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Characterising subspaces of Banach spaces
with a Schauder basis having the shift property

by

Christian Rosendal (Chicago, IL)

Abstract. We give an intrinsic characterisation of the separable reflexive Banach
spaces that embed into separable reflexive spaces with an unconditional basis all of whose
normalised block sequences with the same growth rate are equivalent. This uses methods
of E. Odell and T. Schlumprecht.

1. The shift property. We consider in this paper a property of Schau-
der bases that has come up on several occasions since the first construction
of a truly non-classical Banach space by B. S. Tsirelson in 1974 [11]. It
is a weakening of the property of perfect homogeneity, which replaces the
condition

all normalised block bases are equivalent

with the weaker

all normalised block bases with the same growth rate are equivalent,

and is satisfied by bases constructed along the lines of the Tsirelson basis,
including the standard bases for the Tsirelson space and its dual.

To motivate our study and in order to fix ideas, in the following result
we sum up a number of conditions that have been studied at various oc-
casions in the literature and that can all be seen to be reformulations of
the aforementioned property. Though I know of no single reference for the
proof of the equivalence, parts of it are implicit in J. Lindenstrauss and
L. Tzafriri’s paper [7] and the paper by P. G. Casazza, W. B. Johnson and
L. Tzafriri [2]. Moreover, any idea needed for the proof can be found in, e.g.,
the book by F. Albiac and N. J. Kalton [1] (see Lemma 9.4.1, Theorem 9.4.2.
and Problem 9.1) and the statement should probably be considered folklore
knowledge.
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Theorem 1.1. Let (en)∞n=1 be a normalised unconditional Schauder basis
for a Banach space X. Then the following conditions are equivalent.

(1) Any block subspace is complemented.
(2) Any block subspace [xn]∞n=1 is complemented by a projection P such

that
Pz =

∞∑
n=1

x∗n(z)xn,

where x∗n ∈ X∗ satisfy suppx∗n ⊆ suppxn.
(3) If (xn)∞n=1 and (yn)∞n=1 are normalised block sequences of (en)∞n=1

with
x1 < y1 < x2 < y2 < · · · ,

then (xn)∞n=1 ∼ (yn)∞n=1.
(4) If (xn)∞n=1 is a normalised block basis, then (xn)∞n=1 ∼ (xn+1)∞n=1.
(5) If (xi)∞i=1 and (yi)∞i=1 are normalised block sequences such that

max(suppxi ∪ supp yi) < min(suppxi+1 ∪ supp yi+1)

for all i, then (xi)∞i=1 ∼ (yi)∞i=1.
(6) For all normalised block bases (xn)∞n=1, if kn ∈ suppxn for all n, then

(ekn)∞n=1 ∼ (xn)∞n=1.

Moreover, if the above properties hold, then they do so uniformly, e.g., in (4)
there is a constant C such that for all normalised block bases (xn)∞n=1, we
have (xn)∞n=1 ∼C (xn+1)∞n=1.

An unconditional basis satisfying the above equivalent conditions will
be said to have the shift property. This is a natural weakening of perfect
homogeneity, i.e., that all normalised block bases are equivalent, which was
shown to be just a reformulation of being equivalent to the standard unit
vector basis of c0 or `p, 1 ≤ p < ∞, by M. Zippin [12]. Let us also note
that the shift property is stronger than what is called the block property
in [6], which is the requirement that every block sequence is equivalent with
some subsequence of the basis. Finally, we remark that the shift property is
obviously hereditary, that is, any normalised block basis of an unconditional
basis with the shift property will itself have the shift property.

Moreover, while the canonical bases of both Tsirelson’s space and its dual
have the shift property, only one of them contains a minimal subspace, i.e.,
an infinite-dimensional subspace that embeds into all of its further infinite-
dimensional subspaces. On the other hand, recall that a space E is locally
minimal [3] if there is a constantK such that for all finite-dimensional F ⊆ E
and infinite-dimensional X ⊆ E, we have F vK X, i.e., F embeds with
constant K into X. As was pointed out in [3] (Proposition 6.7), the proof of
Theorem 14 in [2] essentially shows that any locally minimal space with a
basis having the shift property is minimal.
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The goal of the present paper is not to study the shift property per se, but
rather to characterise the separable reflexive spaces that embed into a Banach
space having a Schauder basis with the shift property. This will require some
rather sophisticated techniques developed by E. Odell and T. Schlumprecht
in a series of papers (see, e.g., [5, 8]) and that we shall summarise and slightly
develop here. As a first application of their techniques, they characterised in
[8] the separable reflexive Banach spaces embedding into an `p-sum of finite-
dimensional spaces for 1 < p < ∞ and their result was further improved
in [10] to the following statement.

Theorem 1.2 (see [8, 10]). Let E be a separable reflexive Banach space
such that any normalised weakly null tree T in E has a branch (xi)∞i=1 ∈ [T ]
equivalent to all its subsequences. Then E embeds into an `p-sum, 1<p<∞,
of finite-dimensional spaces.

