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Perturbations of isometries between Banach spaces

by

Rafał Górak (Warszawa)

Abstract. We prove a very general theorem concerning the estimation of the ex-
pression ‖T (a+b

2
)− Ta+Tb

2
‖ for different kinds of maps T satisfying some general per-

turbed isometry condition. It can be seen as a quantitative generalization of the classical
Mazur–Ulam theorem. The estimates improve the existing ones for bi-Lipschitz maps. As
a consequence we also obtain a very simple proof of the result of Gevirtz which answers
the Hyers–Ulam problem and we prove a non-linear generalization of the Banach–Stone
theorem which improves the results of Jarosz and more recent results of Dutrieux and
Kalton.

1. Introduction. The aim of this paper is to prove a very general the-
orem (Theorem 2.1) that will allow us to obtain several facts concerning
approximate preservation of midpoints by different kinds of maps with a
perturbed isometry condition. Let us define the main notion of this paper:

Definition 1.1. Let T : E → F be a bijection between two metric
spaces (E, dE) and (F, dF ). Assume that there is a function µ : R+ → R+

(where R+ = {x ∈ R; x ≥ 0}) which is non-decreasing and such that the
following conditions hold:

(i) dF (Tx, Ty) ≤ µ(dE(x, y)) for all x, y ∈ E.
(ii) dE(T−1f, T−1g) ≤ µ(dF (f, g)) for all f, g ∈ F .

Then T is called a µ-isometry.

In our article we consider (except Corollary 3.4) µ-isometries between
Banach spaces only. It should be noticed that following [8] for a given map
T : E → F we can easily find the optimal µ which is µ(t) = t + εT (t)
where

εT (t) = sup
{∣∣‖Tx− Ty‖ − ‖x− y‖∣∣ : ‖x− y‖ ≤ t or ‖Tx− Ty‖ ≤ t

}
.

Lindenstrauss and Szankowski consider maps T that are surjective but not
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necessarily injective. However they observe that one can easily reduce the
considerations to the bijective case when t→∞:

Fact 1.2. Let T : E → F be a surjective map between Banach spaces E
and F , respectively. If εT (t) <∞ for all t ∈ R+ and εT (δ0)/δ0 < 1 for some
δ0 > 0 then there exists a bijection T̃ : E → F such that

∀x ∈ E ‖Tx− T̃ x‖ ≤ 2δ0 + 2εT (δ0).

Hence T̃ is a µ-isometry for µ(t) = t+ εT (t) + 4δ0 + 4εT (δ0). In particular
εeT (t) ∼ εT (t) as t→∞ (if only εT (t)→∞).

Proof. For the sake of completeness we sketch the proof. Let us consider
the maximal set A ⊂ E all of whose points are at a distance of at least δ0 from
each other. Then for every a 6= b in A we have δ0−εT (δ0) ≤ ‖Ta−Tb‖, hence
T |A is injective. Moreover T (A) is δ0+εT (δ0)-dense in F (that is, the distance
of every element of F from T (A) is not greater than δ0 +εT (δ0)). This shows
that the density characters of E and F are equal. Now it is easy to construct
decompositions E =

⋃̇
a∈AEa and F =

⋃̇
a∈AFa such that for all a ∈ A:

(1) a ∈ Ea, Ta ∈ Fa;
(2) |Ea| = |Fa|;
(3) diamEa ≤ δ0 and diamFa ≤ δ0 + εT (δ0).

By the standard set-theoretical reasoning we can extend T |A to the required
µ-isometry T̃ : E → F .

Below we only consider the notion of µ-isometry since it provides suffi-
cient generality, and by considering bijective maps we avoid some easy but
rather technical problems.

When considering µ-isometries one should not think that they are per-
turbed isometries (since it may easily happen that there is no isometry to
perturb) but rather that they satisfy a perturbed isometry condition. Hence
the following natural question arises: “How can you perturb the definition of
an isometry between Banach spaces so that the existence of a map satisfying
the perturbed condition implies the existence of an isometry?”. If one has an
answer to this question, another one can be asked: “How far is the perturbed
isometry from an isometry?” Lindenstrauss and Szankowski [8] answered
these questions for the class of all Banach spaces and for all µ-isometries.
However one can investigate the above problems for some subclasses of Ba-
nach spaces (such as function spaces, which leads to generalizations of the
Banach–Stone theorem).

