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On the fixed points of nonexpansive mappings
in direct sums of Banach spaces

by

Andrzej Wiśnicki (Lublin)

Abstract. We show that if a Banach space X has the weak fixed point property
for nonexpansive mappings and Y has the generalized Gossez–Lami Dozo property or is
uniformly convex in every direction, then the direct sum X ⊕ Y with a strictly monotone
norm has the weak fixed point property. The result is new even if Y is finite-dimensional.

1. Introduction. One of the central themes in metric fixed point theory
is the existence of fixed points of nonexpansive mappings. Recall that a
mapping T : C → C is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖
for all x, y ∈ C. A Banach space X is said to have the fixed point property
(FPP) if every nonexpansive self-mapping defined on a nonempty bounded
closed and convex set C ⊂ X has a fixed point. A Banach space X is said
to have the weak fixed point property (WFPP) if every nonexpansive self-
mapping defined on a nonempty weakly compact and convex set C ⊂ X has
a fixed point.

Fixed point theory for nonexpansive mappings has its origins in the 1965
existence theorems of F. Browder, D. Göhde and W. A. Kirk. The most
general of them, Kirk’s theorem [21], asserts that all Banach spaces with
weak normal structure have WFPP. Recall that a Banach space X has weak
normal structure if r(C) < diamC for all weakly compact convex subsets C
of X consisting of more than one point, where r(C) = infx∈C supx∈C ‖x−y‖
is the Chebyshev radius of C. In 1981, Alspach [1] gave an example of a
nonexpansive mapping defined on a weakly compact convex subset of L1[0, 1]
without a fixed point, and Maurey [27] used the Banach space ultraproduct
construction to prove FPP for all reflexive subspaces of L1[0, 1] as well as
WFPP for c0 and H1. Maurey’s method has been applied by numerous
authors to obtain several fixed point results. In 2003, García Falset, Llorens
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Fuster and Mazcuñán Navarro [12] solved a long-standing problem in the
theory by proving FPP for all uniformly nonsquare Banach spaces. Quite
recently, Lin [25] showed the first example of a nonreflexive Banach space
with FPP, and Domínguez Benavides [8] proved that every reflexive Banach
space can be renormed to have FPP, thus solving other classical problems
in metric fixed point theory. It is still unknown whether reflexivity (or even
superreflexivity) implies the fixed point property. For a detailed exposition
of metric fixed point theory we refer the reader to [2, 14,15].

The problem of whether FPP or WFPP is preserved under direct sums
of Banach spaces has been studied since the 1968 Belluce–Kirk–Steiner the-
orem [3], which states that a direct sum of two Banach spaces with normal
structure, endowed with the maximum norm, also has normal structure. In
1984, Landes [23] showed that normal structure is preserved under a large
class of direct sums including all `Np -sums, 1<p≤∞, but not under `N1 -direct
sums (see [24]). Nowadays, there are many results concerning permanence
properties of conditions which imply normal structure (see [7,26,29] and ref-
erences therein). Several recent papers consider the general case, but always
under additional geometrical assumptions (see [4–6,9, 10,18,19,28,30]).

Recently, two general fixed point theorems in direct sums were proved
in [28]. In the present paper we are able to remove the additional assump-
tions imposed on the space X in that paper. We show in Section 3 that if a
Banach space X has WFPP and Y has the generalized Gossez–Lami Dozo
property introduced in [16] (see Section 2 for the definition), then the direct
sum X ⊕ Y with a strictly monotone norm has WFPP. The result is new
even if Y is a finite-dimensional space and in this case answers a question
of Khamsi [20] for strictly monotone norms. Some consequences of the main
theorem are presented in Section 4. In particular, we prove that X ⊕ Y has
WFPP whenever X has WFPP and Y is uniformly convex in every direction.