The result we shall obtain here has a weaker, though similar sounding
hypothesis, but its conclusion is perhaps more satisfactory, since it provides
a basis rather than a finite-dimensional decomposition.

Theorem 1.3. Let E be a separable reflexive Banach space such that
any normalised weakly null tree T in E has a branch (xi)∞i=1 ∈ [T ] satisfy-
ing (x2i−1)∞i=1 ∼ (x2i)∞i=1. Then E embeds into a reflexive space having an
unconditional basis with the shift property.

If the reader is not familiar with the techniques of Odell and Schlum-
precht, this should not be a hindrance to understanding the present con-
struction, as we shall take certain of their technical results as black boxes
that are directly applicable in our situation.

Without further introduction, let us commence the technical part of the
paper by proving Theorem 1.1 for the record and the convenience of the
reader.

Proof of Theorem 1.1. The implication (1)⇒(2) follows directly from
Lemma 9.4.1 in [1], so we shall not repeat the proof here.

(2)⇒(3): Suppose (2) holds and (xn)∞n=1 and (yn)∞n=1 are normalised
block sequences satisfying

x1 < y1 < x2 < y2 < · · · .
Assume that an are scalars such that

∑∞
n=1 anxn converges and choose sn > 0

converging to 0 such that also
∑∞

n=1(an/snxn) converges. To do this, one
just chooses k1 < k2 < · · · such that ‖

∑m
i=n ai‖ < 1/4p for all n,m ≥ kp,

and set si = 2−p for all kp ≤ i < kp+1. Put wn = xn+snyn and find w∗n ∈ X∗
such that suppw∗n ⊆ suppwn and

Pz =
∞∑
n=1

w∗n(z)wn



62 C. Rosendal

defines a bounded projection onto [wn]∞n=1, whence sup‖w∗n‖ <∞. Then

P

( ∞∑
n=1

an
sn
xn

)
=
∞∑
n=1

an
sn
P (xn) =

∞∑
n=1

an
sn
w∗n(xn)wn

=
∞∑
n=1

an
sn
w∗n(xn)(xn + snyn)

and so the last series is norm convergent. By unconditionality, it follows that
the series

∑∞
n=1 anw

∗
n(xn)yn is norm convergent too. Thus, as

w∗n(xn) = w∗n(wn)− w∗n(snyn) = 1− snw∗n(yn)
n→∞−−−→ 1,

using unconditionality again, we find that also
∑∞

n=1 anyn is norm conver-
gent. A symmetric argument shows that if

∑∞
n=1 anyn converges, then so

does
∑∞

n=1 anxn, whence (xn)∞n=1 and (yn)∞n=1 are equivalent.
(3)⇒(4): Assume that (3) holds and that (xn)∞n=1 is a normalised block

sequence. Then using (3),

(x2n−1)∞n=1 ∼ (x2n)∞n=1 ∼ (x2n+1)∞n=1.

By unconditionality, it follows that the sequence (xn)∞n=1, which is the
disjoint union of the sequences (x2n−1)∞n=1 and (x2n)∞n=1, is equivalent
to (xn+1)∞n=1, which itself is the disjoint union of (x2n)∞n=1 and (x2n+1)∞n=1.

(4)⇒(5): If (xi)∞i=1 and (yi)∞i=1 are normalised block sequences such that

max(suppxi ∪ supp yi) < min(suppxi+1 ∪ supp yi+1),

then both x1, y2, x3, y4, . . . and x2, y3, x4, y5, . . . are normalised block se-
quences, whence (x2i−1)∞i=1 ∼ (y2i)∞i=1 and (x2i)∞i=1 ∼ (y2i+1)∞i=1. By un-
conditionality, it follows that (xi)∞i=1 ∼ (yi+1)∞i=1 ∼ (yi)∞i=1.

(5)⇒(6): Trivial.
(6)⇒(1): If (6) holds, then it does so uniformly, that is, there is a con-

stant C such that (xn)∞n=1 ∼C (ekn)∞n=1 whenever (xn)∞n=1 is a normalised
block basis and kn ∈ suppxn. This can easily be seen, as otherwise one
would be able to piece together finite bits of sequences with worse and worse
constants of equivalence to get a counter-example to (6). Let also Ku be the
constant of unconditionality of (en)∞n=1.

Suppose (xn)∞n=1 is a normalised block sequence and let I1 < I2 < · · · be
a partition of N into successive finite intervals such that suppxn ⊆ In. Find
also functionals x∗n ∈ X∗ of norm ≤ Ku such that suppx∗n ⊆ suppxn and
x∗n(xn) = 1. We claim that

P (z) =
∞∑
n=1

x∗n(z)xn

defines a projection of norm ≤ K2
uC

2 from X onto [xn]∞n=1. To see this,
suppose z ∈ X and write z =

∑∞
n=1 anzn, where the zn are normalised
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block vectors such that supp zn ⊆ In. Modulo perturbing xn and zn ever
so slightly to get suppxn = In = supp zn and picking kn ∈ In, we see
that (xn)∞n=1 ∼C (ekn)∞n=1 ∼C (zn)∞n=1. So

∑∞
n=1 anxn converges and, by

unconditionality, so does
∑∞

n=1 x
∗
n(zn)anxn =

∑∞
n=1 x

∗
n(z)xn. Therefore, P

is defined and satisfies

‖P (z)‖ =
∥∥∥ ∞∑
n=1

x∗n(z)xn
∥∥∥ =

∥∥∥ ∞∑
n=1

x∗n(zn)anxn
∥∥∥

≤ K2
u

∥∥∥ ∞∑
n=1

anxn

∥∥∥ ≤ K2
uC

2
∥∥∥ ∞∑
n=1

anzn

∥∥∥ = K2
uC

2‖z‖,

proving the estimate on the norm.