Let us now discuss, in more detail, some examples of µ-isometries for
different functions µ, and results related to both questions asked above. Let
T be a µ-isometry between Banach spaces E and F . If µ(t) = t then T
is just an isometry. Let us now consider µ(t) = t + L for some constant
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L ≥ 0. Such maps are called L-isometries. More generally an L-isometry
T is a surjective map between Banach spaces for which εT (t) ≤ L. But as
we have already noticed, Fact 1.2 allows us to reduce considerations to the
bijective case (see Corollary 3.1 where we show how this is done). Hyers and
Ulam asked whether L-isometries are close to isometries. The question was
answered positively for all pairs of Banach spaces E and F by Gevirtz [4]
(let us say that L can be as large as we please).

Szankowski and Lindenstrauss gave a complete characterization of those
µ-isometries whose existence implies the existence of an isometry. More pre-
cisely:

Theorem 1.3. Let T : E → F be a µ-isometry between Banach spaces
E and F where µ(t) = t+ εT (t), T (0) = 0 and

	∞
1 (εT (t)/t2) dt < ∞. Then

there exists an isometry I : E → F such that

‖Tx− Ix‖ = o(‖x‖) as ‖x‖ → ∞.
Moreover the result is sharp (see [8] for more details) in the case when E
and F are general Banach spaces.

Let us now consider µ(t) = Mt. In this case T is a bi-Lipschitz map
(or Lipschitz equivalence). This means that distances between points are
perturbed according to the inequalities

1
M
‖x− y‖ ≤ ‖Tx− Ty‖ ≤M‖x− y‖ for all x, y ∈ E.

Obviously if M = 1 then T is just an isometry. Let us look at the case
when M ↘ 1. Unfortunately, no matter how close to one M is, we cannot
guarantee the existence of an isometry between general Banach spaces E
and F . Clearly

	∞
1 ((M − 1)t/t2) dt =∞ (M > 1) hence you can find in [8] a

construction of Banach spaces E and F that are µ-isometric for µ(t) = Mt
but they are not isometric. However, for some particular class of Banach
spaces E and F one can obtain interesting positive results even for the more
general case of µ(t) = Mt+L (maps that are bi-Lipschitz for large distances).
Indeed let us consider E = C0(X) and F = C0(Y ), the spaces of continuous
real valued functions vanishing at ∞ on locally compact spaces X and Y ,
respectively. The spaces C0(X) and C0(Y ) are endowed with the sup norms.
It turns out that in this case one can obtain more than Theorem 1.3:

Theorem 1.4. Let T : C0(X) → C0(Y ) be a µ-isometry, where X and
Y are locally compact spaces, µ(t) = Mt+L (M ≥ 1, L ≥ 0) and T (0) = 0.
Then there exists an absolute constantM0 > 1 and functions δ : [1,∞)→ R+

and ∆ : R2
+ → R+ such that wheneverM < M0 then there exists an isometry

I : C0(X)→ C0(Y ) such that

(1.1) ‖Tf − If‖ ≤ δ(M)‖f‖+∆(M,L) for all f ∈ C0(X).
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Moreover, ∆(M, 0) = 0 and limM→1+ δ(M) = 0. In particular, from the
Banach–Stone theorem, the spaces X and Y are homeomorphic. It is known
that M0 ≤

√
2 and equality holds if we assume additionally that T is linear

(see [3] and [5] for the discussion).

The first of such results was obtained by Jarosz in [6] but for L = 0
only. However the value of M0 which he obtains is very close to 1, and the
function δ is far from being optimal (δ(M) = O((M − 1)0.1) as M ↘ 1
and ∆(M, 0) = 0 in his result). Later Dutrieux and Kalton [2] obtained the
value ofM0 =

√
17/16 (in their notation the conditionM < M0 can be seen

as the inequality dN (C0(X), C0(Y )) < M2
0 ) but they do not provide any

estimation like (1.1) (this time L can be positive). Finally the author in [5]
improved the constant to M0 =

√
6/5 and showed that δ(M) = 26(M − 1).

