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Abstract. Given a von Neumann algebra M we consider its central extension E(M).
For type I von Neumann algebras, E(M) coincides with the algebra LS(M) of all locally
measurable operators affiliated with M. In this case we show that an arbitrary automor-
phism T of E(M) can be decomposed as T = Ta ◦ Tφ, where Ta(x) = axa−1 is an inner
automorphism implemented by an element a ∈ E(M), and Tφ is a special automorphism
generated by an automorphism φ of the center of E(M). In particular if M is of type I∞
then every band preserving automorphism of E(M) is inner.

1. Introduction. In a series of papers [1]–[3] we have considered deriva-
tions on the algebra LS(M) of locally measurable operators affiliated with a
von Neumann algebra M, and on various subalgebras of LS(M). A complete
description of derivations has been obtained in the case of von Neumann al-
gebras of type I and III.

A comprehensive survey of recent results concerning derivations on var-
ious algebras of unbounded operators affiliated with von Neumann algebras
is presented in [4].

It is well-known that properties of derivations on algebras are strongly
correlated with properties of automorphisms of the algebras (see e.g. [6]).
Algebraic automorphisms of C∗-algebras and von Neumann algebras were
considered in the paper of R. Kadison and J. Ringrose [7], which is devoted
to automatic continuity and innerness of automorphisms. In the present pa-
per we initiate the study of automorphisms of the algebra LS(M) and its
various subalgebras. In the commutative case a similar problem has been
considered by A. G. Kusraev [10] who proved by means of Booolean-valued
analysis the existence of a nontrivial band preserving automorphism on al-
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gebras of the form L0(Ω,Σ, µ). The algebra LS(M) and its subalgebras are
noncommutative counterparts of L0(Ω,Σ, µ). In the present paper we es-
tablish a general form of automorphisms of the algebra LS(M) for type I
von Neumann algebras M.

Let A be an algebra. A one-to-one linear operator T : A → A is
called an automorphism if T (xy) = T (x)T (y) for all x, y ∈ A. Given an
invertible element a ∈ A one can define an automorphism Ta of A by
Ta(x) = axa−1, x ∈ A. Such automorphisms are called inner. It is clear that
for a commutative (abelian) algebra A all inner automorphisms are trivial,
i.e. act as the identity operator. In the general case inner automorphisms
are identical on the center of A. Essentially different classes of automor-
phisms are those which are generated by automorphisms of the center Z(A)
of A. In some cases such automorphisms φ of Z(A) can be extended to au-
tomorphisms Tφ of the whole algebra A (see e.g. Kaplansky [8, Theorem 1]).
The main result of the present paper shows that for a type I von Neumann
algebra M every automorphism T of the algebra LS(M) can be uniquely
decomposed as the composition T = Ta ◦ Tφ of an inner automorphism Ta
and an automorphism Tφ generated by an automorphism φ of the center of
LS(M).

In Section 2 we recall the notions of the algebras S(M) of measurable op-
erators and LS(M) of locally measurable operators affiliated with a von Neu-
mann algebra M. We also introduce the so-called central extension E(M) of
the von Neumann algebra M. In the general case E(M) is a ∗-subalgebra of
LS(M), which coincides with LS(M) if and only if M does not have direct
summands of type II. We also introduce two generalizations of the topology
of convergence locally in measure on LS(M) and prove that for the type I
case they coincide.

In Section 3 we consider automorphisms of the algebra E(M), the cen-
tral extension of a von Neumann algebra M. We prove (Theorem 3.10) that
if M is of type I then each automorphism T of E(M) which acts identically
on Z(E(M)) is inner. We also show that for homogeneous type I von Neu-
mann algebras M every automorphism φ of Z(E(M)) can be extended to
an automorphism Tφ of the whole E(M). Finally we prove the main result
of the present paper which states that each automorphism T of E(M) for a
type I von Neumann algebra M can be uniquely represented as T = Ta ◦Tφ,
where Ta is the inner automorphism implemented by an element a ∈ E(M),
and Tφ is an automorphism generated by an automorphism φ of the center
of E(M). In particular we deduce that each band preserving automorphism
of E(M) is inner if M is of type I∞.

2. Central extensions of von Neumann algebras. In this section we
give some necessary definitions and preliminary information on algebras of
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measurable and locally measurable operators affiliated with a von Neumann
algebra. We also introduce the notion of the central extension of a von
Neumann algebra.

Let H be a complex Hilbert space and let B(H) be the algebra of all
bounded linear operators onH. Consider a von Neumann algebraM inB(H)
with the operator norm ‖ · ‖M . Denote by P (M) the lattice of projections
in M.

A linear subspace D of H is said to be affiliated with M (written DηM)
if u(D) ⊂ D for every unitary u from the commutant of M ,

M ′ = {y ∈ B(H) : xy = yx, ∀x ∈M},

A linear operator x onH with domainD(x) is said to be affiliated withM
(written xηM) if D(x)ηM and u(x(ξ)) = x(u(ξ)) for all ξ ∈ D(x).