Finally, let us also remark that unconditionality is already implied by
conditions (2) and (4)–(6) of Theorem 1.1. E.g., if a normalised basis (en)∞n=1

satisfies (4) and (θn)∞n=1 ∈ {−1, 1}∞, then

(e1, θ1e2, θ1θ2e3, θ1θ2θ3e4, . . .) ∼ (θ1e2, θ1θ2e3, θ1θ2θ3e4, θ1θ2θ3θ4e5, . . .),

and therefore, multiplying both sides with (θ1, θ1θ2, θ1θ2θ3, θ1θ2θ3θ4, . . .), we
have

(θ1e1, θ2e2, θ3e3, θ4e4, . . .) ∼ (e2, e3, e4, e5, . . .) ∼ (e1, e2, e3, e4, . . .).

Since (θn)∞n=1 ∈ {−1, 1}∞ is arbitrary, this shows that (en)∞n=1 is uncondi-
tional.

Before continuing with the proof of Theorem 1.3, let us note that, while
Theorem 1.3 characterises reflexive spaces embeddable into a space with a
basis having the shift property, we do not know of any significant charac-
terisation of the spaces containing a basic sequence with the shift property.
Using W. T. Gowers’ block Ramsey theorem from [4] and Lemma 6.4 of [3],
we can conclude that if X is a Banach space with a Schauder basis (en)∞n=1,
then X contains a normalised block sequence (yn)∞n=1 that either is uncondi-
tional and has the shift property, or is such that there is a non-empty tree T
consisting of finite normalised block sequences of (yn)∞n=1 with the following
property:

(a) if (z1, . . . , zm) ∈ T and Z is a block subspace of [yn]∞n=1, then there
is z ∈ Z such that (z1, . . . , zm, z) ∈ T , and

(b) if (z1, z2, z3, . . .) is an infinite branch of T , then (z2n−1)∞n=1� (z2n)∞n=1.

However, it is not clear what can be concluded from the existence of such a
tree T and one would like to draw stronger or more informative consequences
from this.

Problem 1.4. Formulate and prove a dichotomy that characterises the
Banach spaces containing an unconditional basis sequence with the shift prop-
erty.
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2. Subspaces of spaces with an F.D.D. We fix in the following Ba-
nach spaces E ⊆ F and an F.D.D. (Fi)∞i=1 of F . For each interval I ⊆ N, we
let I(x) denote the canonical projection of x ∈ F onto the subspace

∑
i∈I Fi

and shall also sometimes write [
∑

i∈I Fi](x) for I(x) if there is any chance of
confusion. So, if K denotes the constant of the decomposition (Fi)∞i=1, then
‖I‖ ≤ 2K for any interval I ⊆ N.

Fixing notation, if A is a set, we let A∞ denote the set of all infinite
sequences (ai)∞i=1 of elements of A and let A<∞ denote the set of all finite
sequences (a1, . . . , an) of elements of A, including the empty sequence ∅.
A tree on A is a subset T ⊆ A<∞ closed under initial segments, i.e., such
that (a1, . . . , an) ∈ T implies that (a1, . . . , am) ∈ T for all m ≤ n. When T
is a tree on A, we let [T ] denote the set of all infinite branches of T , i.e., the
set of all sequences (ai)∞i=1 such that (a1, . . . , an) ∈ T for all n.

To simplify notation, if ∆ = (δi)∞i=1 is a decreasing sequence of real
numbers δi > 0 tending to 0, we will simply write ∆ ↘ 0. Similarly, if
M = (mi)∞i=1 is a strictly increasing sequence of natural numbers, we write
M ↗∞.

If B ⊆ S∞E is a set of normalised sequences in E, we let

B∆ = {(xi)∞i=1 ∈ S∞E | ∃(yi)∞i=1 ∈ B ∀i ‖xi − yi‖ < δi}
and

Int∆(B) = {(xi)∞i=1 ∈ S∞E | ∀(yi)∞i=1 ∈ S∞E (∀i ‖xi−yi‖ < δi → (yi)∞i=1 ∈ B)},
and note that Int∆(B) = {({B)∆, where the complement is taken with re-
spect to S∞E .

Definition 2.1. Given ∆ ↘ 0, a normalised sequence (xi)∞i=1 ∈ S∞E is
said to be a ∆-block sequence if there are non-empty intervals Ii ⊆ N such
that

I1 < I2 < · · ·
and for every i,

‖Ii(xi)− xi‖ < δi.