Moreover ∆(M, 0) = 0, hence the result improved both the constant M0

obtained in [2] and the function δ obtained in [6] as well as showed the
existence of δ and ∆ if L > 0. However, the proof works only for X and Y
compact and it is not that easy to extend it to the locally compact case. We
will do this in the last section of this paper by applying the main result of
Section 2.

It turns out that in the proofs of most of the above results the estimation
of
∥∥T (a+b2

)
− Ta+Tb

2

∥∥ is crucial and far from being obvious. Moreover the
results estimating this expression can be regarded as generalizations of the
Banach–Mazur theorem so in some sense they are of independent interest.
We deal with this problem in the next section.

2. Approximate preservation of midpoints by µ-isometries. We
present here a very general method of estimating

∥∥T (a+b2

)
− Ta+Tb

2

∥∥ for
µ-isometries T . It should be mentioned that some results of this kind have
already been obtained in [8] (in fact this is the most demanding part of [8]).
However the method presented here has several important advantages. First
of all it has an astonishingly simple proof and covers the result of Gevirtz
(Corollary 3.1) which solves the famous Hyers–Ulam problem (the proofs in
the original paper [4] or in the survey paper of Rassias [9] are clearly more
complicated). Secondly, applying our result for µ-isometries where µ(t) =
Mt + L, we obtain new and elegant estimates (they are interesting even
in the Lipschitz case, that is, when L = 0). This will allow us to prove
new results concerning the nonlinear version of the Banach–Stone theorem.
Finally, although our theorem does not cover the result of Lindenstrauss
and Szankowski in full generality, it gives their result for particular functions
µ(t) = t+ε(t) such as µ(t) = t+tα where α ∈ [0, 1) (see Section 4). It is very
tempting (due to the simplicity of the proof below) to investigate whether
Theorem 2.1 gives us the result of [8] in full generality.



Perturbations of isometries between Banach spaces 51

Before we formulate and prove the main result let us say that the idea of
it comes from the beautiful proof of the classical Mazur–Ulam theorem due
to Väisälä (see [10]).

Theorem 2.1. Let T : E → F be a µ-isometry between two normed
spaces (E, ‖ · ‖E) and (F, ‖ · ‖F ). Assume that µ : R+ → R+ is such that
µ(t)/2 ≤ µ(t/2) for all t. Then for all a, b ∈ E and n ∈ Z+,∥∥∥∥T(a+ b

2

)
− Ta+ Tb

2

∥∥∥∥
F

≤ µ◦(2n+1−1)

(
‖a− b‖E

2n+1

)
,

where µ◦n = µ ◦ · · · ◦ µ (n-fold composition).

Proof. Let us consider the set WE(µ) consisting of all µ-isometries from
E onto some normed space. Fix a, b in E and set z = (a+ b)/2. Denote

λ(µ) = sup
{∥∥∥∥Tz − Ta+ Tb

2

∥∥∥∥
F

∣∣∣∣T ∈WE(µ), F = ImT

}
.

Let us observe that for T ∈WE(µ) we have∥∥∥∥Tz − Ta+ Tb

2

∥∥∥∥
F

≤ 1
2
(‖Tz − Ta‖F + ‖Tz − Tb‖F )

≤ 1
2

(
2µ
(
‖a− b‖E

2

))
= µ

(
‖a− b‖E

2

)
.

Hence

(2.1) λ(µ) ≤ µ
(
‖a− b‖E

2

)
,

and one can see that λ(µ) is finite. For T ∈WE(µ) let us define Ψ and Ψ ′ to
be the reflections with respect to z and (Ta+ Tb)/2, respectively. Consider
a new bijection on E defined as the composition S = ΨT−1Ψ ′T . It is easy
to check that S ∈WE(µ ◦ µ), Sa = a and Sb = b. We have

2
∥∥∥∥Tz − Ta+ Tb

2

∥∥∥∥
F

= ‖Ψ ′Tz − Tz‖F ≤ µ(‖T−1Ψ ′Tz − T−1Tz‖E)

= µ(‖Sz − z‖E) = µ

(∥∥∥∥Sz − Sa+ Sb

2

∥∥∥∥
E

)
.

Consequently,

λ(µ) ≤ 1
2
µ(λ(µ ◦ µ)) ≤ µ

(
λ(µ◦2)

2

)
.

