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Invertible harmonic mappings beyond the Kneser theorem
and quasiconformal harmonic mappings

by

Davip KarLay (Podgorica)

Abstract. We extend the Rado—Choquet—Kneser theorem to mappings with Lip-
schitz boundary data and essentially positive Jacobian at the boundary without restric-
tion on the convexity of image domain. The proof is based on a recent extension of the
Rado—Choquet—Kneser theorem by Alessandrini and Nesi and it uses an approximation
scheme. Some applications to families of quasiconformal harmonic mappings between Jor-
dan domains are given.

1. Introduction and statement of the main result. Harmonic map-
pings in the plane are univalent complex-valued harmonic functions of a
complex variable. Conformal mappings are a special case where the real and
imaginary parts are conjugate harmonic functions, satisfying the Cauchy—
Riemann equations. Harmonic mappings were studied classically by differ-
ential geometers because they provide isothermal (or conformal) coordinates
for minimal surfaces. More recently they have been actively investigated by
complex analysts as generalizations of univalent analytic functions, or con-
formal mappings. For the background to this theory we refer to the book
of Duren [6]. If w is a univalent complex-valued harmonic function, then
by Lewy’s theorem (see [24]), w has a non-vanishing Jacobian and conse-
quently, according to the inverse mapping theorem, w is a diffeomorphism.
Moreover, if w is a harmonic mapping of the unit disk U onto a convex Jor-
dan domain {2, mapping the boundary T = 9U onto 92 homeomorphically,
then w is a diffeomorphism. This is a celebrated theorem of Rado, Kneser
and Choquet ([20]). This theorem has been extended in various directions
(see for example [I1], [3], [31] and [32]). One of the recent extensions is the
following proposition, due to Nesi and Alessandrini, which is one of the main
tools in proving our main result.
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PropOSITION 1.1 ([2]). Let F : T — ~ C C be an orientation preserving
diffeomorphism of class C' onto a simple closed curve v of the complex
plane C. Let D be a bounded domain such that 0D = ~. Let w = P[F| €
C1(U;C), where P[f] is the Poisson extension of F. The mapping w is a
diffeomorphism of U onto D if and only if

(1.1) Ju(€®) >0 everywhere on T,
where Jy,(e) :=lim, - Jy,(re®), and J,(re') is the Jacobian of w at re'.

In this paper we generalize the Rado—Kneser—Choquet theorem as fol-
lows.

THEOREM 1.2 (The main result). Let F': T — ~v C C be an orientation
preserving Lipschitz weak homeomorphism of the unit circle T onto a CH®
smooth Jordan curve . Let D be a bounded domain such that 0D = ~. Then
Juw(€®)/|F'(t)| exists a.e. in T and has a continuous extension Ty (') to T.

If
(1.2) Tw(e™) >0  everywhere on T,
then the mapping w = P[F)] is a diffeomorphism of U onto D.

In order to compare this statement with Kneser’s Theorem, it is worth
noticing that when D is convex, then by Remark the condition is
automatically satisfied.

It follows from Theorem that under its conditions, the Jacobian .J,,
of w has a continuous extension to the boundary provided that F' € C*(T)
and it should be noticed that this does not mean that the partial derivatives
of w necessarily have a continuous extension to the boundary (see e.g. [20]
for a counterexample).

Note that we do not have any restriction on convexity of the image
domain in Theorem which is proved in Section 3.

Using this theorem, in Section 4 we characterize all quasiconformal har-
monic mappings between the unit disk U and a smooth Jordan domain D
in terms of boundary data (see Theorem , which could be considered as
a variation of Proposition [I.1

2. Preliminaries

2.1. Arc length parameterization of a Jordan curve. Suppose
that v is a rectifiable Jordan curve in the complex plane C. Denote by [ the
length of v and let g : [0,1] —  be the arc length parameterization of -, i.e.
a parameterization satisfying the condition

lg'(s)] =1 for all s €[0,1].
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We will say that v is of class C, 0 < a < 1, if ¢ is of class C' and
/ t A
90 o) _
ts  |[t—s|®
DEFINITION 2.1. Let [ = |y|. We will say that a surjective function
F=gof:T — v isa weak homeomorphism if f : [0,27] — [0,]] is a
nondecreasing surjective function.