Moreover, if M ↗ ∞, we say that (xi)∞i=1 is M -separated if the witnesses
Ii ⊆ N can be chosen such that

m1 < I1 & ∀i ∃j Ii < mj < mj+1 < Ii+1.

We let bbE,∆(Fi) denote the set of ∆-block sequences in E and let
bbE,∆,M (Fi) denote the set of M -separated ∆-block sequences in E.

We notice that if K is the constant of the decomposition (Fi)∞i=1 and
(xi)∞i=1 and (yi)∞i=1 are normalised sequences such that ‖xi − yi‖ < δi for
all i, then if (xi)∞i=1 is a ∆-block sequence, (yi)∞i=1 is a 4K∆-block sequence
(with the same sequence of witnesses I1 < I2 < · · · ).
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Also, since ∆ ↘ 0 is a decreasing sequence, the sets bbE,∆(Fi) and
bbE,∆,M (Fi) are closed under taking subsequences, that is, if (xi)∞i=1 ∈
bbE,∆,M (Fi), as witnessed by a sequence (Ii)∞i=1, and A ⊆ N, then (Ii)i∈A
witnesses that (xi)i∈A ∈ bbE,∆,M (Fi). Lemma 2.3 below essentially improves
this to closure under taking normalised block sequences.

Lemma 2.2. Suppose E is a subspace of a space F with an F.D.D.
(Fi)∞i=1. Let B ⊆ S∞E be a set of sequences invariant under equivalence. Then
there is a ∆↘ 0 such that

B∆ ∩ bbE,∆(Fi) ⊆ Int∆(B).

Proof. Pick a ∆ ↘ 0 depending on the constant of the decomposition
(Fi)∞i=1 such that if (yi)∞i=1 is a normalised block sequence in F and (vi)∞i=1

is a sequence in F satisfying ‖vi − yi‖ < 5δi for all i, then (vi)∞i=1 ∼ (yi)∞i=1.
Assume also that δi < 1/2 for every i.

Now, suppose (xi)∞i=1 ∈ B∆∩bbE,∆(Fi) and let (ui)∞i=1 be a normalised se-
quence in E such that ‖xi−ui‖ < δi for all i. We must show that (ui)∞i=1 ∈ B,
which will imply that (xi)∞i=1 ∈ Int∆(B).

By assumption on (xi)∞i=1, we can find (zi)∞i=1 ∈ B and intervals I1 <
I2 < · · · such that ‖xi − zi‖ < δi and ‖Ii(xi) − xi‖ < δi for all i. Letting
yi = Ii(xi)/‖Ii(xi)‖, we see that (yi)∞i=1 is a normalised block sequence in
F and a simple calculation using δi < 1/2 gives ‖xi − yi‖ < 4δi, whence
‖ui − yi‖ < 5δi and ‖zi − yi‖ < 5δi. It follows that (ui)∞i=1 ∼ (yi)∞i=1 ∼
(zi)∞i=1 ∈ B and so also (ui)∞i=1 ∈ B.

Lemma 2.3. Suppose E is a subspace of a space F with an F.D.D. (Fi)∞i=1

and Θ = (θi)∞i=1 ↘ 0. Then there is Γ = (γi)∞i=1 ↘ 0 such that for any
M ↗ 0 and (xi)∞i=1 ∈ bbE,Γ,M (Fi),

(1) (xi)∞i=1 is a normalised basic sequence, and
(2) any normalised block sequence (zi)∞i=1 of (xi)∞i=1 belongs to

bbE,Θ,M (Fi).

Proof. Let K be the constant of the decomposition (Fi)∞i=1. As in the
proof of Lemma 2.2, there is some Λ = (λi)∞i=1 ↘ 0 such that if (xi)∞i=1 ∈
bbE,Λ(Fi), as witnessed by a sequence of intervals (Ii)∞i=1, then

(xi)∞i=1 ∼2

(
Iixi
‖Iixi‖

)∞
i=1

.

Let now Γ ↘ 0 be chosen such that 12K2
∑∞

i=m γi < θm and γm < λm for
all m.

Now suppose (xi)∞i=1 ∈ bbE,Γ,M (Fi) for some M ↗ ∞, as witnessed
by a sequence of intervals (Ii)∞i=1. Then (xi)∞i=1 ∈ bbE,Λ(Fi) and hence is
2-equivalent to the normalised block basis (Iixi/‖Iixi‖)∞i=1, whence (xi)∞i=1

is itself a basic sequence.
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Suppose also that z =
∑m

i=n aixi is a block vector. We claim that if we
let J = [min In,max Im], then

‖Jz − z‖ < θn‖z‖,
which is enough to obtain condition (2). To see this, notice first that for
i = n, . . . ,m,
‖Jxi − xi‖ = ‖[1,min In − 1](xi) + [max Im + 1,∞[(xi)‖

= ‖[1,min In − 1](xi − Iixi) + [max Im + 1,∞[(xi − Iixi)‖
≤ ‖[1,min In − 1](xi − Iixi)‖+ ‖[max Im + 1,∞[(xi − Iixi)‖
≤ K‖xi − Iixi‖+ 2K‖xi − Iixi‖ < 3Kγi.