Hence

λ(µ◦2
n
) ≤ µ◦2n

(
λ(µ◦2

n+1
)

2

)
.
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Applying the above formula recursively we obtain

λ(µ) = λ(µ◦1) ≤ µ◦1
(
λ(µ◦2)

2

)
≤ µ◦1

(
1
2
µ◦2
(
λ(µ◦4)

2

))
≤ µ◦1 ◦ µ◦2

(
λ(µ◦4)

4

)
≤ · · · .

Finally,

λ(µ) ≤ µ◦1 ◦ µ◦2 ◦ · · · ◦ µ◦2n−1

(
λ(µ◦2

n
)

2n

)
= µ◦(2

n−1)

(
λ(µ◦2

n
)

2n

)
.

From the estimate (2.1) we have

λ(µ) ≤ µ◦(2n+1−1)

(
‖a− b‖E

2n+1

)
.

3. Applications. The result of the previous section gives us a very
simple proof of the main result from [4], which answers the question of Hyers
and Ulam. More precisely:

Corollary 3.1. Let T be an L-isometry between Banach spaces E and
F such that T (0) = 0. Then there exist constants A and B, depending on L
only, such that∥∥∥∥T(a+ b

2

)
− Ta+ Tb

2

∥∥∥∥ ≤ A√‖a− b‖+B for all a, b ∈ E.

As a corollary of that estimate, Gevirtz easily deduces (relying on a result
of Gruber) that the map I : E → F defined as Ix = limn→∞ T (2nx)/2n is
an isometry such that ‖Tx − Ix‖ ≤ 5L (later the constant was improved
to 2L, which turns out to be optimal).

Proof. Let us first assume that T is a µ-isometry for µ(t) = t + L. Ap-
plying Theorem 2.1 for µ(t) = t+ L, we obtain∥∥∥∥T(a+ b

2

)
− Ta+ Tb

2

∥∥∥∥ ≤ ‖a− b‖2n+1
+ 2n+1L.

Taking n = blog2

√
‖a− b‖c − 1 we have∥∥∥∥T(a+ b

2

)
− Ta+ Tb

2

∥∥∥∥ = O(
√
‖a− b‖)

as ‖a − b‖ → ∞. By applying Fact 1.2, we easily get the estimate for all
L-isometries, not only the bijective ones.

For further applications of Theorem 2.1 we need the following simple
observation:
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Lemma 3.2. Let µ(t) = t + ε(t) where ε : R+ → R+ \ {0} is a non-
decreasing function. Then

µ◦n(t)�

t

1
ε(x)

dx ≤ n.

Proof. Since 1/ε is a non-increasing function,
µ◦n(t)�

t

1
ε(x)

dx ≤
n−1∑
k=0

1
ε(µ◦k(t))

(µ◦k+1(t)− µ◦k(t)) = n.

Corollary 3.3. Let T : E → F be a µ-isometry for µ(t) = (1 + ε)t+L
where 0 < ε < 0.2. Then∥∥∥∥T(a+ b

2

)
− Ta+ Tb

2

∥∥∥∥ ≤ 3ε‖a− b‖+
4
ε
L for all a, b ∈ E.

Let us remark that for ε ≥ 0.2, we easily obtain∥∥∥∥T(a+ b

2

)
− Ta+ Tb

2

∥∥∥∥ ≤ 1 + ε

2
‖a− b‖+

L

2
,

a better estimate than in the above corollary when ‖a− b‖ → ∞. The above
result is most interesting when ε is close to 0 and ‖a− b‖ → ∞.

Proof. From Theorem 2.1 we obtain∥∥∥∥T(a+ b

2

)
− Ta+ Tb

2

∥∥∥∥ ≤ µ◦(k−1)

(
d

k

)
≤ µ◦k

(
d

k

)
,

where k = 2n+1 and d = ‖a− b‖. From Lemma 3.2 we get

µ◦k(d/k)�

d/k

1
εx+ L

dx ≤ k.

Hence

µ◦k
(
d

k

)
≤ eεk

k
d+

1
ε
(eεk − 1)L.

