; is infinitely smooth, with all derivatives bounded, so by
Lemma fi € D(A;Cy). We have fi(x) = 0 for z < 1, and by
and , Af1(0) = 0. Hence, by Lemma and Proposition we have
J1 € D(A(0,00); L) and A o) f1(2) = Afi(z) = A= fi(z) for z € (0,00).
We claim that also fa € D(A(g,00); L) and A(g o0) f2(2) = A% fo(x) for z €
(0,00). Once this is proved, we have I’ € D(A(g 0); L) and A(g o) F(7) =
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Ax F(r) = —p(\2)F(x) for x > 0, as desired. Hence, it remains to prove
the claim.

We will apply Lemma to fo = F — hF*. Since F and h vanish on
(=00, 0], we have fo(z) =0 for x < 0. Also, fo = (F — F*)+ (1 —h)F*, and
both F' — F* 1 — h vanish at infinity, so that lim;_,o f2(z) = 0. In other
words, fa € Cp((0,00)). Furthermore,

Axfo=AxF —Ax (hF*)=AxF — Ax f1.

By assumption, A x F' restricted to (0, 00) is equal to —1(A\2)F(z). We have
already seen that A x f1 = Afi is a continuous function on R which vanishes
at 0. Hence, A x fy restricted to (0,00) is equal to a continuous function,
vanishing continuously at 0. Furthermore, for x > 0,

Ax fo(r) = Ax F(z) — Ax F*(x) + Ax (1 — h)F*)(x)
= —p(N)(F(z) = F*(2)) + Ax (1 = h)F*)(2).

By assumption, the first term on the right-hand side converges to 0 as
x — 00. Since 1—h(x) = 0 for = large enough, also A*((1—h)F*)(x) vanishes
as x — oo (by Lemma and Proposition . We conclude that A * fo
restricted to (0, 00) is equal to a Cy((0, 00)) function. By Lemma fo €
D(A(0,00); Co) (and therefore also fo € D( A o0); L)), and A(g,c) fo(T) =
Ax fo(x) forz > 0. =

REMARK 4.3. Continuity of F' at 0 is essential. Indeed, when X; is the
Brownian motion (i.e. ¥(§) = §), then F(x) = cos(Ar)1(g)(z) is the
distributional eigenfunction of A = d?/dx? in (0,00), but F is not in the
L>°((0,00)) domain of A ). In particular Pt(O’OO)F is not equal to e N F,
as can be verified by a direct calculation.

When X} is a compound Poisson process, the proof is much easier.

PROPOSITION 4.4. Suppose that X; is a symmetric compound Pois-
son process. Let X > 0, and suppose that F € L*((0,00)) is a distribu-
tional eigenfunction of A(g,c), corresponding to the eigenvalue —)(A\?). Then

Ao = —(\)F.

Proof. The result is a straightforward application of Lemma [2.7 and the
fact that A is the signed measure v(dz) — v(R)dp(dz). m

4.2. Wiener—Hopf factorization. A method of solving problems of
the form was found in [72] in the case when A is an integrable function
satisfying some growth conditions. For this reason, problems of this kind are
called Wiener—Hopf equations, and the algorithm for finding their solutions is
the Wiener—Hopf method; see [311,/46] for a detailed exposition. We begin with
a brief description of the method. A version of the Paley—Wiener theorem
states that a function is supported in [0,00) or (—oo,0] if and only if its
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Fourier transform extends holomorphically to the upper or lower complex
half-plane, respectively. Therefore, (4.1) can be rewritten as

FF () extends to the upper complex half-plane,
(C — (&%) FF (&) extends to the lower complex half-plane,

where C' = 9(A\?). The main ingredient of the Wiener—Hopf method is fac-
torization of the symbol C' — 9(£?) into the product of two functions, one
extending holomorphically to the upper half-plane, the other one to the lower
half-plane (the Wiener—Hopf factors). Then FF is taken to be the multi-
plicative inverse of the first factor.

The fundamental condition for the Wiener—Hopf method is that the sym-
bol does not vanish. In our case, we have C' — ) (£2) = 0 for € = £\. For this
reason, we apply the Wiener—-Hopf method to the regularized symbol

L= 9@/ 1
1—¢&2/a2 VA(€?)’
here we use the notation of .
From now on, Assumption [2.15] is in force. It is required in order to
establish some properties of 1/1(£?) and its Wiener-Hopf factors. In par-

ticular, since v is a complete Bernstein function, the factorization is given

by Lemma [3.8}

11 1
) uf(—ig) wiGe)
The Wiener—Hopf factors are 1/1:{(—1'5) and zpf\(if), and the solution is ex-
pected to satisfy FF(§) = 1/11(—1’5)/(1 —£2/X2), up to a multiplicative con-

stant. Due to the singularity in the denominator, we prefer to work with the
Laplace transform of F'. Below we provide details for the above idea.

EeR

Fix A > 0, and define a tempered distribution
Ay = (W) + A,
where A is the distributional generator of X; and dg is the Dirac delta mea-
sure. Hence, FA(£) = ¥(A?) —1(£2). We decompose A, into the convolution
of the distribution
(%)
2

(the singular part) and two infinitely divisible measures Ry and R_ (regular
parts) supported in [0, 00) and (—oo, 0] respectively.

Clearly,

(4.3) S = (A\260 + 67)

2 2
(1.4 F56) = - ) vt (1- 53 ).
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We define the tempered distribution R by means of Fourier transform,

1 — (&%) /v(\?) 1
4.5 FR(E) = = ) € R,
4 O=ew The ©
with 1) defined in (3.6). Since S is compactly supported, S and R are
S’-convolvable, and since FS(£)FR(E) = ¥(A?) — ¥(€2) = FA,, by the

exchange formula we have

Ay=S=x*R.
LEMMA 4.5. There is a probability measure Ry supported in [0, 00), such

that (see (3.2))

(46)  LR.(¢) = exp <_1 [ Elosa() d<> 1

=— R 0.
Ty ¢ Pl(e)’ et 2

Furthermore, Ry has a completely monotone density on (0,00) (but it may
have an atom at 0).

If R_.(E) = Ry(—E) is the reflection of Ry, then R = Ry « R_ and
FR(§) = FR(§)FR-() (£ €R).

Proof. By Lemma wf\ is a complete Bernstein function. By Propo-

sition (a), 1/ wf\ is a Stieltjes function, and therefore it is the Laplace
transform of a measure R, , which has a completely monotone density func-

tion on (0, 00). By Proposition (d)7 1/1/1;(0) = 1/9A(0) = 1. Hence, R+
is a probability measure. Finally, FRy(§) =1/ zpf\(—iﬁ) (where the holomor-
phic extension of 1/1; is denoted by the same symbol).