DEFINITION 2.2. Let f : [a,b] — C be a continuous function. The mod-
ulus of continuity of f is

w(t) =wyp(t) = sup |f(z) = f(y)l

lz—y|<t

The function f is called Dini continuous if

we(t
(2.1) | i g < oo,
o+ t
Here S0+ = Xg for some positive constant k. A smooth Jordan curve =y is

said to be Dini smooth if ¢’ is Dini continuous. Observe that every smooth
C1® Jordan curve is Dini smooth.

Let

(2.2) K(s,t) = Re[(g(t) — g(s)) - ig'(s)]

for (s,t) € [0,1] x [0,1]. We extend it on R x R by K (s +1,t +1) = K(s,t).
Note that ig’(s) is the inner unit normal vector of v at g(s), and therefore
if v is convex then

(2.3) K(s,t) >0 for every s and t.

Suppose now that F' : R — ~ is an arbitrary 2m-periodic Lipschitz function
such that F|(g o : [0,27) — 7 is an orientation preserving bijective function.
Then there exists an increasing continuous function f : [0, 27] — [0,!] such
that

(2.4) F(r) = g(f(7)).

In the remainder ofAthis paper we will identify [0, 27) with the unit circle T,
and F'(s) with F'(e"*). In view of the previous convention we have, for a.e.
em e T,

and therefore
[F'(T)| = g (f(r)] - |f' (D) = f(7).
Along with the function K we will also consider the function K defined by
Kp(t,7) = Re[(F(t) — F(7)) - iF'(7)].
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It is easy to see that

(2.5) Kp(t,m) = f(T)K(f(), f(T)).
LEMMA 2.3. If v is Dini smooth, and w is the modulus of continuity of ¢,
where g denotes the arc-length parameterization of v, then
min{|s—t|,l—|s—t|}

(2.6) | K (s,t)] < w(T)dr.

Proof. Note that
K(s,t) = Rel(g(t) — g(s)) - ig'(s)]

— Re| (g0~ 9667 i( /(5 -

t—s
and .
, t) —g(s "(s) —qg'(t
g(s)_g(i_g( ) :Sg( z_g( ) ir
Therefore
J'(s) g(tl)t : z(S) < S \gl(si:g/(ﬂ\ dr < S wStT_—SS) dr
1 t—s
= (S) w(T)dr

On the other hand

lg(t) — g(s)] < sup g (@)|(t—s)=t—s, s<t

It follows that
|s—t]
(2.7) K(s,t)] < | w(r)dr.
0

Since K (s +1,t +1) = K(s,t), from (2.7) we obtain (2.6]). =

LEMMA 2.4. Ifw :[0,]] — [0,00), w(0) = 0, is a bounded function sat-
isfying {4 w(z) de/x < oo, then §,, wlaxr)dz/x < oo for every constant a.
Moreover, for every 0 <y <1,

1y {wlar)  w(ax)
(2.8) S — S w(at) dt dx = S < - > dzx.
x x y
ot 0 o+
Proof. The first statement is immediate. Making the substitutions v =
{g w(at) dt and dv = 2~ 2dx, and using the fact that
§o w(at) dt

lim =— = lim w(aa) =w(0) =0,
Jim, S—— Jim w(aa) = w(0)
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which follows from I’Hopital’s rule, we obtain

vy i@ v
S 2 Sw(at) dt dx = alira1+ S ?Sw(at) dt dx
0+ 0 @ 0
qw(at)dt|? ¢
= — lim 780 w(at) + lim Sw(aaﬁ) dx
a—0t x aHO'*‘a T

(et ety

€T Y

A function ¢ : A — B is called L-bi-Lipschitz, where 0 < £ < oo, if
L7z —y| < (@) = o(y)| < L]z —y| for z,y € A.