The function k 7→ eεk/k has its minimum at k = 1/ε, which is eε. Since in
our application k = 2n+1, we have to find n so that 2n+1 is as close
to 1/ε as possible. For ε < 0.2 < 1/

√
2 there exists n ∈ [log2 (1/ε) − 1.5;

log2 (1/ε) − 0.5] ∩ Z+. Hence 2n+1 = k ∈ [1/
√

2ε;
√

2/ε] and this inter-
val contains 1/ε. Checking the values of eεk/k at the endpoints we obtain
µ◦k(d/k) ≤ 3εd+ (4/ε)L.

For the Lipschitz case (L = 0) similar estimates can be found in [11].
Vestfrid obtains the inequality

∥∥T (a+b2

)
− Ta+Tb

2

∥∥ ≤ 6ε‖a − b‖. So one can
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see that the above result improves the estimate and extends it to maps that
are not necessarily continuous (L > 0). By applying the above corollary we
can also obtain some interesting estimates for bi-Lipschitz maps between
ξ-dense subspaces of Banach spaces (nets in particular):

Corollary 3.4. Let T : A→ B be a µ-isometry from a ξE-dense set in
Banach space E onto a ξF -dense set in F , where µ(t) = (1 + ε)t and 0 < ε
< 0.2. Then for every a, b ∈ A and every z ∈ A such that ‖(a+ b)/2 − z‖
≤ ξE we have ∥∥∥∥Tz − Ta+ Tb

2

∥∥∥∥ ≤ 3ε‖a− b‖+
34(ξE + ξF )

ε
.

Proof. Using a simple Fact 1.5 from [5] (or reasoning as in the proof of
Fact 1.2) we obtain a map T̃ : E → F which is a µ-isometry for µ(t) =
(1 + ε)t+ 4ξF + 3ξE and ‖T̃ x− Tx‖ ≤ 2ξF + 2ξE for all x ∈ A. Let us take
any z ∈ A such that ‖(a+ b)/2 − z‖ ≤ ξE . Applying Corollary 3.3 to the
map T̃ , we obtain the desired estimate.

We will now show how Corollary 3.3 allows us to obtain improvements
on the constant M0 and the function δ (defined as in Theorem 1.4) for all
locally compact spaces.

Theorem 3.5. Let X and Y be locally compact spaces. Consider a µ-
isometry T : C0(X)→ C0(Y ) where µ(t) = Mt + L (M ≥ 1, L ≥ 0). If
M < M0 =

√
16/15 then there exists a homeomorphism ϕ : X → Y and a

continuous map λ : X → {−1, 1} such that for every f ∈ C0(X),

(3.1) ‖Tf − If‖ ≤ 76(M − 1)‖f‖+∆

where I is the isometry defined by If(y) = λ(ϕ−1(y))f(ϕ−1(y)). The con-
stant ∆ depends on M and L only. Moreover, for L = 0 we have ∆ = 0.

As we can see, the constantM0 improves the result obtained by Dutrieux
and Kalton. However, more important is the estimate δ(M) ≤ 76(M − 1)
that is far better than that previously known, due to Jarosz [6].

Proof. Let us assume that 1 < M <
√

16/15. If M = 1 then the
conclusion easily follows from the above-mentioned solution of the Hyers–
Ulam problem (Corollary 3.1) and from the Banach–Stone theorem. Let us
first recall the construction of the homeomorphism ϕ and the function λ
from [5].

In the construction, when dealing with the topology of general topological
spaces, we use the notion of net convergence (Moore–Smith convergence).
Σ will always denote a directed set and whenever we write aσ → a we
always mean limσ∈Σ aσ = a.
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Definition 3.6. (fσ)σ∈Σ ⊂ C(X) is an m-peak net at x ∈ X for some
directed set Σ if

• ‖fσ‖ = |fσ(x)| = m for all σ ∈ Σ,
• limσ∈Σ fσ|(X \ U) ≡ 0 uniformly for all open neighborhoods U of x.

We denote by PXm (x) the set of m-peak nets at x.

Definition 3.7. Let D > 0 and m > 0. We define

SDm(x) = {y ∈ Y : ∃(fσ)σ∈Σ ∈ PXm (x) ∃yσ → y ∀σ ∈ Σ,
Tfσ(yσ) ≥ Dm and T (−fσ)(yσ) ≤ −Dm}.