Let R_ be the reflection of R,. By ,
11 1
- 0NE) wf(ig) vl

for £ € R. The lemma follows from the exchange formula. m

FR(E) = FR(§)FR_(§)

LEMMA 4.6. Suppose that F € S’ is a distribution supported in [0, 00),
for which F xp is bounded for any ¢ € S. If Fx(S*R.) is supported in {0},
then F is a distributional eigenfunction of Ay o)-

Proof. Note that both F' and S R, are supported in [0, 00), and so they
are S’-convolvable. Furthermore, for any ¢1, @2, 3 € S, F x 1 is bounded,
and (S*Ry)* 9, R_ %3 are integrable. Therefore, the S’-convolution of F,
Sx Ry and R_ is associative. In other words, if we let F' = Fx (S * R ), then

F s R_ = Ay F. Clearly, if the support of F'is {0}, then Ay« F = F x R_
is supported in (—00,0]. =

4.3. Formula for eigenfunctions. Lemma [4.6] enables us to describe
a family of solutions to (4.1). If F * (S * Ry) is supported in {0}, then
FF-F(SxRy) = P for some polynomial P. Therefore, the Fourier transform
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of a distributional eigenfunction F' is expected to have the form P/F(S*R.);
however, extra care is needed because of the zeros of the denominator

Let (see (4.6))
B Cx B e (€)
0 fO=erorme - vre 0
where
B 22 B /\4¢’()\2)
(4.8) e\ = \/w/\(/\z) = \/ ee)

is a normalization constant. Since w; is a complete Bernstein function, f ex-
tends to a meromorphic function in C\ (—o0,0], with poles at +i\. We
denote this extension again by f. By (3.2) and Proposition (b),

o

2
19) Wl = VIO exp(1§ g o 25 ac)
0

Pa(A?)

A2 0 / )\2 )\2 _ 2
N T}
ey (e) “Pr ) @5 8 o) )
this holds true for complex ¢ with Re& > 0. It follows that f(&) is equal to
the right-hand side of (1.1]). In order to prove Theorem we need to show
that f is the Laplace transform of a function F' of the form (|1.2)), and that

F is a (distributional, and hence L*°) eigenfunction of A o).
We define

o (u&(m IRONGRY

(4.10) (6 = co T Erin ) £eC\ {—i) A},

2%\

and

. L (0 el (=N el
411 = C ) = — _ _ _
Note that C1(¢ — iCq)~! is the Laplace transform of C’le*icﬂl(opo)(x).
Hence, f* is the Laplace transform of

ch/J/T\(i)\)ei)‘a’ - cm/&(—i)\)e—”\x
20\

By Lemma [2.20| (applied to a CBF c;xﬁi), g is a Stieltjes function, it is the

Laplace transform of a completely monotone function G(x), and G is the

Laplace transform of a finite measure. Hence, f is the Laplace transform of
F(z) = F*(x) — G(z).

(4.12) F*(:L‘) = 1(0700)(£U), z e R.
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PROPOSITION 4.7. We have 1/);(:&2)\) = /UA(\2) eFN where 9y is
given by (1.3)).

Proof. By (4.9)), for € € (0, \) we have
i+ = V0P e § i e oo )

We claim that the integrand on the right-hand side is dominated by an
integrable function. Then, by dominated convergence,

PL(iN) = lim, PL(iX + )

1T dA ’
(1T A e 1),
0

as desired (see ([1.3) and (4.9))). Hence, it remains to prove the claim.
Observe that

i\+e B iX + €]
(iIA+e)2 4+ [iA=0O) +ellilA+¢) +¢
A+e < 2A

< .
T+ T A=A+
Since 1)) is non-negative and concave, we have ¥ ((?)/¥n(A2) > ¢?/A2 for
¢ < A, and (€2 /A (A?) < ¢2/A? for ¢ > A. This and monotonicity of ¥
gives that

2 2
‘log Zi‘g% < ‘logi2 = 2|log ¢ — log A|.
It follows that
iA+e€ log Pa(C?) < 4\ |log ¢ — log A|
(IA+e)+¢ T )] 7 [C=AI[C+A) 7

which is integrable in { > 0. =

The above proposition and formulae (4.8) and (4.12)) imply that F*(z) =
sin(Az + 9x)1(,00) (7). We summarize our findings in the following result.

COROLLARY 4.8. The function f is the Laplace transform of a function
F(z) = F*(x) — G(x), where

F*(z) = sin(Az + 19>\)1(0’Oo) (x),

G is completely monotone on (0,00) and it is the Laplace transform of a
finite measure on (0,00). =

LEMMA 4.9. The function F' constructed above is a distributional eigen-
function of A ) -
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Proof. By ([#.3)), we have £S = (¢(A\?)/A2)(\2 + £2). Since F = F* - G
and both F* and G are bounded, also F' is a bounded function. Hence, F' is
&’-convolvable with S * R, and

LF() - (LS(ELRL(€)) = (&) - (L) NN+ €3)/11(€)) = extp(A)/N°
when Re¢ > 0. By the exchange formula, F * (S * Ry) = (cxv(A2)/A\?)do,

which is a distribution supported in {0}. An application of Lemma com-
pletes the proof. =

REMARK 4.10. Clearly, also the distributional derivatives (of all orders)

of F' are distributional eigenfunctions of A . However, they are not in
the L°°((0,00)) domain of A o).

In order to apply Lemma [1:2] we need to show that F vanishes continu-
ously at 0.

LEMMA 4.11. The function F' has a non-negative right limit at 0. If ¢ is
unbounded, then F' vanishes continuously at 0.

Proof. Since G is non-increasing (even completely monotone), the limit
of F(z) as x — 0T exists. Since LF = f, where f is given by (4.7]), we have
T 2 T
. . L adh(§) aé? ()

Jm, Flo) = lm 67(6) = m =5 e =dnivie ¢ )
The above expression is non-negative, proving the first part. Furthermore,
by Proposition (a,c), 1/}1\(5)/5 = (Yx(€)/€)T. If 4 is unbounded on [0, c0),
then 1, (€) /€ tends to 0 as £ — oo (see (3.6))). Hence, by Proposition [3.4(d),
1/11({)/5 converges to 0 as £ — oo, and therefore lim, o+ F(z) =0. m

Proof of Theorem . In the remark following it was already ob-
served that LF(§) = f(£) coincides with the right-hand side of the for-
mula for LF), so that F' = F\. We will show that I\ satisfies also the
remaining conditions of Theorem [I.1]

By Corollary F\ = F* — G has the form with completely mono-
tone G)(z) = G(z), and G}, is the Laplace transform of a finite measure vy
on (0,00). By Lemma F) is the distributional eigenfunction of A o).