2. Preliminaries. Let us recall several properties of a Banach space X
which are sufficient for weak normal structure. The normal structure coeffi-
cient is

N(X) = inf diamA/r(A),

where the infimum is taken over all bounded convex sets A ⊂ X with
diamA > 0 and r(A) denotes the Chebyshev radius of A (relative to it-
self). Assuming that X does not have the Schur property, we put

WCS(X) = inf diama(xn)/ra(xn),

where the infimum is taken over all sequences (xn) which converge to 0
weakly but not in norm. Here

diama(xn) = lim
n→∞

sup
k,l≥n

‖xk − xl‖
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denotes the asymptotic diameter of (xn) and

ra(xn) = inf
{

lim sup
n→∞

‖xn − x‖ : x ∈ conv(xn)∞n=1

}
denotes the asymptotic radius of (xn). We say that a Banach space X has
uniform normal structure if N(X) > 1, and weak uniform normal structure
(or satisfies Bynum’s condition) if WCS(X) > 1. A weaker property was
introduced in [16]. A Banach space X is said to have the generalized Gossez–
Lami Dozo property (GGLD, for short) if

lim sup
m→∞

lim sup
n→∞

‖xn − xm‖ > 1

whenever (xn) converges weakly to 0 and limn→∞ ‖xn‖ = 1. It is known that
N(X) > 1 ⇒ WCS(X) > 1 ⇒ GGLD ⇒ weak normal structure and that
the GGLD property is equivalent to the so-called asymptotic (P) property
(see, e.g., [29]).

Recall that a norm ‖ · ‖ on R2 is said to be monotone if

‖(x1, y1)‖ ≤ ‖(x2, y2)‖ whenever 0 ≤ x1 ≤ x2, 0 ≤ y1 ≤ y2.

A norm ‖ · ‖ is said to be strictly monotone if

‖(x1, y1)‖ < ‖(x2, y2)‖ whenever 0 ≤ x1 ≤ x2, 0 ≤ y1 < y2

or 0 ≤ x1 < x2, 0 ≤ y1 ≤ y2.

It is easy to see that the `2p-norms, 1 ≤ p <∞, are strictly monotone.
Let Z be a normed space (R2, ‖ · ‖Z). We shall write X ⊕Z Y for the

Z-direct sum of Banach spaces X, Y with the norm

‖(x, y)‖ = ‖(‖x‖, ‖y‖)‖Z ,
where (x, y) ∈ X × Y . The following lemma was proved in [28, Lemma 4].
Similar arguments can be found in [11,29].

Lemma 2.1. Let X⊕Z Y be the direct sum of Banach spaces X, Y with a
strictly monotone norm. Assume that Y has the GGLD property, the vectors
wn = (xn, yn) ∈ X ⊕p Y tend weakly to 0 and

lim
n,m→∞, n 6=m

‖wn − wm‖ = lim
n→∞

‖wn‖.

Then limn→∞ ‖yn‖ = 0.

3. The Main Theorem. The following observation is crucial for many
fixed point existence theorems for nonexpansive mappings. Assume that
there exists a nonexpansive mapping T : C → C without a fixed point,
where C is a nonempty weakly compact convex subset of a Banach space X.
Let

F = {K ⊂ C : K is nonempty, closed, convex and T (K) ⊂ K}.
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From the weak compactness of C, any decreasing chain of elements in F has a
nonempty intersection which belongs to F . By the Kuratowski–Zorn lemma,
there exists a minimal (in the sense of inclusion) convex and weakly compact
setK⊂C which is invariant under T and which is not a singleton. Let (xn) be
an approximate fixed point sequence for T inK, i.e., limn→∞ ‖Txn−xn‖ = 0.
It was proved independently by Goebel [13] and Karlovitz [17] that

lim
n→∞

‖xn − x‖ = diamK

for every x ∈ K. A fruitful approach to the fixed point problem is to use this
special feature of minimal invariant sets.

Let T : K → K be a nonexpansive mapping, where K is a weakly
compact convex subset of the direct sum X ⊕Z Y with respect to a strictly
monotone norm, which is minimal invariant for T .

Under suitable conditions imposed on the Banach space Y , we will show
that K is isometric to a subset of X, thus proving that X ⊕Z Y has WFPP
whenever X does. To this end we first construct, for every integer k ≥ 1, an
appropriate family of subsets of K as follows.

Lemma 3.1. Assume that T : K → K is a nonexpansive mapping defined
on a weakly compact convex subset K of X⊕Z Y which is minimal invariant
for T and diamK = 1. Let (wn) = ((w′n, w

′′
n)) be an approximate fixed point

sequence for T in K weakly converging to (0, 0) ∈ K and limn→∞ ‖w′′n‖ = 0.
Fix an integer k ≥ 1 and a sequence (εn) in (0, 1). Then there exist a sub-
sequence (vn) = (xn, yn) of (wn) and a family {Di

j}1≤j≤k,i≥1 of relatively
compact convex subsets of K such that

(i) ‖Tvi − vi‖ < εi,
(ii) ‖yi‖ < εi,
(iii) ‖vi − z‖ > 1− εi for all z ∈ Di−1

k ,

(iv) Di
1 = conv(Di−1

1 ∪ {vi}),
(v) Di

j+1 = conv(Di
j ∪ T (Di

j)),

for every i ≥ 1 and 1 ≤ j ≤ k − 1 (D0
1 = D0

k = ∅).