In [5] the author proves that for suitably chosen D and m we can define
ϕ by {ϕ(x)} = SDm(x), and ϕ turns out to be a homeomorphism between
X and Y. In all the steps in [5] where we prove that ϕ is a homeomor-
phism the only place were compactness is crucial is [5, Fact 2.4]. We will
modify its proof using Corollary 3.3 so that it works for the locally compact
case.

Fact 3.8. Let D = 14−13M . There exists m0 (depending on M and L)
such that for all m > m0 we have SDm(x) 6= ∅ for all x ∈ X. Moreover, if
L = 0 then m0 = 0.

Proof. Let us take any (f̃σ)σ∈Σ ∈ PXm (x) such that f̃σ(x) = m for all
σ ∈ Σ, and pick one σ0 ∈ Σ. Let us define g̃σ = (f̃σ + f̃)/2 where f̃ = f̃σ0 .
We have

∀σ ∈ Σ ‖T g̃σ − T (−g̃σ)‖ ≥
2
M
m− L.

Hence for every σ ∈ Σ there exists yσ ∈ Y such that |T g̃σ(yσ)−T (−g̃σ)(yσ)|
≥ (2/M)m − L. Let us observe that the numbers T g̃σ(yσ) and T (−g̃σ)(yσ)
must be of different signs. Assume the contrary. Since ‖T (±g̃σ)‖ ≤Mm+L
we have Mm + L ≥ (2/M)m − L, which is impossible for m large enough,
say m > m′0 (or for all m > 0 if L = 0), provided 2/M > M (that is,
if M <

√
2). We can and do assume that T g̃σ(yσ) ≥ 0 for all σ ∈ Σ or

T g̃σ(yσ) ≤ 0 for all σ ∈ Σ. Let us define:

• If T g̃σ(yσ) ≥ 0 for all σ ∈ Σ then fσ = f̃σ, f = f̃ and gmσ = (fσ + f)/2.
• If T g̃σ(yσ) ≤ 0 for all σ ∈ Σ then fσ = −f̃σ, f = −f̃ and gσ =

(fσ + f)/2.

Hence Tgσ(yσ)−T (−gσ)(yσ) ≥ (2/M)m−L. Because ‖T (±gσ)‖ ≤Mm+L
we have

Tgσ(yσ) ≥
(

2
M
−M

)
m− 2L,

T (−gσ)(yσ) ≤ −
(

2
M
−M

)
m+ 2L.
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Since gσ = (fσ + f)/2, by Corollary 3.3 we obtain∥∥∥∥T (±gσ)−
T (±fσ) + T (±f)

2

∥∥∥∥ ≤ 3(M − 1)m+
4

M − 1
L.

Hence
Tfσ(yσ) ≥

(
4
M
− 9M + 6

)
m−

(
5 +

8
M − 1

)
L,

T (−fσ)(yσ) ≤ −
(

4
M
− 9M + 6

)
m+

(
5 +

8
M − 1

)
L,

Tf(yσ) ≥
(

4
M
− 9M + 6

)
m−

(
5 +

8
M − 1

)
L.

Let m0 ≥ m′0 be such that(
4
M
− 9M + 6

)
m0 −

(
5 +

8
M − 1

)
L ≥ (14− 13M)m

for all m > m0 (such an m0 exists since 4/M − 9M + 6 > 14− 13M > 0 for
all M ∈ (1,

√
16/15)). By the compactness of the set

{y ∈ Y : Tf(y) ≥ (14− 13M)m}
for m > m0 we can assume that yσ → y ∈ SDm(x). Let us notice that for
L = 0 we have m0 = 0.

Now the proof of Theorem 3.5 is exactly the same as the proof of The-
orems 2.1 and Corollary 3.4 from [5]. Firstly, it is proven in [5, Section 2]
that ϕ(x) = SDm(x) is a homeomorphism for suitably chosen m > m2 (where
m2 = 0 if L = 0) if

(i) D is so that SDm(x) 6= ∅ for all x ∈ X;
(ii) 1− ε(M)M − ε(M) > 0 where ε(M) = 2M − 1−D.