If ¢ is unbounded, then F\ = F vanishes continuously at 0 (Lemma,
and lim,_, oo (F)\(2) —sin(Az+19y)) = 0 (because G = L, tends to 0 at infin-
ity). Furthermore, the subordinate Brownian motion X; has the strong Feller
property, and 0 is a regular boundary point of (0,00) (see Preliminaries).
Hence, Lemma applies: F\ € D(A(g,00); L) and A(g,00)F\ = —(A?)F)y.
If 4 is bounded, then A(g ) is a bounded operator on L*((0,00)), and
A(0,00)Fx = —1)(A?)F) by Proposition . In both cases F) is an L™ eigen-
function of A g o)-
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Note that (see [25])

t t
PO F(x) — F(a) = | PO A o) F(z) ds = —(A2) | PO f(2) ds
0 0

for € (0,00). For a fixed z, this integral equation is easily solved, and we
obtain Pt(O’OO)F(x) = ¢ W) F(z), that is, Fy is the eigenfunction of Pt(o’oo).
By Proposition ¥y = Arg 1/):[\(2')\). Recall that w:[\(O) =1 (by Propo-
sition (d)), and hence (by representation for 1#:[\) Re 1/1;r\(i)\) >1. It
follows that 0 < ¥, < 7/2, as desired. It remains to prove formula .
Suppose that (the holomorphic extension of) ¥(£) extends to a continuous
function 1 (€) (not to be confused with ¥7(€)) in the region Im¢ > 0, and

Y (=€) # (A?) for all £ > 0. Recall that LG = g (with g given by (.11))),

and G = L. Hence, by the remark following (2.24), v = 7~ 7, where

myo is the representation measure in for the Stieltjes function g. To

prove formula , it suffices to apply Proposition as we now describe.
We have

. , NG
9O = 1O - 1) = ') - 2
By Lemma [3.8] when Im& > 0 and & # i,
o (—€?) P(A?)

&= - = f*(&) - .
M= o re Y T il Cowon — e
Hence, g extends to a continuous function ¢g* in the region Im & > 0, and for
£>0,
B (V) _

N () (A2) — H(=€2))
Note that f*(—¢) and ¢I\(§) are real for £ > 0. By Proposition
(—Im g™ (—&)) d€ is the measure 1 in the representation ([2.24)) of the Stielt-
jes function g. Since vy = 7 1mg, ey = VA (A2)/1(A2) and P\(N\2) =
P(A2) /(A2 (A\?)), we obtain

g7 (=8) = f"(=¢)

P'(A)P(A?) 1

_ —Img"(=§) . 1 -
Ya(d€) = . dg = 1/&(&) [ P(A2) — Yt (—€2) 3
_LVROT
T l(€) P(A2) =y (=€2)

An application of (4.9) completes the proof. =

REMARK 4.12. Using (4.9)), the formulae of Theorem can be written
in a more concise form. We record them for easier reference:
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_1 R ¢A<C2) _ Ty,
(4.13) Iy = (S) EoE sy o K= Arg ¥} (iM);
IS
(4.14) LE(E) = XrE Jin0d)
2 1()\2
(4.15) ) = 2V WA e,

m
T pl(g) P(AN2) — pT (=€)
REMARK 4.13. The formula (1.4) for -, remains true for general CBF

1, as long as it is understood in the distributional sense. More precisely, it
can be proved that -, is the limit of

1 /(32 <Im (W)
T pl(¢) P(A2) — (€2 +ie)

as € — 07. We omit the details.

> 1(0,00)(§) d€

REMARK 4.14. In order to extend Theorem to more general symmet-
ric Lévy processes, one needs two ingredients: formula must define a
function F), and the convolution F'x (R *S)* R_ has to be associative (that
is, some regularity of F' and Ry is needed). This seems to be problematic,
even for general subordinate Brownian motions.

4.4. Further properties of eigenfunctions. We begin with a techni-
cal result, useful for the computation and estimates of ).

PROPOSITION 4.15. We have

(4.16) %g

—log z T
dz = —.
1- 22773

Proof. By series expansion and integration by parts,

1 logz oo 1 00 1 1

— _ 2 _ 2

81_22 dz—ZSz"(—logz)dz—22n+18z”dz

0 n=00 n=0 0
= 1 _i 1 i 1 _35"2 1 3
= (2n—|—1)2_k_1 kK2 (2k)2_4k_1 k2 46’

as desired. m
The following formula for ¥y is often more convenient than (1.3)).
PROPOSITION 4.16. For A > 0,

Col o PA(X?/22)

1 d
1—22 8 P (A222) =

(4.17) 0y = ;g
0
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Proof. By substituting ¢ = A¢ in ([1.3]), we obtain

17 1 A2/ (N)(1 — &2

o LT 1 monn e

) To@ B ) — ()

A substitution £ = z in the integral over (0,1) and £ = 1/z in the integral
over (1,00) yields

de.

L) ()
122 B (G(02/22) — p(N2))22

1 ¥a(A2/2?)
1— 22 log Pa(A222)

dz

Iy =

3| -

Ot = O ey

dz. m

1
T

PROPOSITION 4.17. The function 9y is differentiable in A > 0, and (4.17))

can be differentiated in A under the integral sign.

Proof. Let h(s,z) = (log(1(s)—(s2?)) —log(1(s/2?) —1(s)) —2log z for
z € (0,1) and s > 0. Then h(A\?, 2) = log(¥x(A22?)/¥n(A2/2?)). Therefore,
it suffices to prove that (1—22)71|(0/0s)h(s, z)| is integrable over rectangles
z€(0,1), s € (s1,52), where 0 < 51 < s9.
We have
Oh(s,z) _1sy'(s) — 522" (522) 1 5272 (5/2%) — s9'(s)
0s s P(s) —P(s2?) s (s/22) —(s)
Using twice Cauchy’s mean value theorem (for two functions ¢’ (t) and v (t)),
we deduce that for some t; € [s22,s] and t € [s,5/27],

Oh(s,2) _ 14'(t) + 0" (1) 1 ¢'(t2) + 29" (22)
ds s Y'(t1) 8 V! (t2) '
Since " (t) /¢ (t) is bounded (by Proposition[2.21[b)), the above expression

is uniformly bounded in s € (s1,s2) and z € (0,1). Furthermore, when
s € (s1,82) and z € (1/2,1), by the usual mean value theorem,

Oh(s,z)| _ta—t 4 )
ds o § t€[s22,s/22] dt sz)/(t)
1 2) d ' (t) + tap" (t) ‘ 2
< —— — Z su —r < C 1 — Z
B («22 te[51/£452] . '(t) = )

for some C depending on s1 and sy. The proof is complete. =

PROPOSITION 4.18. We have

Q)
(415) A NGy

T
5
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Proof. Note that (d/ds)logya(A%s) = A24(A%s)/¥a(A%s). Hence,
by (4.17), e

1 1 N (A%s)
19)\— 7r§]1—22 < ZSQ st)dz

O\ 17 1 1
Py < ( eIIR? NG >7r§) 1_22( ZSQ Sd5>dz.
Finally, by ,
1/22

e 1 1 41 —logz ™
71_51_22(8 SdS)dZ_Trsl_ZQdZ_Q.I
0 22 0
COROLLARY 4.19. If 95 = 0 for some A > 0, then ¢ is linear, X; is a
Brownian motion, and ¥y = 0 for all A > 0.
Proof. Since 1, is increasing, for z € (0, 1) we have 1) (A\2/22) >\ (A\22?),
and it is easily checked that equality holds if and only if v is linear. Hence,
by , ¥y > 0, and if ¢ is not linear, then ¥y > 0. »

Now we turn to the properties of F}.