A linear subspace D in H is said to be strongly dense in H with respect
to the von Neumann algebra M if

• DηM ;
• there exists a sequence {pn}∞n=1 of projections in P (M) such that
pn ↑ 1, pn(H) ⊂ D and p⊥n = 1− pn is finite in M for all n ∈ N, where
1 is the identity in M.

A closed linear operator x acting in the Hilbert space H is said to be
measurable with respect to the von Neumann algebra M if xηM and D(x)
is strongly dense in H.

Denote by S(M) the set of all linear operators on H, measurable with
respect to the von Neumann algebra M. If x ∈ S(M) and λ ∈ C, then
λx ∈ S(M) and the operator x∗, adjoint to x, is also measurable with
respect to M (see [15]). Moreover, if x, y ∈ S(M), then the operators x+ y
and xy are defined on dense subspaces and admit closures that are called,
respectively, the strong sum and the strong product of x and y, and are
denoted by x

.
+ y and x∗y. It was shown in [15] that x

.
+ y and x∗y belong

to S(M) and these algebraic operations make S(M) a ∗-algebra with the
identity 1 over the field C. Moreover, M is a ∗-subalgebra of S(M). In what
follows, the strong sum and the strong product of x and y will be denoted
in the same way as the usual operations, by x+ y and xy.

A closed linear operator x in H is said to be locally measurable with
respect to the von Neumann algebra M if xηM and there exists a sequence
{zn}∞n=1 of central projections in M such that zn ↑ 1 and znx ∈ S(M) for
all n ∈ N (see [16]).

Denote by LS(M) the set of all linear operators that are locally mea-
surable with respect to M. It was proved in [16] that LS(M) is a ∗-algebra
over the field C with identity 1 and with the operations of strong addition,
strong multiplication, and taking the adjoint. Thus S(M) is a ∗-subalgebra



4 S. Albeverio et al.

in LS(M). In the case where M is a finite von Neumann algebra or a factor,
the algebras S(M) and LS(M) coincide. This is not true in the general case.
In [12] the class of von Neumann algebras M has been described for which
the algebras LS(M) and S(M) coincide.

We say that a measure µ on a measure space (Ω,Σ, µ) has the direct
sum property if there is a family {Ωi}i∈J ⊂ Σ, 0 < µ(Ωi) < ∞, i ∈ J, such
that for any A ∈ Σ with µ(A) < ∞, there exist a countable subset J0 ⊂ J
and a set B with zero measure such that A =

⋃
i∈J0

(A ∩Ωi) ∪B.
It is well-known (see e.g. [15]) that for each commutative von Neumann

algebra M there exists a measure space (Ω,Σ, µ) with µ having the direct
sum property such that M is ∗-isomorphic to the algebra L∞(Ω,Σ, µ) of all
(equivalence classes of) complex essentially bounded measurable functions
on (Ω,Σ, µ). In this case LS(M) = S(M) ∼= L0(Ω,Σ, µ), where L0(Ω,Σ, µ)
is the algebra of all (equivalence classes of) complex measurable functions
on (Ω,Σ, µ).

Further we consider the algebra S(Z(M)) of operators which are measur-
able with respect to the center Z(M) of the von Neumann algebra M. Since
Z(M) is an abelian von Neumann algebra, it is ∗-isomorphic to L∞(Ω,Σ, µ)
for some measure space (Ω,Σ, µ). Therefore the algebra S(Z(M)) coincides
with Z(LS(M)) and can be identified with L0(Ω,Σ, µ).

The basis of neighborhoods of zero in the topology of convergence locally
in measure on L0(Ω,Σ, µ) consists of the sets

W (A, ε, δ) = {f ∈ L0(Ω,Σ, µ) : ∃B ∈ Σ, B ⊆ A, µ(A \B) ≤ δ,
f · χB ∈ L∞(Ω,Σ, µ), ‖f · χB‖L∞(Ω,Σ,µ) ≤ ε},

where ε, δ > 0, A ∈ Σ, µ(A) < ∞, and χB is the characteristic function of
the set B ∈ Σ.

Recall the definition of the dimension function on the lattice P (M) of
projections from M (see [11], [15]).

By L+ we denote the set of all measurable functions f : (Ω,Σ, µ) →
[0,∞] (modulo functions equal to zero µ-almost everywhere).

Let M be an arbitrary von Neumann algebra with center Z(M) ≡
L∞(Ω,Σ, µ). Then there exists a map d : P (M) → L+ with the follow-
ing properties:

(i) d(e) is a finite function if and only if the projection e is finite;
(ii) d(e+ q) = d(e) + d(q) for e, q ∈ P (M) with eq = 0;
(iii) d(uu∗) = d(u∗u) for every partial isometry u ∈M ;
(iv) d(ze) = zd(e) for all z ∈ P (Z(M)) and e ∈ P (M);
(v) if {eα}α∈J , e ∈ P (M) and eα ↑ e, then d(e) = supα∈J d(eα).