Proof. We proceed by induction on i. Since ‖Twn − wn‖ and ‖w′′n‖ con-
verge to 0, we can choose v1 =wn1 =(x1, y1) in such a way that ‖Tv1−v1‖<ε1
and ‖y1‖ < ε1. Let us put

D1
1 = {v1}

and, for a given relatively compact convex set D1
j , 1 ≤ j < k,

D1
j+1 = conv(D1

j ∪ T (D1
j )).

By induction on j, we obtain a family {D1
1, . . . , D

1
k} of relatively compact

convex subsets of K which satisfies the desired conditions.
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Now suppose that we have chosen n1 < · · · < nl (l ≥ 1), vi = wni =
(xi, yi), 1 ≤ i ≤ l, and a family {Di

j}1≤j≤k, 1≤i≤l of relatively compact convex
subsets of K such that conditions (i)–(v) are satisfied for every 1 ≤ i ≤ l
and 1 ≤ j ≤ k − 1. Then there exist nl+1 > nl, vl+1 = wnl+1

= (xl+1, yl+1)
such that ‖Tvl+1 − vl+1‖ < εl+1, ‖yl+1‖ < εl+1 and ‖vl+1 − z‖ > 1 − εl+1

for all z ∈ Dl
k (the last inequality follows from the Goebel–Karlovitz lemma

and the relative compactness of Dl
k). Let us put

Dl+1
1 = conv(Dl

1 ∪ {vl+1})

and, for a given relatively compact convex set Dl+1
j , 1 ≤ j < k,

Dl+1
j+1 = conv(Dl+1

j ∪ T (Dl+1
j )).

Then, by induction on j, we obtain a family {Dl+1
1 , . . . , Dl+1

k } of relatively
compact convex subsets of K which satisfies the desired conditions.

By induction on i, the lemma follows.

We are now going to prove that for a sequence (εn(k)), if u = (a, b) ∈⋃∞
i=1D

i
k(k) and k is large, then b is close to 0. We need the following lemma.

Lemma 3.2. Assume that a sequence (vn) = (xn, yn) and a family
{Di

j}1≤j≤k,i≥1 of relatively compact convex subsets of K are as in Lemma 3.1.
Then, for every 1 ≤ j ≤ k, i ≥ 1 and u ∈ Di+1

j , there exists z ∈ Di
j such

that
‖z − u‖+ ‖u− vi+1‖ ≤ ‖z − vi+1‖+ 3(j − 1)εi+1.

Proof. Fix i≥1.We proceed by induction on j. For j = 1 and u ∈ Di+1
1 =

conv(Di
1 ∪ {vi+1}) there exists z ∈ Di

1 such that

‖z − u‖+ ‖u− vi+1‖ = ‖z − vi+1‖.

Now fix 1 ≤ j < k and suppose that for every u ∈ Di+1
j there exists

z ∈ Di
j such that

(3.1) ‖z − u‖+ ‖u− vi+1‖ ≤ ‖z − vi+1‖+ 3(j − 1)εi+1.

Let
u ∈ Di+1

j+1 = conv(Di+1
j ∪ T (Di+1

j )).

Consider three cases.
1◦ The inductive step is obvious if u ∈ Di+1

j .

2◦ Let u ∈ T (Di+1
j ). Then u = T ū for some ū ∈ Di+1

j and, by assumption,
there exists z̄ ∈ Di

j such that

‖z̄ − ū‖+ ‖ū− vi+1‖ ≤ ‖z̄ − vi+1‖+ 3(j − 1)εi+1.
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Let z = T z̄ ∈ Di
j+1 ⊂ Di

k. Then

‖z − u‖+ ‖u− vi+1‖ ≤ ‖T z̄ − T ū‖+ ‖T ū− Tvi+1‖+ ‖Tvi+1− vi+1‖(3.2)
< ‖z̄ − ū‖+ ‖ū− vi+1‖+ εi+1

≤ ‖z̄ − vi+1‖+ (3j − 2)εi+1

< ‖z − vi+1‖+ (3j − 1)εi+1,

since, by (i), ‖Tvi+1 − vi+1‖ < εi+1 and, by (iii), ‖z − vi+1‖ > 1 − εi+1 ≥
‖z̄ − vi+1‖ − εi+1 (diamK = 1).