It follows that

PROPOSITION 4.20. We have
| 0%
4.19 1 LF =
Fran o
Proof. The result follows from 1} (0) = 1 (see Proposition (d)), LFy(§)
= e} (§)/(\? + €2), and (D). =

LEMMA 4.21. For all \,x > 0, we have 0 < G)(x) < sindy. Further-
more,

A > 0.

o0

1 A2 ()2)
(4.20) Ga(x)dx = —(cosIy — /| ———= ], A>0.
§ ’ A( SRS >

Proof. Clearly, 0 < Gx(z) < GA(0), and by Lemma we have 0 <
lim, g+ F)\(z) = sin?y — Gx(0). This proves the first statement. Further-
more, LGA(€) = g(€) = F*(§) = (€) = f*(€) — L&), By (L), [E10),
(4.19) and Proposition

o0

| Ga(z)dz = hm LGA(€) = f*(0) — hm LF\(£)

_c,\RelpA (iX) P (A2) cosﬁA P (\2)
= \2) \2)
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PROPOSITION 4.22. We have
A+ €]

(4.21) |LF\(&)] < DEr el A >0, Re& > 0.
Proof. Since LF) (&) = c,\@b;(f)/()\Q +£2), by and we have
A " (A%)]
[LEA(E)] < ettt 2o

By Proposition [2.21|(b), A2|¢"(A2)| < 2¢'(A?), and ([4.21) follows. m
LEMMA 4.23. Suppose that there are C, o > 0 such that ¥'(&) > C&1
for & large enough. Then (cf. (4.21))

A2—2aq)/ (\2 A
(4.22) ILEN(E)] < \/2;1&) 42—2aw/gg2)) A2 + €2

whenever A > 0 and Re& > 0.

11—«

§
14>
+)\

Proof. Since 1) is concave and increasing, for A, £ > 0 we have
v\ A€ »(A?) ( 1 1 )
= < max , .
R TP T I R SO M
Let C) be the supremum in (finite by the assumption), so that
P (N2) /' (€) < CA(E/X2)1 7% for all € > A2, Then

Crip(A?) £\
Pa(§) < W<1+)\2> )

By Proposition [3.5] we have

Crio(A?)
423 O <\

-«

¢ , A>0,Re&>0.

142
+/\

The lemma follows from LF)(§) = c)\wl(é’)/(ﬁ2 + %) and (4.8). =

LEMMA 4.24. Suppose that there are C,a > 0 such that ¢'(&) > C&v1
for sufficiently large &. Then for each A > 0, the function F is Holder
continuous with any exponent less than a. More precisely, there is an absolute
constant ¢ such that

(4.24) |[F)(z1) — Fx(22)] < CcA® \/ )\2—2041/}/()\2)

su
|:U1—l‘2‘a T a—¢€ P

A CE2a(¢?)
for alle € (0,a), A >0 and x1,z2 € R.

Proof. We decompose LF)\ = cAwI\(é’)/()\Q + £2) into the difference of f*
and ¢ in a similar way to the decomposition LF) = f* — g in the derivation
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of the formula for F, but this time f* and g have a better decay rate at
infinity. When Re& > 0, define

P = & < Ml (iN) - Ml (—iN) )
C2AN(E =N (E =N+ (EFIN(EFINEAN) )
o) = & Mpl(EX) = (€= id + Vvl (©)
TSI =90 € —iNE—iIrt N
(=) — (€ +ir+ w;(s))
(4§ +iA+A) ‘

Note that A(§ Fi\)~1(€ FiA+ A) 7! is the Laplace transform of the function
(1 - e*)‘x)eﬂml(opo) (x), and c)\v,/&(:lzi)\) = Xe*x. Therefore, f* is the
Laplace transform of

F*(x) = (1 — e ) sin(A\x + IA)L(0,00)(T)-

Note that F* is Lipschitz continuous on R. In fact, for z > 0 we have

[(F*) ()] = [Ae M sin(Az 4+ 95) + A(1 — e ) cos(A\z + )]

S \/)\26—2)\35 + >\2(1 _ e—)\z)2 S )\,

so that the Lipschitz constant of F™* is not greater than .

The function § extends continuously to ‘R. Denote the summands in
the parentheses in the definition of § by g+ and §—, so that g(§) =
(ex/(2iA)(g+(&) — g—(&)). We first consider g4 (i€) for & € [\/2,2)]. We
have

MLGN) — (i€ — id + Nl (i
9+ = ‘ %((ig)— ig\)g(if - ;; +);b;( 6)‘
_ AR 6N — ] 9] + 1€ = Al (i€)|
€ = AV(E- N2+ 2
< e (o (G 601+ e
when A > £, we understand that [\, £] denotes the interval [, A]. By Propo-
sition [2.21{(c.d), |(1])/(i¢)] < 20}(¢)/¢ and |9} (i¢)| < 20} (¢) for ¢ € R; the

latter inequality is used frequently in the remainder of the proof. Using also
(€= X)2 4+ A2 >\, we obtain

1
9+(i8)| < i(A sup 21”2(0 +2u&(£>> <

CE[N/2,2)]

641 (2))
=,

By (4.23)), c>\¢l(2)\) < 3172)\/C\ < 3)\/C), where C) is the supremum
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in (4.22). Hence,
leag+(i€)] < 18/ Cy, A >0,& € [N/2,2)].

When £ € [—2A, \/2], we simply have [ —A| > A/2, /(£ = A%+ A2 > )\, so
that

o AL (EN)| [WAGE)] _ 49l (V) + e (2))
|g+(zf)’§|§_)\’\/m+ |£_>\| < Y :

Using (4.23)), we find that cmb;()\) < 2172\ /Oy < 2M\/Cy. Together with
c)\w];\@)\) < 3A\VC)y, this gives
e (6)] < 200/, A >0, € € [-20A/2].

Similar estimates hold for ¢)g_. It follows that

ey < 3O +13-(©) _ 203Cs
tie)| < 2 < v

The estimate for £ € R\ [-2),2)] is obtained using |§(i&)| < [LF)\(i§)| +
|f*(i€)| (here LF(i§) denotes the continuous boundary limit). By the in-

equalities [€ — | > [£]/2, /(£ — A\)2 + A2 > |£]/2, we have
6] < A< (2 I U (2] >
T2 \e-AVE-NZHAT e+ AVEFAZ T2
_8ewl() _ 1600y
=T e = g
Hence, using also and the inequality &2 — A2 > (|¢] + \)?/3, for € €
R\ [-2A, 2)] we obtain

, A>0,€€[-2)2)].