LEMMA 2.5. If ¢ : R — R is an L-bi-Lipschitz mapping (or an L-
Lipschitz weak homeomorphism) such that p(z + a) = ¢(x) + b for some a
and b and every x, then there exists a sequence of L-bi-Lipschitz diffeomor-
phisms (respectively of diffeomorphisms) ¢y, : R — R such that ¢, converges
uniformly to ¢, and on(x + a) = pn(x) + b.

Proof. We introduce appropriate mollifiers: fix a smooth function p :
R — [0,1] which is compactly supported in (—1,1) and satisfies {5 p = 1.
For ¢ = 1/n consider the mollifier

1 [/t
2.9 t):=—-pl -]
(2.9 pett)i=2o( )
It is compactly supported in (—¢,¢) and {; p. = 1. Define

pe(T) = p*p: = S 90(1/);0(96 ; y) dy = S o —ez)p(z)dz.
R R

Then
PLlw) = | @@ - e2)p() d.
R
It follows that
L\ p(2)dz = L7 < |pl(x)| < L] p(2)dz = L.
R R

The fact that ¢(z) converges uniformly to ¢ follows from the Arzela—Ascoli
theorem.

In the case when ¢ is an L-Lipschitz weak homeomorphism, we make
use of the following simple fact. Since ¢ is L£-Lipschitz, the function
I (p(2) + 2/m)
is L,-bi-Lipschitz for some L, > 0, with ¢, (x + a) = o (z) + b, and ¢y,
converges uniformly to . By the previous case, we can choose a diffeomor-

om(T) =
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phism

mb T
(2'10) Vm = Om * pe,, = mb+a<¢*p€m+m>

such that ||¢n, — ¥mlleo < 1/m. Thus

lim ||y, — @)loc =0.
n—oo

2.2. Harmonic functions and Poisson integral. The function

1—7r?
P(r,t) = 0<r<1,tel0,2nx],
(r?) 27(1 — 2rcost +r2)’ =" [0, 2]
is called the Poisson kernel. The Poisson integral of a complex function

F € LY(T) is the complex harmonic function given by

2T
(2.11) w(z) = u(z) +iv(z) = P[F](z) = S P(r,t —7)F (') dt,
0

where z = re'™ € U. The following claim holds:

CrLAamM 1 (see e.g. [4, Theorem 3.13 b), p = o0]). If w is a bounded
harmonic function, then there exists a function F' € L*>(T) such that w(z) =
P[F](z).

We refer to the book of Axler, Bourdon and Ramey [4] for a good account
of harmonic functions.

The Hilbert transformation of a function y € L'(T) is defined by the
formula

X(1) = H(x)(r) = _% S x(t J;E;n—(;;g ) 4
0+

Here (J, ®(t)dt := lim._q+ {7 ®(t)dt. This integral is improper and con-
verges for a.e. 7 € [0, 27]; this and other facts concerning H can be found
in Zygmund’s book [35, Chapter VII|. If f is a harmonic function then a
harmonic function f is called the harmonic conjugate of f if f +if is an
analytic function. Let x, ¥ € L!(T). Then

(2.12) P[¥] = Px],

where k(z) is the harmonic conjugate of k(z) (see e.g. [30, Theorem 6.1.3]).
Assume that z = = + iy = re’™ € U. The complex derivatives of a
differentiable mapping w : U — C are defined as follows:

1 1 1 1
wZ:§ wz—l—gwy ) w;zi wx—zwy .

The derivatives of w in polar coordinates can be expressed as
ow(z) ow(z)
wr(z) = or - Or

=e"w, +e Tws.

=i(zw, —Zwz), wp(2):
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The Jacobian determinant of w is expressed in polar coordinates as

1 1
(2.13) Ju(2) = |w.)? — Jws]? = ;Im(wTET) = ;Re(iwrwf).