The map d : P (M)→ L+ is called the dimension function on P (M).
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Remark 2.1. Recall that for x ∈M the projection defined as

c(x) = inf{z ∈ P (Z(M)) : zx = x}
is called the central cover of x.

Let M be a type I von Neumann algebra. If p, q ∈ P (M) are abelian
projections with c(p) = c(q) = 1, then the property (iii) implies that 0 <
d(p)(ω) = d(q)(ω) < ∞ for µ-almost every ω ∈ Ω. Therefore replacing d
by d(p)−1d we can assume that d(p) = c(p) for every abelian projection
p ∈ P (M). Thus for all e ∈ P (M) we have d(e) ≥ c(e).

The basis of neighborhoods of zero in the topology t(M) of convergence
locally in measure on LS(M) consists (in the above notation) of the sets

V (A, ε, δ) = {x ∈ LS(M) : ∃p ∈ P (M), ∃z ∈ P (Z(M)), xp ∈M,

‖xp‖M ≤ ε, z⊥ ∈W (A, ε, δ), d(zp⊥) ≤ εz},
where ε, δ > 0, A ∈ Σ, µ(A) <∞ (see [16]).

The topology t(M) is metrizable if and only if the center Z(M) is σ-finite
(see [11]).

Given an arbitrary family {zi}i∈I of mutually orthogonal central projec-
tions in M with

∨
i∈I zi = 1 and a family of elements {xi}i∈I in LS(M)

there exists a unique element x ∈ LS(M) such that zix = zixi for all i ∈ I.
This element is denoted by x =

∑
i∈I zixi.

We denote by E(M) the set of all x ∈ LS(M) for which there exists
a sequence {zi}i∈I of mutually orthogonal central projections in M with∨
i∈I zi = 1 such that zix ∈M for all i ∈ I, i.e.

E(M) =
{
x ∈ LS(M) : ∃zi ∈ P (Z(M)), zizj = 0, i 6= j,∨

i∈I
zi = 1, zix ∈M, i ∈ I

}
.

It is known [3] that E(M) is a ∗-subalgebra in LS(M) with center
S(Z(M)), the algebra of all measurable operators with respect to Z(M);
moreover, LS(M) = E(M) if and only if M does not have direct summands
of type II.

Example 2.2. There exists a type I von Neumann algebra such that

LS(M) 6= S(M) and S(M) 6= E(M).

Indeed, let M be a type I∞ von Neumann algebra with infinite-dimen-
sional center Z(M). For example M is a C∗-product of a countable number
of von Neumann algebras B(H), where H is an infinite-dimensional Hilbert
space, i.e.

M ≡
⊕
n∈N

B(H).
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Then there exists a sequence {pn}∞n=1 of nonzero mutually orthogonal pro-
jections in Z(M). Put

x =
∞∑
n=1

npn.

Then 0 ≤ x ∈ LS(M) and en(x) =
∑n

k=1 pk, where en(x) is the spectral
projection of x corresponding to the interval [0, n]. Since M is a type I∞
algebra, en(x)⊥ =

∑∞
k=n+1 pk is an infinite projection for all n ∈ N. This

means that x /∈ S(M), i.e. LS(M) 6= S(M).
Since M is of type I, from [3, Proposition 1.1] it follows that

LS(M) = E(M),

and therefore
S(M) 6= E(M).

In general, if a von Neumann algebra M is a direct product of an infinite
number of von Neumann algebras that are not finite, then LS(M) 6= S(M)
(see [12, Proposition 4]).

The algebra E(M) is called the central extension of M. A similar no-
tion (of the algebra E(A)) for arbitrary ∗-subalgebras A ⊂ LS(M) was
independently introduced recently by M. A. Muratov and V. I. Chilin [13].

It is known ([3], [13]) that an element x ∈ LS(M) belongs to E(M) if
and only if there exists f ∈ S(Z(M)) such that |x| ≤ f. Therefore for each
x ∈ E(M) one can define the following vector-valued norm:

(2.1) ‖x‖ = inf{f ∈ S(Z(M)) : |x| ≤ f}.
This norm satisfies the following conditions:

• ‖x‖ ≥ 0; ‖x‖ = 0⇔ x = 0;
• ‖fx‖ = |f | ‖x‖;
• ‖x+ y‖ ≤ ‖x‖+ ‖y‖;
• ‖xy‖ ≤ ‖x‖ ‖y‖;
• ‖xx∗‖ = ‖x‖2

for all x, y ∈ E(M), f ∈ S(Z(M)).
Let us equip E(M) with the topology tc(M) defined by the following

system of zero neighborhoods:

O(A, ε, δ) = {x ∈ E(M) : ||x|| ∈W (A, ε, δ)},
where ε, δ > 0, A ∈ Σ, µ(A) <∞.