; MWC, (1 AN 160/C
1G(i€)| < |LEAGE)| + | f*(i€)] < \/7/\(5241@/ ) 5\2/7
< 3vC\ 164/Cy - 20,/C ()\)H-a
S+ e/ T ¢l
This way we have estimated |g(i§)| for all £ € R. The function g is the

Laplace transform of G, and G is the inverse Fourier transform of g(—i¢)

(£ € R). Fix € € (0, ). We have

Glar) = Gl = 5| | (7 = em2)5(-ig) dg

2wl
1 |67’L'Ilf _ e*’ilg&‘ oo

< —— sup £°1g(—i&)| d€.
2T ¢er €]° S

—00
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Since |e~#1& — e7#2¢| < min(2, |¢]|z1 — 22]), the supremum is at most
2172 |21 — 29| < 2|w1 — 22|°. Furthermore,

T e 20\/ . Tt
| la(—ie)| ae < ( Te d§+2§§1+a_5d5>
—o0 0
22+5)\a 21—04-‘1-8)\8
= 20/
0 CA< 1+¢ a—c )
2 . 200/ CyA®
=204/ < Y EAT
20 C>\<8+Oz—6>)\ < -

In particular, G is Holder continuous of order e, with Holder constant at
most (200/7)Ay/C)/(a — €). The lemma is proved. m

COROLLARY 4.25. Suppose that for some € > 0,

(o) (o)
. 1 — 1
(4.25) P ) R T ()

(see (1.11)). Then there is C > 0 (depending on €) such that
\F)\(xl)—F)\(xg)\ SC)\E‘xl—l'Q’E, )\>0, x1,T2 ER,

<1-—e.

and
1—e

A . A>0,Reé>0.

A2+ &2
Note that in general, &[¢" ()] < 2¢ (&) (see Proposition 2.21|(b)).

Proof. Choose a > ¢ small enough, so that (4.25)) holds with e replaced
by a. Let h(¢) = ¢1=*¢/(¢). For £ > XA > 0 we have

X)) (O
e = e = A i)

52
-« W'(C)I)
= exp <— < d¢ |.
iy
The integrand on the right-hand side is positive for ¢ € (0,C7) U (Cq, o)
for some C7,Cs > 0. Hence the above expression is bounded uniformly in A

and &, 0 < A <. The result follows from Lemmas [£.23] and [.24

Recall that a function f is said to be regularly varying of order @ > 0 at oo
orat Oif forall k > 0, lim, .o f(kx)/f(z) = k* or lim, o+ f(kx)/f(z) = k%,
respectively.

§

ILF\(&)| < C—5—= 1+

COROLLARY 4.26. Suppose that ¢ is reqularly varying of order as > 0

at oo and regularly varying of order cg>0 at 0. Then for all e <min(ag, o),
the hypothesis of Corollary [£.25] holds true.
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Proof. Let ¢ < a < min(ag, @ ). Since ¥ is a regularly varying Bern-
stein function, also ¢’ and " are regularly varying at 0 and oo (see [6]).
Hence, if we define h(¢) = ¢17%¢/(¢), then h is regularly varying of order
ag — a > 0 at zero, and regularly varying of order aoo — @ > 0 at oo, and a
similar statement with orders decreased by 1 is true for A’. It follows that the
function ¢A/(¢)/h(¢) (continuous on (0,00)) has positive limits at 0 and oo,
and we can now repeat the proof of Corollary [£.25] =

When 1) is regularly varying at infinity, the behavior of F near 0 for a
fixed A > 0 has a very simple description. We write f(z) ~ g(z) as z — 0
or z — oo when f(x)/g(x) converges to 1 as x — 0 or x — oo, respectively.

LEMMA 4.27. If v is unbounded in (0,00) and ¥(§) is reqularly varying
at infinity of order o € [0, 1], then

24/ (\2
(4.26) LF\(&) ~ 221@((2\2)) as & — oo,
(4.27) Fy(x) ~ ! XY) asx — 0.

rl+a)\l ¥(@2)
Proof. Consider an auxiliary function

)\2w 62
60~ e

Since 1) is a complete Bernstein function, both 1) (£) and £/ (€) are in-
creasing (Proposition (a)). It follows that for & > 0, ¢ > 1, we have

”A(6%) < ¥a(€2¢%) < CPoa(€?). Hence

A? (€)Y (E?) X () (E?)
g e =MOSgmeE e
Note that 1(£2)x(£2) /€2 has a positive limit 1(A\?)/A\? as & — oo. Hence,

it is bounded above and below by positive constants when & € (1,00). It
follows that for some C' > 0 (depending on \),

log h(¢,C)| < C(1+ [log¢l)  £>1,¢=>1.

For ¢ € (0,1], the inequalities in (4.28) are reversed, and we obtain the same
bound for [log h(&, ¢)|. Since 1) is regularly varying of order a and unbounded,

. o W(E) N -e¢
2 ME0) = N e G0y — g
o CURE) /€)1
e O(EC) PO /Y(ED) — 1

¢)\(£2C2)7 57( > 0.

(4.28)

1
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for all ¢ > 0. Hence, by dominated convergence,

. (1 S log 15 (£2¢?) - L7 YA\ dC)
™ ™ 0

1+ 1+ 7% Ng(@)

o0

~ lim | 71°f Tijzo

§—o0

¢ = 0.

§—o0 o

Since the integral of (log¢)/(1+ ¢2) over (0, 00) is zero, we have

1% 1 PN 1 p(N)e?
e e © T ey
These two formulae yield (see (3.1)))
N N e AN O RN
1(&) —E?XP(Tr (S) e d¢ ) as § — oo.
Since LFy = C)ﬂ/)l(f)/(fQ + A?), this (together with (4.8))) gives
AR

LE\(§)

A2P(£2)
and (4.26]) follows. Since F) is increasing on the interval (0,7/2 — 1)) (see

(1.2)), formula (4.27) follows by Karamata’s Tauberian theorem and the
monotone density theorem (see [0]). m

5. Spectral representation in half-line. In this section we stﬁ the
1.3

L?((0,00)) properties of the operators Pt(o’oo) and prove Theorems
and Let us define the operator IT* by the formula
(5.1) I f(z) = | fOFA(z)dN, x>0,
0
for f € C.((0,00)). Here F)\(x) = sin(Ax + 9)) — Gx(x) is given by Theo-
rem At least formally, IT* is the adjoint of IT defined in ((1.5)).
In this section, we write || f||2 for HfHL2((O,oo))7 and (f, g) for (f, g) 12((0,00))-

LEMMA 5.1. The operator IT* extends to a bounded operator on L?((0, 00)

).
Proof. We follow the proof of Theorem 3 in [49]. Let f € C.((0,00)).
Define

II7 f(z) = S fN) sin(Az 4+ 9))dA = Im Ff(x), x>0,
0
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where f(A) = ¢ f(A). Clearly, | II fll2 < |Ffll2m) = V27| f2. Let

I3 f(z) = | f(NGA(z)d, x>0,
0
so that IT* = II{ — II5. We have
V(5 (@) de < § § T PO Q2)IGr, (2) G, () do dry da,
0 000
By Lemma [£.2T] when 0 < A1 < Ao,
e} [e.e]
S G)\l(aj)G)\Q( d.%‘ < 811119,\1 S G’,\2
0 0
sin 19,\1 Ay (A2) 1
— < J—
( os vy, ()\2) <%
By symmetry, for all Ay, Ao > 0,
T 1
< ——
(S) G, (2)G)y,(x)dx < ()

Hence, using Hardy—Hilbert’s inequality (see e.g. [33]) in the last step,

T3 13 = \ (125 £ (2))? da < W

0 00
The lemma follows. =
The extension of IT* to L?((0,00)) is denoted by the same symbol. By
Lemma we see that IT* is indeed the adjoint of IT defined in ((1.5)).
LEMMA 5.2. We have (IT*f, IT*g) = (7/2){f,q) for f,g € L?*((0,00)).