Since ‖PIi‖ ≤ 2K and (xi)∞i=1 is 2-equivalent to (Iixi/‖Iixi‖)∞i=1, we have

sup
n≤i≤m

|ai| = sup
n≤i≤m

∥∥∥∥ai Iixi‖Iixi‖

∥∥∥∥ ≤ 2K
∥∥∥∥ m∑
i=n

ai
Iixi
‖Iixi‖

∥∥∥∥ ≤ 4K
∥∥∥ m∑
i=n

aixi

∥∥∥,
and therefore∥∥∥J( m∑

i=n

aixi

)
−
( m∑
i=n

aixi

)∥∥∥ =
∥∥∥ m∑
i=n

ai(Jxi − xi)
∥∥∥ ≤ m∑

i=n

|ai| ‖Jxi − xi‖

< sup
n≤i≤m

|ai| ·
m∑
i=n

3Kγi ≤ 12K2
∥∥∥ m∑
i=n

aixi

∥∥∥ m∑
i=n

γi ≤ θn
∥∥∥ m∑
i=n

aixi

∥∥∥,
that is, ‖Jz − z‖ < θn‖z‖.

Definition 2.4. Given ∆↘ 0, a ∆-block tree T is a non-empty tree on
SE such that for all (x1, . . . , xn) ∈ T the set

{y ∈ SE | (x1, . . . , xn, y) ∈ T}
can be written as {yi}∞i=0, where for each i there is an interval Ii ⊆ N
satisfying
• ‖Iiyi − yi‖ < δn+1,
• min Ii →∞ as i→∞.
Now, an easy inductive construction shows that any ∆-block tree T con-

tains a subtree T ′ ⊆ T such that any infinite branch in T ′ is a ∆-block
sequence, i.e., [T ′] ⊆ bbE,∆(Fi). So, without loss of generality, we can al-
ways assume that any ∆-block tree satisfies this additional hypothesis.

We recall the following result from [10], which is proved using infinite-
dimensional Ramsey theory. A similar statement for closed sets was proved
earlier by Odell and Schlumprecht in [8].

Theorem 2.5. Let B ⊆ S∞E be a coanalytic set. Then the following are
equivalent.

(1) ∃∆↘ 0 ∃M ↗∞ bbE,∆,M (Fi) ⊆ Int∆(B),
(2) ∃∆↘ 0 such that any ∆-block tree has a branch in Int∆(B).
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Definition 2.6. A weakly null tree is a tree T on SE such that, for any
(x1, . . . , xn) ∈ T , the set

{y ∈ SE | (x1, . . . , xn, y) ∈ T}

can be written as {yi}∞i=1 for some weakly null sequence (yi)∞i=1.

We recall also a statement from [10] that sums up some of the elements
of the construction of Odell and Schluprecht from [8] that we shall use in
the following.

Proposition 2.7. Let E be a separable reflexive Banach space. Then
there is a reflexive Banach space F ⊇ E having an F.D.D. (Fi)∞i=1 and a
constant c > 1 such that whenever ∆ ↘ 0 and T is a ∆-block tree in SE
with respect to (Fi)∞i=1, there is a weakly null tree S in SE such that

[S] ⊆ [T ]∆c & [T ] ⊆ [S]∆c.

We can now assemble the above results into the following general lemma.

Main Lemma 2.8. Suppose E is a separable reflexive Banach space and
B ⊆ S∞E is a coanalytic set, invariant under equivalence, such that any weakly
null tree on SE has a branch in B. Then there are Γ ↘ 0, M ↗ ∞ and a
reflexive space F ⊇ E with an F.D.D. (Fi)∞i=1 such that any element of
bbE,Γ,M (Fi) is a basic sequence all of whose normalised block sequences be-
long to B.

Proof. Pick first, by Proposition 2.7, a space F containing E with a
shrinking F.D.D. (Fi)∞i=1 and a constant c > 1 such that, for any ∆↘ 0 and
∆-block tree T in E, there is a weakly null tree S in E with

(2.1) [S] ⊆ [T ]∆c & [T ] ⊆ [S]∆c.

Choose also, by Lemma 2.2, some ∆↘ 0 such that

B∆c ∩ bbE,∆c(Fi) ⊆ Int∆c(B).

We claim that any ∆-block tree has a branch in Int∆(B). To see this,
suppose T is a ∆-block tree and assume without loss of generality that
[T ] ⊆ bbE,∆(Fi) ⊆ bbE,∆c(Fi). Pick also a weakly null tree S satisfying (2.1).
Then, as [S] ∩ B 6= ∅, also

∅ 6= [T ] ∩ B∆c ⊆ [T ] ∩ bbE,∆c(Fi) ∩ B∆c ⊆ [T ] ∩ Int∆c(B) ⊆ [T ] ∩ Int∆(B),

showing that T has a branch in Int∆(B).
Applying Theorem 2.5, we find some Θ ↘ 0 and M ↗ ∞ such that

bbE,Θ,M (Fi) ⊆ IntΘ(B) ⊆ B and, applying Lemma 2.3, the statement fol-
lows.
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3. Killing the overlap. We are now ready for the proof of our main
result, which is an application of Lemma 2.8 and a delicate renormalisa-
tion procedure designated by killing the overlap that proceeds exactly by
eliminating the overlap between two distinct overlapping blockings of the
F.D.D. (Fi)∞i=1.