Lemma 2.3. The topology tc(M) is stronger than the topology t(M) of
convergence locally in measure.

Proof. It is sufficient to show that

(2.2) O(A, ε, δ) ⊂ V (A, ε, δ).
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Let x ∈ O(A, ε, δ), i.e. ‖x‖ ∈ W (A, ε, δ). Then there exists B ∈ Σ such
that

B ⊆ A, µ(A \B) ≤ δ,
and

‖x‖χB ∈ L∞(Ω,Σ, µ),
∥∥‖x‖χB∥∥M ≤ ε.

Put z = p = χB. Then ‖xp‖ = ‖xχB‖ = ‖x‖χB ∈ L∞(Ω,Σ, µ), i.e.
xp∈M , and moreover ‖xp‖M ≤ ε. Since µ(A\B)≤ δ and z⊥χB = χ⊥BχB = 0,
one has z⊥ ∈W (A, ε, δ). Therefore

‖xp‖M ≤ ε, z⊥ ∈W (A, ε, δ), zp⊥ = χBχ
⊥
B = 0,

and hence x ∈ V (A, ε, δ).

Lemma 2.4. If M is a type I von Neumann algebra and 0 < ε < 1, then

(2.3) O(A, ε, δ) = V (A, ε, δ).

Proof. By (2.2) it is sufficient to show that V (A, ε, δ) ⊂ O(A, ε, δ).
Let x ∈ V (A, ε, δ). Then there exist p ∈ P (M) and z ∈ P (Z(M)) such

that

xp ∈M, ‖xp‖M ≤ ε, z⊥ ∈W (A, ε, δ), d(zp⊥) ≤ εz.
Since M is of type I, Remark 2.1 implies that d(zp⊥) ≥ c(zp⊥). Now

from d(zp⊥) ≤ εz it follows that c(zp⊥) ≤ εz. As 0 < ε < 1 we find that
zp⊥ = 0. Thus z = zp. Then z = χE for some E ∈ Σ. Since z⊥ ∈W (A, ε, δ)
one has χΩ\E ∈ W (A, ε, δ). Thus there exists B ∈ Σ such that B ⊆ A,
µ(A \B) ≤ δ, |χΩ\EχB| ≤ ε < 1. Hence χB ≤ χE . So we obtain

‖x‖χB ≤ ‖x‖χE = ‖x‖z = ‖xz‖ = ‖xzp‖ = ‖xp‖ ≤ ε.
This means that x ∈ O(A, ε, δ).

Lemma 2.4 implies the following

Theorem 2.5. If M is a type I von Neumann algebra then the topologies
t(M) and tc(M) coincide.

Remark 2.6. The equality (2.3) implies that for type I von Neumann
algebras the definition of V (A, ε, δ) can be written in a simpler way without
using the dimension function:

V (A, ε, δ) = {x ∈ LS(M) : ∃z ∈ P (Z(M)), xz ∈M,

‖xz‖M ≤ ε, z⊥ ∈W (A, ε, δ)}.
It should be noted that the topology tc(M) on general Banach–Kantorov-

ich spaces over a ring K of measurable functions was considered in [17].
An important property of this topology, which will be used in the next
section (Theorem 3.1), is the following: the continuity of a K-linear operator
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on a Banach–Kantorovich space in this topology is equivalent to its K-
boundedness [17, Theorem 3.1].

Lemma 2.7. Let M be a type I von Neumann algebra and let x ∈ LS(M),
x ≥ 0. If pxp = 0 for all abelian projections p ∈M then x = 0.

Proof. Since x ≥ 0 we have x = yy∗ for some y ∈ LS(M). Then

0 = pxp = pyy∗p = py(py)∗

and hence py = 0. Therefore y∗py = 0 for all abelian projections p ∈ M.
But since M has type I there exists a family {pi}i∈J of mutually orthogonal
abelian projections such that

∑
i∈J pi = 1. For any finite subset F ⊆ J put

pF =
∑

i∈F pi. Since pF ↑ 1, from ypF y
∗ = 0 we deduce that yy∗ = 0, i.e.

x = yy∗ = 0.

3. Automorphisms of central extensions for type I von Neu-
mann algebras. Let A be an arbitrary algebra with center Z(A) and let
T : A → A be an automorphism. It is clear that T maps Z(A) onto itself:
indeed, for all a ∈ Z(A) and x ∈ A one has

T (a)T (x) = T (ax) = T (xa) = T (x)T (a),

which means that T (a) ∈ Z(A).
An operator T : A → A is said to be Z(A)-linear if T (ax) = aT (x) for

all a ∈ Z(A) and x ∈ A. It is easy to see that an automorphism T : A → A
of a unital algebra A is Z(A)-linear if and only if it is identical on Z(A).