Furthermore, for f € L2((0,00)) such that e " **) f(X) is integrable in \ >
0, we have

dA1d)y < 4| f]3.

(5.2) PO f(a) = | eI F(N)Fa(z)dN,  ta >0,
0

Proof. Again the argument follows the proof of Theorem 3 in [49]. Let
pﬁo’oo) (z,dy) be the kernel of Pt(o’oo) (i.e. the P, distribution of the killed
process Xt(o’oo)). If f e C.((0,00)), then pg(),oo) (x,dy) f(A)Fi(y) is integrable
iny, A > 0. Theorem and Fubini yield in this case. The general case
f € L?((0,00)) follows by approximation.

Let f,g € C.((0,00)), k € Z, and define fi(\) = e F¥O) f()),
g(N) = e F¥A)g()). From it follows that Pt(O’OO)H*fk = IT* fr41

and Pt(o’oo)ﬂ*gk = II*gp+1. The operators Pt(o’oo) are self-adjoint, so that
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(1T f, 11" g) = (PO 117 .y, T g(2))
= (IT* f_y, PO T g) = (IT*f_y, IT*gy).

By induction, we have (II*f,[I*g) = (II*f_y,IT*g;) for k > 0. In par-
ticular, if supp f C (0,Ag) and suppg C (Ag,00), then (IT*f IT*g) =
(e RV £ eF(N0) g The right-hand side tends to zero as k — o0, so
that IT*f and IT*g are orthogonal in L?((0,00)). By approximation, this
holds true for any f,g € L?((0,00)) such that f(\) = 0 for A > )¢ and
g(A) =0 for A < Ap.

Define m(E) = ||[I[T*1g||3 for Borel E C (0,00). Clearly, 0 < m(E) <
C|1gl|3 = C|E|. If E; C (0,X) and Ey C (Ag, 00), then

m(EyU By) = || 1p, |3 + | T 1g, |5 + 201" 1p,, 1" 1p,)
= m(El) + m(EQ)

Finally, suppose that E = (77| E,, where By C Ey C -+ and |E| < oc.
Since 1g, converges to 1 in L?((0,00)), also IT*1g, converges to II*1g in
L?((0,00)), and so m(E) = lim,,_c m(E,). It follows that m is an absolutely
continuous measure on (0, 00), and by approximation,

(I f,1T7g) = | F(N)g(\) m(dN)
0
for any f,g € L*((0,00)). The lemma will be proved if we show that m(E) =
(m/2)|E|.
Fix A\g > 0 and define f5 = (1/\/5)1[)\0)\0%] for 6 > 0. Clearly, || fsll2 = 1,
and m([\o, \o+9])/8 = ||IT* f5|3. Furthermore, v/§ IT* fs = g1+ga— g3, where
Ao+6
g1(x) = S sin(Az + 6),) dX,
Ao
Ao+9
go(x) = | (sin(Az +0)) — sin(Az + 05,)) dA,
Ao
Ao+9
gs(x) = | Gi(x)dA.
Ao
We study the behavior of g1, g2 and g3 as § — 0.
By Lemma we have G (z) < 1 and {;° Gx(z) dz < 1/X. Hence, by
Fubini,
oo Ao+0 9 0o Ao+0 52
llgslls = S( | c@) d)\) do < 55( | G d)\) de < &,
0 o 0 o A0

so that ||gs||2/Vv/6 tends to zero as 6 — 07,
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The function g9 is the imaginary part of the Fourier transform of the
function f(\) = (exp(it)y) —exp(ivx,))1a,00+6](A)- By Propositionm we
have |95 —1y,| < C|A—=Xo| for some C' > 0 (depending on Ag). Hence | f(\)| <
06, and so ||fll2 < €832 Tt follows that ||gal2/vV < V27 || fll2/Ve <
V27 C§ also tends to zero as § — 0.

Finally, for the function g;, by Fubini,

2 S (g1(x))%e =" da
0
Ao+0d Ao+6 co
= | | V2sinuz +05) sin(dox + 0, )e ™" dz dAy dAy
Xo Ao O
Ao+3d Ao+ oo
= S S S (cos((A1 — A2)x) — cos((A1 + A2)z + 20y))e” = du dAi dAg
Ao Ao O
B AOS+6 A0§r5< £ N ecos(20y,) — (A1 + A2) sin(219>\0)> D d)
I C R PP e2 4+ (A1 + Ag)? L

By taking the limit € — 07 and using dominated convergence for the second
term of the integrand, we obtain

[e%¢] Ao+

1 . A+0+A
lgul3 = {(1(2))?dz == | (7 —sin(205,)log =2 ) d)a.
2 Ao + A2
0 Ao
Hence, using 0 < log(1+s) < s (s > 0),
. Ao+
all3 m o sin(20y,) J 7T
1 =~ — lim ——22) [ g1 Ao = —.
e s R DY AS B\t ) 2T g
0

We conclude that for all Ay > 0,
. m([Ao, o +9]) . llg1 + g2 — g3ll2 2_ T
lim —————= = lim = —,
§—0*t 1) §—0t \/(75 2
that is, m(d\) = (7/2)d\. =
Proof of Theorem when II is injective. By Lemma \2/mIT* is
an L?((0,00)) isometry, and by the extra assumption, its adjoint \/2/7 IT

is injective. Hence, both operators are unitary on L?((0,00)). The theorem
follows now directly from Lemma and (IT*)~! = (2/m)IT*. =

In [56], Theorem is proved in full generality. More precisely, it is
shown that II is always injective. Here we are satisfied with the following
observation: If X; is a symmetric a-stable process, then, by Example
below, F)\(x) = F;()), and therefore IT* = II. Since a self-adjoint isometry
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is necessarily unitary, we see (by Lemma|5.2)) that IT is injective. Hence, we
have proved the following result.

COROLLARY 5.3. When o € (0,2] and X; is the symmetric_a-stable
process (that is, (&) = £%/2), then the hypothesis of Theorem holds
true. m

In the following proofs of Theorems[I.7]and [L.8] we use the full statement
of Theorem |1 - In other words, we assume that II is injective (which is
proved to be true in general in [56]).