3◦ Let u =
∑t

s=1 λsus for some us ∈ Di+1
j ∪T (Di+1

j ), λs ∈ [0, 1], 1 ≤ s ≤ t
∈ N,

∑t
s=1 λs = 1. Then, by (3.1) or (3.2), there exist z1, . . . , zt ∈ Di

j+1 such
that

‖zs − us‖+ ‖us − vi+1‖ ≤ ‖zs − vi+1‖+ (3j − 1)εi+1, 1 ≤ s ≤ t.

Hence∥∥∥ t∑
s=1

λszs − u
∥∥∥+ ‖u− vi+1‖ ≤

t∑
s=1

λs‖zs − vi+1‖+ (3j − 1)εi+1

≤ 1 + (3j − 1)εi+1

<
∥∥∥ t∑

s=1

λszs − vi+1

∥∥∥+ 3jεi+1,

since, by (iii), ‖
∑t

s=1 λszs − vi+1‖ > 1− εi+1.

By induction on j, the lemma follows.

Lemma 3.3. Let K be a subset of a direct sum X ⊕Z Y endowed with
a strictly monotone norm. Under the assumptions of Lemma 3.1, for every
positive integer k, there exist a sequence (εn(k)) in (0, 1), a subsequence
(vn(k)) = (xn(k), yn(k)) of (wn) and a family {Di

j(k)}1≤j≤k,i≥1 of relatively
compact convex subsets of K such that ‖b‖ < 1/k for every u = (a, b) ∈⋃∞

i=1D
i
k(k).

Proof. Since Z = (R2, ‖ · ‖Z) is a finite-dimensional space and the norm
‖ · ‖Z is strictly monotone, for every ε > 0, there exists δ(ε) > 0 such that
if (ā, b̄), (ā, c̄) belong to the unit ball BZ and ‖(ā, b̄)‖ < ‖(ā, c̄)‖+ δ(ε), then
‖b̄‖ < ‖c̄‖+ ε. Fix k ≥ 1, η = 1/4k and choose

εi = εi(k) < min
{
δ(ηi)
3k

,
ηi

k

}
, i ≥ 1.

By Lemma 3.1, there exist a sequence (vn(k)) = (xn(k), yn(k)) and a family
{Di

j(k)}1≤j≤k,i≥1 of relatively compact convex subsets of K with the prop-
erties described in this lemma.
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Let u = (a, b) ∈ Di
k(k), i ≥ 2. It follows from Lemma 3.2 that there exists

z = (x, y) ∈ Di−1
k (k) such that

‖z − u‖+ ‖u− vi(k)‖ ≤ ‖z − vi(k)‖+ 3(k − 1)εi < ‖z − vi(k)‖+ 3kεi.

Hence∥∥(‖x− xi(k)‖, ‖y − b‖+ ‖b− yi(k)‖)
∥∥ < ∥∥(‖x− xi(k)‖, ‖y − yi(k)‖)

∥∥+ 3kεi

which yields
‖y − b‖+ ‖b− yi(k)‖ < ‖y − yi(k)‖+ ηi.

Consequently,

‖b‖ < ‖y‖+ ‖yi(k)‖+
1
2
ηi.

By induction on i, there exists (x̄, ȳ) ∈ D1
k(k) such that

‖b‖ < ‖ȳ‖+ (ε1 + · · ·+ εi) +
1
2

(η + · · ·+ ηi) < kε1 + 2η + η < 4η =
1
k
.

We are now in a position to prove the main theorem.

Theorem 3.4. Let X be a Banach space with WFPP and suppose Y
has the GGLD property. Then X ⊕Z Y with a strictly monotone norm has
WFPP.

Proof. Assume that X ⊕Z Y does not have WFPP. Then there exist a
weakly compact convex subset C of X⊕ZY and a nonexpansive mapping T :
C → C without a fixed point. By the Kuratowski–Zorn lemma, there exists
a convex and weakly compact set K ⊂ C which is minimal invariant under
T and which is not a singleton. Let (wn) = ((w′n, w

′′
n)) be an approximate

fixed point sequence for T in K, i.e., limn→∞ ‖Twn − wn‖ = 0. Without
loss of generality we can assume that diamK = 1, (wn) converges weakly to
(0, 0) ∈ K and the double limit limn,m→∞,n 6=m ‖wn − wm‖ exists. It follows
from the Goebel–Karlovitz lemma that

(3.3) lim
n,m→∞, n 6=m

‖wn − wm‖ = lim
n→∞

‖wn‖ = 1.