Theorem 3.1. Let M be a von Neumann algebra of type I and let E(M)
be its central extension. Then each Z(E(M))-linear automorphism T of the
algebra E(M) is inner.

Proof. Let us show that T is t(M)-continuous. First suppose that the
center Z(M) is σ-finite. Then the topology t(M) is metrizable and hence it
is sufficient to prove that T is t(M)-closed.

Consider a sequence {xn} ⊂ E(M) such that xn
t(M)−−−→ 0, T (xn)

t(M)−−−→ y.
Take x ∈ E(M) such that T (x) = y and let us show that x = 0. Since

x∗xn
t(M)−−−→ 0

and

T (x∗xn) = T (x∗)T (xn)
t(M)−−−→ T (x∗)y = T (x∗)T (x) = T (x∗x),

we may suppose (by replacing {xn} by {x∗xn}) that x ≥ 0.
Let p ∈ M be an arbitrary abelian projection with c(p) = 1. Then

pxnp = anp for some an ∈ S(Z(M)) and all n ∈ N. Since xn
t(M)−−−→ 0 and
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c(p) = 1 it follows that an
t(M)−−−→ 0. Therefore

T (p)T (xn)T (p) = T (pxnp) = T (anp) = anT (p)
t(M)−−−→ 0.

On the other hand

T (p)T (xn)T (p)
t(M)−−−→ T (p)yT (p),

thus T (p)yT (p) = 0 and hence

pxp = T−1(T (p)yT (p)) = T (0) = 0,

i.e. pxp = 0 for all abelian projections with c(p) = 1. Therefore Lemma 2.7
implies that x = 0, i.e. T is t(M)-continuous.

Now consider the general case, i.e. when the center Z(M) is arbitrary.
Take a family {zi}i∈I of mutually orthogonal central projections in M with∨
i zi = 1 such that ziZ(M) is σ-finite for all i ∈ I. By the above, ziT

is t(ziM)-continuous on ziE(M) for all i ∈ I, where (ziT )(x) = T (zix) =
ziT (x) is the restriction of T to ziE(M), which is well-defined in view of
the Z(E(M))-linearity of T. Therefore T is t(M)-continuous on the whole
E(M) =

∏
i∈I ziE(M).

Further by Theorem 2.5 the topologies t(M) and tc(M) coincide and
hence T is also tc(M)-continuous and according to [17, Theorem 3.1] there
exists c ∈ S(Z(M)) such that ‖T (x)‖ ≤ c‖x‖ for all x ∈ E(M).

Take a sequence {zn}n∈N of mutually orthogonal central projections in
M with

∨
n zn = 1 such that znc ∈ Z(M) for all n ∈ N. This means that

the automorphism znT maps bounded elements from znE(M) to bounded
elements, i.e. znT (znM) ⊆ znM. Then given any n ∈ N the automorphism
znT |znM is identical on the center of znM. By a theorem of Kaplansky
[9, Theorem 10] there exist an ∈ znM invertible in znM and such that
znT (x) = anxa

−1
n for all x ∈ znM. Put a =

∑
n≥1 znan. It is clear that

a ∈ E(M) and

T (x) =
∑
n≥1

znT (x) =
∑
n≥1

znT (znx) =
∑
n≥1

an(znx)an = axa−1

for all x ∈ E(M).

Let M be a von Neumann algebra of type In for some n ∈ N. Then M is
∗-isomorphic to the algebra Mn(Z(M)) of all n×n matrices over Z(M) (cf.
[14, Theorem 2.3.3]). Moreover the algebra S(M) = E(M) is ∗-isomorphic to
Mn(Z(S(M))), where Z(S(M)) = S(Z(M)) (see [2, Proposition 1.5]). If eij ,
i, j = 1, n, are matrix units in Mn(S(Z(M))) then each x ∈ Mn(S(Z(M)))
has the form

x =
n∑

i,j=1

aijeij , aij ∈ S(Z(M)), i, j = 1, n.
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Let φ : S(Z(M))→ S(Z(M)) be an automorphism. Setting

(3.1) Tφ

( n∑
i,j=1

aijeij

)
=

n∑
i,j=1

φ(aij)eij

we obtain a linear operator Tφ on Mn(S(Z(M))), which is in fact an algebra
automorphism. Indeed, for

x =
n∑

i,j=1

aijeij , y =
n∑

i,j=1

bijeij , aij , bij ∈ S(Z(M)), i, j = 1, n,

we have

Tφ(xy) = Tφ

( n∑
i,j=1

aijeij

n∑
k,s=1

bkseks

)
= Tφ

( n∑
i,j,s=1

aijbjseis

)
=

n∑
i,j,s=1

φ(aijbjs)eis =
n∑

i,j,s=1

φ(aij)φ(bjs)eis

=
n∑

i,j=1

φ(aij)eij
n∑

k,s=1

φ(bks)eks = Tφ(x)Tφ(y),

i.e. Tφ(xy) = Tφ(x)Tφ(y).
The following property immediately follows from the definition of Tφ:

if ϕ and φ are two automorphisms of S(Z(M)) then Tφ ◦ Tϕ = Tφ◦ϕ, in
particular T−1

φ = Tφ−1 .