Proof of Theorem[1.7] Let f € C¢((0,00)). By Theorem

mwv

PO p() = % (e~ O [T £ (0 | e O By(@) I () dA
0

for all £,z > 0. The function e~ ") Fy(z)Fy(y) f(y) is jointly integrable in
y, A > 0. By Fubini,

- T(27 oo

PO 5) = | (2 [ O R@RG ) )
0 0

Since f € C.((0,00)) is arbitrary, the kernel of Pt(o’oo) has the form (1.6)). =

Proof of Theorem under additional assumption (1.11). By monotone
convergence,

Po(T(0.00) > 1) = P19 0y (@) = Tim P*e.(2),

where e.(z) = €71 ooy (7). We have

e (\) = | e Fy(x) dz = LF)(e).
0
By Theorem [1.3]
(5.3) PO<)g (7)) = 2 | eIy (@) LFa(e) dA.
™
0

If we can use dominated convergence, then, by Proposition

o0

2 2 .
Po(T0.00) > 1) = = | OV R (@) ((lim LFA(e)) dA
0
_ 2% o P'(A?)
== (g) e Fy(2) 50 dX,

as desired. Hence, it remains to show that the integrand in (5.3)) is dominated
by an integrable function when ¢ — 0%.



Subordinate Brownian motions on the half-line 263

By the assumption , there are C,a > 0 such that (§) > C¢&“
for £ > 1 (see the proof of Corollary . Hence, e~V g integrable in
A > 0. By Proposition we have LF)(e) < 2/A, and by Corollary
(for z1 = 0 and o = z), |F\(z)| < C min(1, \*/?) for some C' > 0 (depending
on x). Hence, the integrand in is bounded by 2Ce~ () min(1, \*/2) /A,
which is integrable in A > 0. Formula is proved.

By the same argument, the integrand in is integrable jointly in
A >0 and t > tg. Formula follows by integrating both sides of it in ¢
over (to,00), using Fubini and comparing the result with (1.9). =

6. Examples

EXAMPLE 6.1. Let ¢(£) = £*/2, where o € (0,2). Then Z; is the (a/2)-
stable subordinator, and X; = Bz, is the symmetric a-stable Lévy process.
By (4.17)) and (4.16)),

1 1
1 1 1— 2z 2—a¢ —logz (2—a)m
Iy=— 1 dz = dz = ———.
A 7r§)1—z2 Og(z_o‘—l)z2 ® ™ (S)l—z2 ‘ 8

(Note that the phase-shift of (2 — a))w/8 was conjectured, in somewhat dif-
ferent setting, in [73]; see [54] for further discussion.) By Theorem the

eigenfunctions of Pt(o’oo) and A ) are given by the formula

Fx(z) =sin(Az + (2 — a)7/8) — | (e ™™ ds, >0,
0

where (see (4.15) and (3.1]))
~ V2ax ! ¥ sin(am/2)
2 224 g2 2)afacos(ar/2)

17 1 1—€2¢%/\2
><e:><p(7r (S) e logl_éaga//\a dC).

A (6)

Clearly v(s) = Ayx(As) does not depend on A, and finally,

o0

Fy\(z) = F(\zx) =sin(Az + (2 — a)7/8) — S v(s)e % ds,
0
where
_ V2a sin(an/2) s¢
v(s) = 27 1+ 520 — 252 cos(am/2)

17T 1 1—s2¢2
— 1 .
><exp<7r (S) e Ogl_saCadC>
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By Lemma [4.27, we have F)(x (Va/2T(a/2) *(Ax)*/? as  — 0Ot
By Theorem [1.3| (or Corollary ., the functlons F) yield a generalized

eigenfunction expansion of A ) and Pt(o’oo), and by Theorems and

o

o0 2 _ fe%
pgo, )(x,y) = S e N F(Ax)F(\y)d\, t,a,y >0,
0
ND) o0 =AY ()
Pe(7(0,00) > 1) = Wa j° 3 (Az) d\,  tx>0.

0

For a=1, these results were obtained in [49], and the formulae for pgo’oo) (x,y)
and P, (7(g,.c) > t) can be significantly simplified in this case.

EXAMPLE 6.2. If (&) = y/m?2 + & —m for some m > 0, then Z; is the
relativistic subordinator with mass m, and the corresponding Lévy process
is the relativistic 1-stable process with mass m. Its infinitesimal operator A
is the (quasi-)relativistic Hamiltonian of a free particle with mass m, and
A(0,00) is the Hamiltonian corresponding to the semi-infinite potential well.
By

)

9 18 1 o Vm?2 + A2 — v/m? + \222
A==
mol=22 7 (mZ+ N2/22 — Vm?2 4 \2) 22
which increases with A from 0 as A — 0T to m/8 as A — oo. The eigenfunc-
tions of Pt(o’oo) have the form Fy(z) = sin(Az + 95) — Ga(z), where G}, is
the Laplace transform of an explicit non-negative function. By Lemma [1.27]
F\x(z) ~ /2\z/m as  — 01. See [38] for a detailed discussion of this
example.

EXAMPLE 6.3. Let 1(€) = €92 + B¢, v € (0,2), B > 0. Then Z; is the
(a/2)-stable subordinator with drift, and the corresponding Lévy process

X, is a mixture of the Brownian motion and the symmetric a-stable Lévy
process. When a = 1, then, by (4.17] m,

PR Q4B — ACH BN
VTS E R O ) - 0 )
_1§ 1+ﬁ/\+mcd<
ol — <2 & T BA+ BAC

This decreases Wlth A from 7/8 as A — 01 to 0 as A — oo, and can be
written explicitly in terms of the dilogarithm function Lis. For general «,
the expression for ¢, is more complicated, and it can be proved that o)

decreases from (2—a)7/8 to 0. By Lemmalt.27, Fy(z) ~ /B + (a/2)X*"2 \z

as ¢ — 0T,
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EXAMPLE 6.4. Let ¢(&) = log(1l 4 &), so that Z; is the gamma subor-
dinator. The subordinate process X; is called the variance gamma process.

By (4.17),
log(1 + A?%) — log(1 + A22?)

1
1 1
Py = — 1 dz.
= T 8 (g ) tos )

It can be proved that 9, increases with A from 0 as A — 0 to 7/4 as
A — oo. By Lemma the eigenfunctions F) satisfy F)(x) ~ Cy/+/|log z|
as ¢ — 07, with Cy = \/v/2 + 2)2. In particular, F) is not Hélder continu-
ous. Note that the assumptions of Theorem [1.7] are satisfied only for ¢ > 1/2,
but Theorem applies for all £ > 0. On the other hand, the more restric-
tive condition is not met, so this case is not covered by the proof of
Theorem [1.8| given above. The general argument of [56] has to be used.