In the compact case condition (i) means that it is enough to take D =
4 − 3M < 2/M −M (see Fact 2.4 in [5]). This, together with (ii), leads to
the conclusion that indeed M <

√
6/5. In the locally compact case we have

already shown (Fact 3.8) that we can take D = 14− 13M . Now (ii) leads to
the inequality M <

√
16/15.

For every x ∈ X and m > m0 let us define (following [5, Section 3])
λm(x) = fσ(x)/|fσ(x)| where the family (fσ)σ∈Σ ∈ PXm (x) is such that:

• fσ0(x)/|fσ0(x)| = fσ1(x)/|fσ1(x)| for all σ0, σ1 ∈ Σ (λm(x) does not
depend on σ).
• There exist yσ → y ∈ SDm(x) such that for every σ ∈ Σ we have
Tfσ(yσ) ≥ Dm and T (−fσ)(yσ) ≤ −Dm.

The existence of the above family for every x ∈ X is exactly what was shown
in the proof of Fact 3.8. The function λ from the formulation of Theorem 3.5
is defined as λm for m sufficiently large.
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In order to prove (3.1) it is enough to notice that Fact 2.7 in [5] works
also for X locally compact and hence gives the estimate∣∣|Tf(ϕ(x))| − |f(x)|

∣∣ ≤ ε(M)M‖f‖+∆ = 15(M2 −M)‖f‖+∆

for all f ∈ C0(X), x ∈ X and some constant ∆ depending onM , L and such
that ∆ = 0 if L = 0.

Repeating the reasoning from Section 3 of [5] for D = 14 − 13M we
obtain a slight modification of [5, Fact 3.1] (only one constant is changed):

Fact 3.9. Assume that |f(x)| > 30(M − 1)‖f‖ and let ‖f‖ = m. Then
for m > m3 (m3 ≥ 0 depends on M and L only), the sign of Tf(ϕ(x)) is
the same as the sign of λm(x)f(x). If L = 0 then m3 = 0.

As a consequence, reasoning as in the proof of [5, Corollary 3.4], we get
(3.1) where λ ≡ λm for m > m3. Summarizing the proof, let us just mention
that having Fact 3.8 at hand it is very easy to modify the reasoning from [5].
One should only keep in mind that this time D = 14− 13M .

4. Final remarks. Natural directions of further investigations and some
open problems arise from both of the above sections. First of all, as al-
ready mentioned, it would be interesting to see how the result of Szankowski
and Lindenstrauss follows from Theorem 2.1. For instance, if we consider
εT (t) ≤ tα for α ∈ [0, 1), by using Fact 3.2 one can obtain∥∥∥∥T(a+ b

2

)
− Ta+ Tb

2

∥∥∥∥ = O(‖a− b‖1/(2−α)) as ‖a− b‖ → ∞,

which is sufficient to show that Ix = limn→∞ T (2nx)/2n is the required
isometry in Theorem 1.3.

Another interesting question concerns the expression
∥∥T (a+b2

)
− Ta+Tb

2

∥∥
and its optimal estimation when T is a µ-isometry for µ(t) = (1 + ε)t and
ε → 0. We have already seen that

∥∥T (a+b2

)
− Ta+Tb

2

∥∥ = O(ε‖a − b‖) as
ε→ 0. It is easy to show that this is all one can obtain in the general case.
Indeed, as noticed by Vestfrid [11], it suffices to consider T : R→ R defined
by

T (x) =

(1 + ε)x if x ≥ 0,
1

1 + ε
x if x < 0.

However the exact value of the constant

K = lim sup
ε→0

Kε, where Kε = sup

∥∥T (a+b2

)
− Ta+Tb

2

∥∥
ε‖a− b‖

,

remains unknown. Here the supremum is taken over all µ-isometries T be-
tween Banach spaces, where µ(t) = (1 + ε)t, and over all pairs of points
a 6= b from the domain of T . The above example shows that K ≥ 0.5 and
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Corollary 3.3 shows that K ≤ 3. It is worth noting that a simple analysis of
the proof of Corollary 3.3 gives lim infε→0Kε ≤ e.

Finally it is of interest to find the optimal constant M0 and the optimal
estimate of δ in Theorem 1.4. In particular it is still unknown whether the
constantM0 =

√
2 is optimal or not. However we skip the detailed discussion

of this problem and direct the reader to the final section of [5].
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