Assume that w = P[F](z) is a harmonic function defined on U. Then
there exist two analytic functions h and k defined on U such that w = h+k.
Moreover w, = i(zh'(z) — zZk/(2)) is a harmonic function and rw, = zh'(2) +
Zk'(z) is its harmonic conjugate.

Assume now that F is Lipschitz continuous. Then F’ € L*(T) and by
, using integration by parts, it follows that w, equals the Poisson
integral of F”:

21 27
we(re’) = | 0, P(r,r —t)F(t)dt = — | 8, P(r,7 — t)F(t) dt
0 0
27

= —P(r,r =) FO)[;7+ | Pr,m —)F'(t) dt
2T ’

= | P(r,r —t)F'(t) dt.
0

Let 0 < a < 7/2 and define
Iy={z:argze[r—am+al}, Ta(s)=UnNe"(In+1).

That is, I',(s) is the wedge inside the unit disk with angle 2«, whose axis
passes between e*® and zero. We say that a function f: U — C has a non-
tangential limit at €' if for 0 < a < 7/2 the limit

g(s) = lim f(z)

I'a(s)3z—e’s

exists and does not depend on a.
We now recall Fatou’s theorem [4, Theorem 6.39]:

CrAM 2. If G € LY(T), then the Poisson extension W (z) = P[G](z) has
nontangential limit at almost every ¢ € T.

By using Fatou’s theorem we find that the radial limits of w, exist a.e.
and

(2.14) lim w,(re’) = F'(1)  a..

r—1-

If F is Lipschitz continuous, then & = F' € L°(T), and by Marcel
Riesz’s famous theorem (see e.g. [8, Theorem 2.3]), for 1 < p < oo there is
a constant A, such that

I (F) e (ry < ApllF' || ocr)-



124 D. Kalaj

It follows that & = H(F') € L'. Since 7w, is the harmonic conjugate of w;,
according to (2.12)), we have rw, = P[H(F")], and by Fatou’s theorem again,
(2.15) lim w,(re’™) = H(F')(t) ae.

r—1-

3. The proof of the main theorem. The aim of this section is to
prove Theorem We will construct a suitable sequence w,, of univalent
harmonic mappings, converging almost uniformly to w = P[F]. To do so,
we will mollify the boundary function F' by a sequence of diffeomorphisms
F,, and take the Poisson extension w,, = P[F},]. We will show that under the
assumption of Theorem for large n, w, satisfies the conditions of the
theorem of Alessandrini and Nesi. By a result of Hengartner and Schober [9],
the limit function w of a locally uniformly convergent sequence of univalent
harmonic mappings w,, is univalent, implying that F is a surjective mapping.

We begin by the following lemma.

LEMMA 3.1. Let v be a Dini smooth Jordan curve, denote by g its arc-
length parameterization and assume that F(t) = g(f(t)) is a Lipschitz weak
homeomorphism from the unit circle onto ~v. If w(z) = wu(z) + iv(z) =
P[F|(z) is the Poisson extension of F', then for almost every T € [0, 2]
the limit

Ju(€T) := lim Jy,(re')

r—1-

exists and

2w

(31)  Ju() =f(r) |

0

t.

Re [(g(f(t)) — 9({(7))) i’ (f(D))]

t—1

Proof. Let z = re'™. Since F is Lipschitz it is absolutely continuous and
by and the radial derivatives of w, and w, exist for a.e. ¢™ € T.
Let w(e®) := F(t), u(e®) := Re(F(t)) and v(e) := Im(F(t)). Now, for a.e.
7 € [0, 27|, by Lagrange’s theorem,

u(e”) — u(re’) =u (pe”) r<p<l1
- T ) bl

1—r
v(e™) — v(re” -
( )1—7“( ):vr(quT), r<q<l

It follows that for a.e. 7 € [0, 27],

TN T )
@2 -

@2 Jon BT~ b )
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and consequently for a.e. 7 € [0, 27]