Remark 3.2. (i) If the automorphism φ on S(Z(M)) is nontrivial (i.e.
not identical) then it is clear that Tφ cannot be an inner automorphism on
Mn(S(Z(M))).

(ii) It is known [7, Lemma 1] that every (algebraic) automorphism of
a C∗-algebra is automatically norm continuous. But in our case this is not
true in general. Suppose that the abelian algebra S(Z(M)) is represented
as L0(Ω,Σ, µ), with a continuous Boolean algebra Σ. Then A. G. Kusraev
[10, Theorem 3.4] has proved that S(Z(M)) admits a nontrivial band pre-
serving automorphism φ which is, in particular, t(M)-discontinuous, where
“band preserving” means that φ is identical on all projections z ∈ S(Z(M)).
Then Tφ is an example of a t(M)-discontinuous automorphism of E(M). In
particular, Tφ is not inner.

Theorem 3.3. If M is a von Neumann algebra of type In, then each
automorphism T of E(M) can be uniquely represented in the form

(3.2) T = Ta ◦ Tφ,
where Ta is an inner automorphism implemented by an element a ∈ E(M),
and Tφ is the automorphism of the form (3.1) generated by an automorphism
φ of S(Z(M)).
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Proof. Let φ be the restriction of T to Z(E(M)) = S(Z(M)). As men-
tioned earlier, φ maps Z(E(M)) onto itself, i.e. ϕ is an automorphism of
Z(E(M)). Consider the automorphism Tφ defined by (3.1) and put S =
T ◦T−1

φ . Since T and Tφ coincide on Z(E(M)), it follows that S is identical
on Z(E(M)), i.e. S is a Z(E(M))-linear automorphism of E(M). By The-
orem 3.1 there exists an invertible element a ∈ E(M) such that S = Ta, i.e.
S(x) = axa−1 for all x ∈ E(M). Therefore T = S ◦ Tφ = Ta ◦ Tφ.

Suppose that T = Ta ◦Tφ = Tb ◦Tϕ for a, b ∈ E(M) and automorphisms
φ and ϕ of Z(E(M)). Then T−1

b ◦ Ta = Tϕ ◦ T−1
φ , i.e. Tb−1a = Tϕ◦φ−1 . Since

Tb−1a is identical on Z(E(M)), so is ϕ ◦ φ−1, i.e. ϕ = φ. Therefore Tϕ = Tφ,
i.e. T−1

b ◦ Ta = Id and hence Ta = Tb.

Lemma 3.4. Let M be a von Neumann algebra and let T : E(M) →
E(M) be an automorphism. If x ∈ E(M) and c(x) = 1 then c(T (x)) = 1.

Proof. Assume c(x) = 1 and consider the central projection z ∈P (Z(M))
such that T (z) = 1− c(T (x)). Then

T (zx) = T (z)T (x) = (1− c(T (x))c(T (x))T (x) = 0

and hence zx = 0. Therefore zc(x) = 0, i.e. z = 0. This means that 0 =
T (0) = 1− c(T (x)) = 1, i.e. c(T (x)) = 1.

If φ is a ∗-automorphism of E(M) then it is an order automorphism and
hence maps M onto M. But for an arbitrary automorphism (non-adjoint-
preserving), this not true in general. For some particular cases one can obtain
a positive result.

Lemma 3.5. Let M be an abelian von Neumann algebra and let φ :
E(M)→ E(M) be a t(M)-continuous automorphism. Then φ(M) ⊆M.

Proof. Let x ∈M be a simple element, i.e.

x =
n∑
i=1

λiei,

where λi ∈ C, ei ∈ P (M), eiej = 0, i 6= j, i, j = 1, n. Let us prove that
φ(x) ∈ M and ‖φ(x)‖M = ‖x‖M . Since M is abelian and φ(ei)2 = φ(ei),
it follows that φ(ei) is a projection for each i = 1, n. Therefore from the
equality

φ(x) =
n∑
i=1

λiφ(ei)

we see that φ(x) ∈M and moreover

‖φ(x)‖M = max
1≤i≤n

|λi| = ‖x‖M .
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Let now x ∈ M be arbitrary. Consider a sequence {xn} of simple ele-
ments in M which t(M)-converges to x and |xn| ≤ |x| for all n ∈ N. Then

φ(xn)
t(M)−−−→ φ(x) and ‖φ(xn)‖M = ‖xn‖M ≤ ‖x‖M for all n ∈ N. Therefore

|φ(x)| ≤ ‖x‖M1, i.e. φ(x) ∈M.

We are now in a position to consider automorphisms of central extensions
for type I∞ von Neumann algebras.