The next proposition is Corollary 4.4 in [8], except that condition (5)
is not listed in the statement of the corollary. However, it can easily be
obtained from the proof, provided that one chooses, in the notation of the
paper, εi < δi.

Proposition 3.1. Suppose F is a reflexive space with an F.D.D.
(Hi)∞i=1, E ⊆ F is a subspace and Σ = (σi)∞i=1 ↘ 0. Then there are in-
tegers 0 = a0 < a1 < · · · such that for all x ∈ SE there are a sequence
(xi)∞i=1 in E, a subset D ⊆ N and numbers ai−1 < bi ≤ ai, b0 = 0, satisfying
the following five conditions:

(1) x =
∑∞

i=1 xi,
(2) ∀i /∈ D ‖xi‖ < σi,
(3) ∀i ∈ D ‖[Hbi−1+1 ⊕ · · · ⊕Hbi−1]xi − xi‖ < σi‖xi‖,
(4) ∀i ‖[Hbi−1+1 ⊕ · · · ⊕Hbi−1]x− xi‖ < σi,
(5) ∀i ‖Hbix‖ < σi.

Combining Lemma 2.8 and Proposition 3.1, we are now in a position to
prove our main result, Theorem 1.3.

Theorem 3.2. Suppose that E is a separable reflexive Banach space
such that any weakly null tree in E has a branch (xi)∞i=1 satisfying (x2i−1)∞i=1

∼ (x2i)∞i=1. Then E embeds into a reflexive space with an unconditional
Schauder basis having the shift property.

Proof. Applying Lemma 2.8 to the set

B = {(xi)∞i=1 ∈ S∞E | (x2i−1)∞i=1 ∼ (x2i)∞i=1},
we find Γ ↘ 0, M ↗ ∞ and a reflexive space F ⊇ E with an F.D.D.
(Fi)∞i=1 such that any element of bbE,Γ,M (Fi) is a basic sequence all of whose
normalised block sequences (yi)∞i=1 satisfy (y2i−1)∞i=1 ∼ (y2i)∞i=1.

We claim that there is a constant C ≥ 1 such that (y2i−1)∞i=1 ∼C
(y2i)∞i=1 for any such normalised block basis (yi)∞i=1. For if not, then, by
concatenating finite bits of sequences, we would be able to produce some
(ui)∞i=1 ∈ bbE,Γ,M (Fi) and a normalised block sequence (yi)∞i=1 of (ui)∞i=1

failing (y2i−1)∞i=1 ∼ (y2i)∞i=1, which is impossible.
Since it suffices to prove the conclusion of the theorem for a cofinite-

dimensional subspace of E, by considering the cofinite-dimensional subspaces
Fm1+1 ⊕ Fm1+2 ⊕ · · · and E ∩ (Fm1+1 ⊕ Fm1+2 ⊕ · · · ) of respectively F
and E, we can, without loss of generality, assume that m1 = 0 and thus not
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worry about the initial offset by m1 in the definition of M -separation (cf.
Definition 2.1).

Pick (ui)∞i=1 ∈ bbE,Γ,M (Fi). Then, for any choice of signs εi ∈ {−1, 1},
also (εiui)∞i=1 ∈ bbE,Γ,M (Fi) and hence (ε2i−1u2i−1)∞i=1 ∼ (ε2iu2i)∞i=1. It fol-
lows that (u2i−1)∞i=1 is a basic sequence, equivalent to (ε2iu2i)∞i=1 for any
choice of signs εi ∈ {−1, 1}, and thus must be unconditional.

Now [u2i−1]∞i=1 can be equivalently renormed so that (u2i−1)∞i=1 is 1-
unconditional and, by a result of A. Pełczyński [9], this renorming extends
to an equivalent renorming of F . So, without loss of generality, we shall
assume that (u2i−1)∞i=1 is 1-unconditional and has the shift property with
some constant C. Moreover, as E is reflexive, it follows by a theorem of
R. C. James (Theorem 3.2.13 in [1]) that (u2i−1)∞i=1 is both shrinking and
boundedly complete.

We let vi = u2i+1, whence (vi)∞i=1 is the subsequence of (u2i−1)∞i=1 omit-
ting the first term. Choose also σi < γ2i−1 such that

∑∞
i=1 σi < 1/(24KC2),

where K denotes the constant of the decomposition (Fi)∞i=1.
Since (ui)∞i=1 is an M -separated Γ -block sequence, N can be partitioned

into successive finite intervals

L1 < I1 < R1 < L2 < I2 < R2 < · · ·
such that

(a) ‖Ii(vi)− vi‖ < γ2i+1,
(b) for every i > 1 there is a j such that [mj ,mj+1] ⊆ Li,
(c) for every i there is a j such that [mj ,mj+1] ⊆ Ri.