34 i M = o),

Furthermore
27
w(e’™) —w(re™) = | [F(r) — F(&)|P(r,7 — t)dt
0

and therefore, for a.e. 7 € [0, 27,

w(e'™) — w(re’)

3.5 li H(re'™) = i
Go) BpeteD = I T
27
. P(T‘,T—t)
= Jm Y (F() - POt

By using the previous facts and the formulae (2.13]) and (2.14]), since
lim A(r)B(r) = lim A(r) lim B(r)
r—1- r—1- r—1-

provided the limits on the right-hand side exist, we obtain

(3.6) m{{ T (re'T) = lir{{ Re[iwr(rei;)wT(reiT)]
~ lim Re[i(w(e'™) —w(re'™))F'(7)]
r—1- (I—=nr)r
= i | 2070 reficr() - 1) P
L K P(r,t)
= rlir{{ S Kp(t+7,71) T—, dt a.e.,

—Tr

where

(3.7) Kp(t, ) = f'(r)Rel(g(f(t)) — g(f(7))) - ig' (f(7))].
We refer to [22, (5.6)] for a similar approach, but for some other purpose.
To continue, observe first that
P(r,t) 1+7r 1 ™
= < <
1—r  2r(1+7r2—2rcost) — w((1—r)2+4rsint/2) — 4rt?
for 0 <r <1 andt € [—m, x| because |sin(t/2)| > t/m. On the other hand,

by and , for
o =minf{[f(t+7) - f(T)|,l = [f(t+7) = f(7)[}
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we obtain
g

|\Kp(t+7,7)] < | F' |l Sw(u) du,
0

where w is the modulus of continuity of ¢’. Therefore for r > 1/2,

||F/||oo77 [ ||F'||007r o
< < — —
< e Ve dus 3 = Vol Tu ) du

P(r,t)

(38) Kp(t—FT,T)l_T

Tl|F|% 1 ¢
< 0 L ful Py dn = (1)
0

Having in mind ({2.8]), we obtain

™

J Q)] dt <

—T

27r||F'||2 1
;QS (1F"]] sote) du

S
0
<w\meu<_wawww

= || F’|1%, | >M<M<w
T
0
According to the Lebesgue Dominated Convergence Theorem, taking the

limit under the integral sign in the last integral in (3.6)), from

lim P(r,t) 1 I 1+7r 1

m 2 9
r1- 1—7r 21 ro1— 1+7r4—2r Cost 47 sin

t
2

we obtain (3.1]). m

For a Lipschitz nondecreasing function f and an arc-length parameteri-
zation g of the Dini smooth curve v we define an operator T as follows:

2
Sﬂﬂﬂﬂﬂ) ((ﬂ»zg((ﬁ]ﬁ 7€ [0,27].

2 t—7 )
0 2sin 5 2

3.9)  Tfl(r) =

According to Lemma this integral converges. Notice that if v is a con-
vex Jordan curve then Re[(g(f(t)) — g(f(7))) - ig'(f(7))] > 0, and therefore
T[f]>0. In the next proof, we will show that under the condition T[f] >0,
the harmonic extension of a bi-Lipschitz mapping is a diffeomorphism re-
gardless of the condition of convexity.

Proof of Theorem[1.2 Assume for simplicity that |y| = 27. The general
case follows by normalization. Let g : [0,27] — 7 be an arc-length para-
meterization of 7. Then F(e) = g(f(t)), where f : R — R is a Lipschitz
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weak homeomorphism such that f(t 4 27) = f(t) + 2m. From (3.9)) we have

™

T1(r)  tim | RAOTETT) = o) - g (F()] dt

e—0F . 2 sin2 % 27
| RO =g )
=0t 2sin” § 2m

Assume that 5 : [0,27] — R is a continuous function such that

(3.10) g'(s)=e", 5(0) = (2m).
Then

(3.11) 1g'(s) — ¢'(t)] = 2 Smﬂ(t);ﬁ(s) .
Let wg be the modulus of continuity of ¢’. Then

(3.12) wg(p) = ‘trzlsa‘uépQ sinﬁ(t);ﬂ(s) .