Theorem 3.6. Let M be a von Neumann algebra of type I∞, and let
T : E(M) → E(M) be an automorphism. Then T is t(Z(M))-continuous
on E(Z(M)) and maps Z(M) onto itself.

Proof. SinceM is of type I∞, there exists a sequence {pn}∞n=1 of mutually
orthogonal abelian projections in M with the central covers equal to 1. For
a bounded sequence {an} from Z(M) put

x =
∞∑
n=1

anpn.

Then
xpn = pnx = anpn for all n ∈ N.

Now let T be an automorphism of E(M) and denote by φ its restriction
to the center of E(M). If qn = T (pn), n ∈ N, then

T (xpn) = T (x)T (pn) = T (x)qn
and

T (xpn) = T (anpn) = T (an)T (pn) = φ(an)qn,

therefore
T (x)qn = φ(an)qn.

For the center-valued norm ‖ · ‖ on E(M) (see (2.1)) we have

‖qn‖ ‖T (x)‖ ≥ ‖qnT (x)‖ = ‖φ(an)qn‖ = |φ(an)| ‖qn‖.
Since c(qn) = c(pn) = 1 (Lemma 3.4) the latter inequality implies that

(3.3) ‖T (x)‖ ≥ |φ(an)|.
Let us show that φ is t(Z(M))-continuous on E(Z(M)). If not, then

there exists a bounded sequence {an} in Z(M) such that {φ(an)} is not
t(Z(M))-bounded, which contradicts (3.3). Thus φ is t(Z(M))-continuous
and Lemma 3.5 implies that T maps Z(M) onto itself.

Remark 3.7. The t(Z(M))-continuity of T on E(Z(M)) easily implies
that the restriction of T to E(Z(M)) and hence to Z(M) is a ∗-auto-
morphism (cf. [7, Lemma 1]).

Now we are going to show that similar to the case of type In (n ∈ N) von
Neumann algebras, automorphisms of the algebras E(M) for homogeneous
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type Iα von Neumann algebras (where α is an infinite cardinal number) can
also be represented in the form (3.2).

Suppose that φ : Z(M) → Z(M) is an automorphism. According to
[8, Theorem 1], φ can be extended to a ∗-automorphism of M, which we
denote by Tφ. Since each ∗-automorphism is an order isomorphism and each
hermitian element of E(M) is an order limit of hermitian elements from M,
we can naturally extend Tφ to a ∗-automorphism of E(M).

Theorem 3.8. If M is a type Iα von Neumann algebra, where α is
an infinite cardinal number, then each automorphism T on E(M) can be
uniquely represented as

T = Ta ◦ Tφ,
where Ta is an inner automorphism implemented by an element a ∈ E(M)
and Tφ is the ∗-automorphism generated by an automorphism φ of Z(M) as
above.

Proof. Let φ be the restriction of T to the center S(Z(M)) of E(M).
Then by Theorem 3.6, φ maps Z(M) onto itself. By [8, Theorem 1] as above
φ can be extended to a ∗-automorphism of E(M). Now similar to Theorem
3.3 there exists a ∈ E(M) such that T = Ta ◦ Tφ and this representation is
unique.

Lemma 3.9. Let M and N be von Neumann algebras of type I and sup-
pose that M is homogeneous of type Iα. If there exists an isomorphism (not
necessarily a ∗-isomorphism) T from E(M) onto E(N) then N is also of
type Iα.

Proof. Let zN be a central projection in N such that zNN is of type Iβ,
where β is a cardinal number. Take a central projection zM in M such that
T (zM ) = zN . Replacing M and N by zMM and zNN respectively we may
assume that zM = 1M , zN = 1N .

Let {pi}i∈I (respectively {ej}j∈J) be a family of mutually equivalent and
orthogonal abelian projections in M (respectively in N) with

∨
i∈I pi = 1M

(respectively
∨
j∈J ej = 1N ), where |I|=α, |J |= β. It is clear that c(pi) = 1M

for all i ∈ I.
Then qi = T (pi) is an idempotent (q2i = qi) but not a projection in

general. Let fi = sl(qi) be the left projection of the idempotent qi. Since fi is
the projection onto the range of the idempotent qi we infer that qifi = fi, i.e.
fiqifi = fi, and moreover c(fi) = 1N , because c(qi) = 1N (see Lemma 3.4).
The equalities

qiE(N)qi = T (piE(M)pi) = T (Z(E(M))pi) = E(Z(N))qi
imply that for each x ∈ E(N) there exists ax ∈ E(Z(N)) such that qixqi =
axqi.
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Now we show that fi is an abelian projection. For x ∈ E(N) and each fi
there exists ai ∈ E(Z(N)) such that

qifixfiqi = aiqi.

Thus

fixfi = (fiqifi)x(fiqifi) = fi(qifixfiqi)fi = fiaiqifi = aifiqifi = aifi,

i.e. fiE(N)fi = E(Z(N))fi. This means that fi is an abelian projection.