Applying Lemma 2.1 gives limn→∞ ‖w′′n‖ = 0. Lemma 3.3 now shows that for
every positive integer k, there exist a subsequence (vn(k)) = (xn(k), yn(k))
of (wn) and a family {Di

j(k)}1≤j≤k,i≥1 of relatively compact convex subsets
of K such that ‖b‖ < 1/k for every u = (a, b) ∈

⋃∞
i=1D

i
k(k).

Let C0 = {(0, 0)} and Cj = conv(Cj−1 ∪ T (Cj−1)) for j ≥ 1. It is not
difficult to see that cl(

⋃∞
j=1Cj) is a closed convex subset of K which is

invariant for T (and hence equals K). Fix k ≥ 1 and notice that (0, 0) ∈
cl(
⋃∞

i=1D
i
1(k)), because the sequence (vn(k))n≥1 converges weakly to (0, 0).
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Furthermore,

T
(

cl
( ∞⋃

i=1

Di
j(k)

))
= cl

( ∞⋃
i=1

T (Di
j(k))

)
⊂ cl

( ∞⋃
i=1

Di
j+1(k)

)
and hence, by induction on j,

Cj ⊂ cl
( ∞⋃

i=1

Di
j+1(k)

)
⊂ cl

( ∞⋃
i=1

Di
k(k)

)
, j < k.

It follows that if (x, y) ∈ Cj and j < k, then ‖y‖ ≤ 1/k. Since k is arbitrary,
y = 0 for every (x, y) ∈ cl(

⋃∞
j=1Cj) = K. Therefore, K is isometric to a

subset of X. Since X has WFPP, T has a fixed point in K, which contradicts
our assumption.

4. Consequences. In this section, we list some consequences of The-
orem 3.4. Notice that in the case of reflexive spaces, the properties FPP
and WFPP coincide. Furthermore, if a Banach space Y has uniform normal
structure (N(Y ) > 1), then Y is reflexive and has FPP. In the remainder of
this section, X ⊕Z Y denotes a direct sum of Banach spaces X and Y with
a strictly monotone norm.

Corollary 4.1. Suppose X is a reflexive Banach space with FPP and
Y has uniform normal structure. Then X ⊕Z Y has FPP.

In particular, the above corollary is valid if X is a uniformly nonsquare
or a uniformly noncreasy Banach space.

Corollary 4.2. Suppose X is a Banach space with WFPP and Y sat-
isfies Bynum’s condition WCS(Y ) > 1. Then X ⊕Z Y has WFPP.

It is well known that all finite-dimensional spaces have uniform normal
structure. A very particular case of the above corollary answers a question
of M. A. Khamsi (see [20, p. 999]) for strictly monotone norms.

Corollary 4.3. Suppose X is a Banach space with WFPP and Y is a
finite-dimensional space. Then X ⊕Z Y has WFPP.

A Banach space X with the property that X ⊕1 R has WFPP has been
studied in [22]. The following theorem was established for the `21-norm but
the proof is valid for all strictly monotone norms.

Theorem 4.4 (see [22, Theorem 1]). Suppose X is a Banach space such
that X⊕Z R has WFPP. Let Y be a Banach space which is uniformly convex
in every direction. Then X ⊕Z Y has WFPP.

Corollary 4.3 and Theorem 4.4 give the following result.

Theorem 4.5. Suppose X is a Banach space with WFPP and Y is uni-
formly convex in every direction. Then X ⊕Z Y has WFPP.
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Recall that the James space J is an example of a Banach space with the
GGLD property which is not uniformly convex in every direction, and the
space c0 with the norm

‖x‖ =

√√√√‖x‖2∞ +
∞∑
i=1

x2
i

2i

is an example of a Banach space which is uniformly convex in every direction
but fails the GGLD property (see [11] and references therein). This shows
that Theorems 3.4 and 4.5 are independent of each other.

Acknowledgements. The author is greatly indebted to the referee for
his valuable advice which led to a substantial simplification of the original
arguments and to a more general result.
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