Moreover, for
Hi =

∑
j∈Li∪Ii∪Ri

Fj ,

let (ai)∞i=0 be given as in Proposition 3.1 and set

Ai = Hai−1+1 ⊕ · · · ⊕Hai .

We define a new norm ||| · ||| on span(
⋃∞
i=1Ai) by setting

|||y||| =
∥∥∥ ∞∑
i=1

‖Aiy‖vai

∥∥∥.
Since (vi)∞i=1 is 1-unconditional and the scalar ‖Aiy‖ is real, ||| · ||| is indeed
a norm and we can therefore consider the completion V = span|||·|||(

⋃∞
i=1Ai).

Moreover, we claim that the mapping

T : x ∈ E 7→
∞∑
i=1

Aix ∈ V

is a well-defined isomorphic embedding of E into V .
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To see this, suppose x ∈ SE is fixed and let (xi)∞i=1, (bi)∞i=0 and D ⊆ N
be given as in Proposition 3.1. Let also

Bi = Hbi−1+1 ⊕ · · · ⊕Hbi−1.

Then the decomposition F = F1 ⊕ F2 ⊕ · · · blocks as
F = A1 ⊕A2 ⊕ · · · = B1 ⊕Hb1 ⊕B2 ⊕Hb2 ⊕ · · · ,

where, moreover,
Ai ⊆ Bi ⊕Hbi ⊕Bi+1

and, letting A0 be the trivial space {0},
Bi ⊆ Ai−1 ⊕Ai.

It follows that with respect to the ordering of the original decomposi-
tion (Fi)∞i=1, we have
(3.1) B1 < Lb1 < Ib1 < Rb1 < B2 < Lb2 < Ib2 < Rb2 < B3 < · · · .
Now, by condition (4) of Proposition 3.1,∣∣‖Bix‖ − ‖xi‖∣∣ ≤ ‖Bix− xi‖ < σi,

and so, using condition (5) of Proposition 3.1, we have

‖Aix‖ ≤ 2K‖[Bi ⊕Hbi ⊕Bi+1]x‖
≤ 2K(‖Bix‖+ ‖Hbix‖+ ‖Bi+1x‖)
< 2K(‖xi‖+ ‖xi+1‖+ 3σi).

Note also that
‖xi‖ ≤ ‖Bix‖+ σi ≤ 2K‖Ai−1x‖+ 2K‖Aix‖+ σi,

and, by condition (3) of Proposition 3.1, for any i ∈ D, we have

‖Bixi − xi‖ < σi‖xi‖ < γ2i−1‖xi‖.
List now D increasingly as D = {d1, d2, . . .} and note that, as 2i < 2bdi

+ 1,

‖Ibdi
(vbdi

)− vbdi
‖ < γ2bdi

+1 ≤ γ2i.

Therefore, by the ordering (2) above, we see that(
xd1
‖xd1‖

, vbd1
,
xd2
‖xd2‖

, vbd2
, . . .

)
is anM -separated Γ -block sequence, as witnessed by the sequence of interval
projections

Bd1 , Ibd1
, Bd2 , Ibd2

, . . . ,

and hence (xi/‖xi‖)i∈D ∼C (vbi)i∈D. Furthermore, as (vi)∞i=1 has the shift
property with constant C and b1 ≤ a1 < b2 ≤ a2 < · · · , we have

(3.2) (vbi+1
)∞i=1 ∼C (vbi)

∞
i=1 ∼C (vai)

∞
i=1 ∼C (vai+1)

∞
i=1

and therefore (xi/‖xi‖)i∈D ∼C2 (vai)i∈D. Since now
∑∞

i=1 xi converges and∑
i/∈D‖xi‖ <

∑
i/∈D σi <∞, it follows that

∑∞
i=1‖xi‖vai and

∑∞
i=1‖xi+1‖vai
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also converge. Since ‖Aix‖ ≤ 2K(‖xi‖+ ‖xi+1‖+ 3σi) and (vi)∞i=1 is uncon-
ditional, we finally see that the sum

∑∞
i=1‖Aix‖vai converges and hence that

Tx =
∑∞

i=1Aix ∈ V is well-defined.
By the same mode of reasoning, one verifies the following sequence of

inequalities:

‖x‖ =
∥∥∥ ∞∑
i=1

xi

∥∥∥ ≤ ∥∥∥∥∑
i∈D
‖xi‖

xi
‖xi‖

∥∥∥∥+
∥∥∥∑
i/∈D

xi

∥∥∥
≤ C

∥∥∥∑
i∈D
‖xi‖vbi

∥∥∥+
∑
i/∈D

‖xi‖ ≤ C2
∥∥∥ ∞∑
i=1

‖xi‖vai

∥∥∥+
∑
i/∈D

σi

≤ C2
∥∥∥ ∞∑
i=1

(2K‖Ai−1x‖+ 2K‖Aix‖+ σi)vai

∥∥∥+
1
4

≤ 2KC2
∥∥∥ ∞∑
i=1

‖Ai−1x‖vai

∥∥∥+ 2KC2
∥∥∥ ∞∑
i=1

‖Aix‖vai

∥∥∥+ C2
∞∑
i=1

σi +
1
4

≤ 2KC2(C + 1)
∥∥∥ ∞∑
i=1

‖Aix‖vai

∥∥∥+
1
2
≤ 4KC3|||Tx|||+ 1

2
.