EXAMPLE 6.5. Let 9(€) = log(1 + log(1 + €)). It can be verified that in
this case ¥, is greater than /4 for some A, e.g. ¥g ~ 0.2877. This proves that
it is not true in general that ¥, < 7/4, even if ¢ is unbounded. Furthermore,
e~ () is not integrable in A > 0 for any ¢ > 0, so Theorem is of no use
here. Theorem applies for ¢t > 1/2, but the additional assumption
is not satisfied.

EXAMPLE 6.6. Let ¢(§) = &/(1 4 €). In this case the subordinator Z; is
the compound Poisson process with exponential jump distribution, and the
jumps of X; have Laplace distribution with density (1/2)e1*l. Note that
1/((A?) — 9(¢)) is holomorphic in ¢ € C\ {\}, and hence 7, vanishes. It
follows that I\ = sin(Az + )1 o0\ (7). By and a contour integration,

1 T A 1+ 22
19/\:%_800 Sy 10g1+)\2 dz = arctan \;

we omit the details. Hence, F)(z) = sin(A\z + arctan \)1(g () satisfies
AF)\(z) = —¢(A?)Fy(z) for all z € (0,00). This can be alternatively proved
by a direct calculation.

It can be easily proved that 7, vanishes if and only if ¥ (§) = 5¢ (i.e. X
is a Brownian motion) or ¢(&) = C1§/(§ + C2) for some Cq,Cy > 0 (which
corresponds to the process X; studied in this example, up to time and space
scaling).

EXAMPLE 6.7. In general, v, may have non-zero singular part. For ex-
ample, consider ¥(£) = 5z/(x + 1) +z/(x +5) and A = 1. Then ¢ (—4) =
8/3 = ¢(1), and hence 7, has an atom at 2 for A = 1.

7. Application to systems of PDEs. As was the case in [49], where
the Cauchy process was studied, the eigenfunctions F) are the boundary
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values of solutions of a certain system of PDEs, a spectral problem with
spectral parameter in the boundary. In [49], the formula for F (for the case
of the Cauchy process) was found by solving the corresponding system of
PDEs. Here the argument goes in the opposite direction, and the result for
PDEs is an application of the formula for F}.

We need some background on Krein correspondence. For a complete
Bernstein function 1, there is a unique string m (a non-decreasing, right-
continuous unbounded function from [0, c0) to [0, 0o]) which is the Krein rep-
resentation of 1. For simplicity, we only consider the case when m(0) = 0,
m is continuously differentiable on (0,00), and m/(y) > 0 for all y > 0.
Denote a(y) = 1/m/(y). Then, for each A > 0 there exists a (unique)
non-negative, non-increasing continuous function g)(y) = g(\,y) such that
a(y)gi(y) = Aga(y) for y > 0, and g»(0) = 1. Furthermore,

$(N) = —g)(0),  A>0.

For the details, we refer to [45], or Chapter 14 in [65], and the references
therein. The Krein correspondence between m and ¢ is a rather complicated
concept, and there are only a few examples of explicit pairs (see [65]).

Let f € S and define u(z,y) using the Fourier transform in z,

Foul€,y) = g(&,y)Ff(E), E€R, y>0.

It is easy to check that w is the solution of the problem

0? 0?
= - = R
<a$2 +a(y) 8y2>U(%‘,y) 0, reR,y>0,
u(z,0) = f(z), z€R.
Furthermore,

f$<ayu>(£,0)— lim —>——

y—07T Y

FIE) = —p(E)Ff(©),

so that (0/0y)u(z,0) = Af(x), where A is the operator with Fourier symbol
—)(£€2). Theorem implies the following result.

THEOREM 7.1. Let a(y) be a positive continuous function on (0,00)
such that 1/a is integrable over (0,1), but not over (1,00). For A > 0, let
arz(y) = g(A\,y) be the non-negative, non-increasing continuous solution of

a(y)gi(y) = Aga(y) (y > 0), satisfying gx(0) = 1. Define () = g}(0), and
let F be the function given in Theorem[L1]. Finally, let

(7.1) ur(z,y) = F, (9%, 9)FFAE)), x€R,y>0.

Then uy is continuous and bounded in x € R, y > 0, twice differentiable in



Subordinate Brownian motions on the half-line 267
r €R, y >0, and it satisfies

0? 0?
_ = R
<6.’B2 a(y)ay2>u>\($7y) 07 T € K, y>05

(72) U)\(ZL‘,O) =0, x <0,
d
T ux(z,0) = —p(A\?)uy(z,0), x> 0.
Y
The Fourier transform and inverse Fourier transform in ([7.1) is under-
stood in the distributional sense.

Sketch of the proof. Using the properties of g(A,y), it is easy to check
that uy is a weak solution of (7.2). Since g(&2,y)FF\(€) (for a fixed y > 0)
is a sum of an L*(R) function and C, /(¢ — \) — C,/(£ + ) (in much the
same way as in Section , u(x,y) is a bounded function. Continuity of uy
and its first and second order partial derivatives in x € R, y > 0 follows by
elliptic regularity theorem. Continuity of uy on the boundary is proved using
the properties of g(\,y) and F)(x). =

We provide two examples. If a(y) = 1/(142ay) for a constant a > 0, then
we find that gy (y) = (1+2ay)*(\/m*“)/(2a) and ¥(\) = VA + a®—a. Hence
1) is the characteristic exponent of the relativistic subordinator described in
Example For a related example, see Section 2.7 in [60].

Consider now « € (0,2) and

a(y) = aQCin_Q/O‘, where ¢, =2"°T'(1 —«/2)/T'(1+ «a/2).
We have gx(y) = C’a(caﬁy)l/QKa/z((caﬁy)l/a), where K, /5 is the modi-
fied Bessel function of the second kind and C, = a2~%/2/I'(1 4 «,/2). More-
over, P(A) = A/2 50 that 1 is the characteristic exponent of the (ar/2)-stable

subordinator considered in Example [6.1] When a = 1, a(y) = 1.

The problem (7.2 with a(y) = 1 was studied in [49] to find the eigenfunc-

. 0, X o . . .
tions of Pt( %), Earlier, a similar relation for more general domains (also in

higher dimensions) was applied e.g. in [2,[3, [10,[70], and for general symmetric
stable processes e.g. in [19, 20} 21], 59]. Related problems appear frequently
in hydrodynamics (the sloshing problem): see the references in [49].

The operator d?/dz? + a(y)d?/dy? is the generator of a two-dimensional
diffusion Y; on R X [0, 00), with reflecting boundary. By repeating the con-
struction given in Example 3.1 of [42], we can identify the subordinate Brow-
nian motion X; studied in the present article with the trace left on the hori-
zontal axis by Y;. We remark that the connection between subordinate Brow-
nian motion in R% and traces of diffusions in R*! was applied e.g. in [12] T3]
to find formulae for the distribution of some Lévy processes stopped at the
time of first exit from the half-line or the interval. A related problem for the
trace of a two-dimensional jump-type stable process was studied in [36].
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