Case 1: α and β are finite. Let Φ be the normalized center-valued trace
on N. Then

1N = Φ(1N ) =
∑
i∈I

Φ(qi) = αΦ(q1) = αΦ(f1q1) = αΦ(f1q1f1) = αΦ(f1).

Since N is of type Iβ, we have

1N = βΦ(f1).

Therefore α = β.

Case 2: α and β are infinite. For a faithful normal semi-finite trace τ
on N put

τi(x) = τ(fix), x ∈ N.
For each i ∈ I set

Ji = {j ∈ J : τi(ej) 6= 0}.
Since {ej} is an orthogonal family, each Ji is countable.

Suppose that there exists j ∈ J such that τi(ej) = 0 for all i ∈ I. Since
τ(fiejfi) = τ(fiej) = τi(ej) = 0, we obtain fiejfi = 0. But from

0 = fiejfi = fiejejfi = fiej(fiej)∗

it follows that fiej = 0 for all i ∈ I. And since
∨
i∈I fi = 1N , this implies

that ej = 0, a contradiction. Therefore given any j ∈ J there exists i ∈ I
such that τi(ej) 6= 0, i.e. j ∈ Ji. Hence

J =
⋃
i∈I

Ji,

so β ≤ αℵ0, and therefore β ≤ α. Similarly α ≤ β.
This means that every homogeneous direct summand of the von Neu-

mann algebra N is of type Iα, i.e. N itself is homogeneous of type Iα.

It is well-known [14] that if M is an arbitrary von Neumann algebra of
type I then there exists an orthogonal family {zα}α∈J of central projections
in M with supα∈J zα = 1 such that M is ∗-isomorphic to the C∗-product of
the von Neumann algebras zαM of type Iα, α ∈ J, i.e.

M ∼=
⊕
α∈J

zαM.
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In this case by the definition of the central extension we have

E(M) =
∏
α∈J

E(zαM).

Suppose that T is an automorphism of E(M) and φ is its restriction to
the center E(Z(M)). Let us show that T maps each zαE(M) ∼= E(zαM) onto
itself. Clearly T maps zαE(M) onto T (zα)E(M). From Lemma 3.9 it follows
that the von Neumann algebra T (zα)M is of type Iα. Thus T (zα) ≤ zα.
Suppose that z′α = zα−T (zα) 6= 0. By Lemma 3.9 we know that T−1(z′α)M
is of type Iα, i.e.

0 6= z′′α = T−1(z′α) ≤ zα.
On the other hand

T (zαz′′α) = T (zα)T (z′′α) = T (zα)z′α
= T (zα)(zα − T (zα)) = T (zα)− T (zα) = 0,

i.e. zαz′′α = 0. Therefore since z′′α ≤ zα we have z′′α = 0, a contradiction.
Hence z′α = 0, i.e. T (zα) = zα.

Therefore φ generates an automorphism φα on each zαS(Z(M)) ∼=
Z(E(zαM)) for α ∈ J. Let Tφα be the automorphism of zαE(M) gener-
ated by φα, α ∈ J. Put

(3.4) Tφ ({xα}α∈J) = {Tφα(xα)}, {xα}α∈J ∈ E(M).

Then Tφ is an automorphism of E(M).
Now we can state the main result of the present paper.

Theorem 3.10. If M is a type I von Neumann algebra, then each auto-
morphism T of E(M) can be uniquely represented in the form

T = Ta ◦ Tφ,
where Ta is an inner automorphisms implemented by an element a ∈ E(M)
and Tφ is an automorphism of the form (3.4).

Proof. Let T be an automorphism of E(M) and let φ be its restriction
to Z(E(M)). Consider the automorphism Tφ on E(M) generated by the
automorphism φ as in (3.4) above. Similar to the proof of Theorem 3.3
we find an element a ∈ E(M) such that T = Ta ◦ Tφ and show that this
representation is unique.

Recall [5] that an operator T : E(M)→ E(M) is called band preserving
if T (zx) = zT (x) for all z ∈ P (Z(M)) and x ∈ E(M), i.e. T is identical on
central projections of E(M).

Theorems 3.6 and 3.10 imply the following result which is an analogue
of [7, Theorem 5, Remark A] giving a sufficient condition for the innerness
of algebraic automorphisms.
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Corollary 3.11. If M is a von Neumann algebra of type I∞ then each
band preserving automorphism of E(M) is inner.

Proof. Let φ be the restriction of T to E(Z(M)). Since T is band pre-
serving it follows that φ acts identically on simple elements from Z(M).
Theorem 3.6 implies that φ is t(Z(M))-continuous. Hence φ is identical on
the whole S(Z(M)) = E(Z(M)) and therefore by Theorem 3.10, T is an
inner automorphism.

Remark 3.12. It is clear that the condition of the above corollary is
also necessary for the innerness of automorphisms of E(M).
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