Thus, as ‖x‖ − 1
2 = 1

2‖x‖, we have ‖x‖ ≤ 8KC3|||Tx|||. A similar argument
shows that |||Tx||| ≤ 5KC3‖x‖, whereby T is an isomorphic embedding of E
into V .

We shall now show how to embed V into a space with a basis having the
shift property, which will finish the proof of the theorem. First, to simplify
notation, we let wi = vai . Fix also ki ≥ 1 such thatAi embeds with constant 2
into Zi = `ki∞. Then V clearly embeds with constant 2 into Z =

∑∞
i=1 Zi

equipped with the norm

|||y|||′ =
∥∥∥ ∞∑
i=1

‖Ziy‖wi
∥∥∥.

Moreover, since (wi)∞i=1 = (vai)
∞
i=1 is both shrinking and boundedly com-

plete, Z is reflexive. To conclude the proof of the theorem, it thus suffices to
apply the following lemma.

Lemma 3.3. Suppose that (wi)∞i=1 is a 1-unconditional basis with the shift
property and Zi = `ki∞ for every i. Then Z =

∑∞
i=1 Zi equipped with the norm

|||y|||′ =
∥∥∥ ∞∑
i=1

‖Ziy‖wi
∥∥∥

admits an unconditional basis with the shift property.

Proof. For each i, we let (ei1, e
i
2, . . . , e

i
ki

) be the standard unit vector basis
for `ki∞. Then

(fi)∞i=1 = (e11, e
1
2, . . . , e

1
k1 , e

2
1, e

2
2, . . . , e

2
k2 , . . .)
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is a 1-unconditional basis for Z, which we claim has the shift property. To
see this, suppose (yi)∞i=1 is a normalised block sequence of (fi)∞i=1 and set
ri = min supp yi. We need to show that (yi)∞i=1 ∼ (fri)

∞
i=1.

For this, we let
i ∈ A ⇔ ∃j yi ∈ Zj

and note that for all j there are at most two distinct i /∈ A such that
Zjyi 6= 0. We can therefore split {A into two sets B and D such that for
all j there is at most one i from each of B and D such that Zjyi 6= 0. By
unconditionality of (fi)∞i=1, to see that (yi)∞i=1 ∼ (fri)

∞
i=1, it is enough to

show that (yi)i∈A ∼ (fri)i∈A, (yi)i∈B ∼ (fri)i∈B and (yi)i∈D ∼ (fri)i∈D.
Since the cases B and D are similar, let us just do A and B.

For each i ∈ B, let ni and mi be respectively the minimal and maximal j
such that Zjyi 6= 0, whence yi = Zniyi+ · · ·+Zmiyi and ni < mi < nj < mj

for i < j in B. In particular, this means that if

zi =
mi∑
j=ni

‖Zjyi‖wj ,

then (zi)i∈B is a block sequence of (wi)∞i=1 and

‖zi‖ =
∥∥∥ mi∑
j=ni

‖Zjyi‖wj
∥∥∥ = |||yi|||′ = 1.

As (wi)∞i=1 has the shift property, this means that (zi)i∈B ∼ (wni)i∈B ∼
(fri)i∈B. On the other hand, if (λi)∞i=1 ∈ c00, then∣∣∣∣∣∣∣∣∣∑

i∈B
λiyi

∣∣∣∣∣∣∣∣∣′ = ∥∥∥∑
i∈B

mi∑
j=ni

‖Zjλiyi‖wj
∥∥∥ =

∥∥∥∑
i∈B
|λi|

mi∑
j=ni

‖Zjyi‖wj
∥∥∥

=
∥∥∥∑
i∈B
|λi|zi

∥∥∥.
Since (zi)i∈B is unconditional, it follows that (yi)i∈B ∼ (zi)i∈B ∼ (fri)i∈B.

We now partition A into finite sets aj by setting

i ∈ aj ⇔ yi ∈ Zj .
Then for all (λi)∞i=1 ∈ c00,∣∣∣∣∣∣∣∣∣∑

i∈A
λiyi

∣∣∣∣∣∣∣∣∣′ = ∥∥∥∥ ∞∑
j=1

∥∥∥∑
i∈aj

λiyi

∥∥∥wj∥∥∥∥ =
∥∥∥ ∞∑
j=1

(
sup
i∈aj

|λi|
)
wj

∥∥∥
=
∥∥∥∥ ∞∑
j=1

∥∥∥∑
i∈aj

λifri

∥∥∥wj∥∥∥∥ =
∣∣∣∣∣∣∣∣∣∑
i∈A

λifri

∣∣∣∣∣∣∣∣∣′.
So (yi)i∈A ∼ (fri)i∈A, which finishes the proof.
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