Since v € C1e,

(3.13) wg(p) < c(v)p”.
Further from (3.10]), we have

Re[GUE T+ 1) — 9T -ig/ ()] Re | Fin” sl il (7))
2

D) ig(s) g . 10iB(f(7
Re [g%) ) 6iB(s) ds . 1eiB(( >>}

2 sin? % 2sin

a 2 sin? %

FO+7) ig(s)— T
_Im[ [ ein(e) () ds}
2t

2sin 5

§i” sin{a(s) = A (7)) ds

Taking

we obtain

U = —cot % and dV = f'(t+7)sin[B(f(t + 7)) — B(f(7))] dt.
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To continue recall that f is Lipschitz with a Lipschitz constant L. Thus

fletr)
| im U@)V(®)[e] = | lim Cotg | sin[B(s) - B(f (7)) ds
ot o £)
< lim_cot % Isin[B(e +7) = BUF ()] [f(e+7) = f(7)]
< lim Lecot % -wg(e) = 0.

e—0t

Similarly we have
lim U)V(t)|—S = 0.

e—0F
By integration by parts we obtain
TUf)(r) =t (UVIE + (¢4 -snlB(F oo+ 7)) = B7 (ot 57 )

—€

i (UVI75 4§ (04 ) sinlB e+ 7)) = B ot o)

- - 2 21
= | f(t+7) - simlB(F(t+ 7)) — BU(7))] cot % ;Lfr
Hence
W ' t dt
T(f)(r) = § f/(t+7) - sin[B(F(t+ 7)) = BF(7)] cot 5 5.

-7
By using Lemma[2.5] we can choose a family of diffeomorphisms f,, converg-
ing uniformly to f. Then

™
T(fal(r) = | FL(t+7) sin[B(fult + 7)) = B(fal7))] cot - o
We are going to show that T'[f,] converges uniformly to T'[f]. In order to
do this, we apply the Arzela—Ascoli theorem.
First of all

1
TL) < il Jeon L loct) cot 2

IN

O3 5—y

1 t
117l §ws (117 lloct) cot 5 dt = C(,7) < 0.

We prove now that T'[f,,] is an equicontinuous family of functions. We have
to estimate the quantity

[ T1fal(7) = T1fn](70)]-
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Assume without loss of generality that 7p = 0. Then

™

Tl (7) = TUa)0) = | | fr(t+7) - sin[B(fult + 7)) — B(fa(r))] cot % ;ifr
T / . t dt
= § £u(0) - sin[B(fa()) = B(fa(0))]cot 5 0| < A+ B,
where
T / / . t dt
A= | V(fLE+7) = £1@) - sin[B(fu(t + 7)) = B(fal7))] cot 227
B=| | fi(t)- {sin[B(fa(t)) — B(fa(0))] = sin[B(falt + 7)) — B(fu())]}
- t dt
X cot — —
227

Take r > 1,p > 1, ¢ > 1 such that 1/p+1/¢ =1, and § € (0,1).
In what follows, for a function g € L%(T), a > 0, we consider the following

a-norm:
27 1/a
, dt
_ it |a
lglla = ( [ lg(e™)] 2W> :

0

Define f-(x) := f(z + 7). By (2.10) we have

n X
Thus
14 P = :

According to Young’s inequality for convolution (|34, pp. 54-55], [8, Theo-
rem 20.18]), we obtain

1CE7 = 1) = penlle < 1 f7 = £l

In view of (3.13) and (3.14)), for 1 < ¢ < ﬁ, by the Hoélder inequality we
have

(3.15) A< |falt+7) = fu®)lp-

SnB(fu(t + 7)) — B(fa(r))) cot

q

<+ - £l Hwﬂufmoot) cot &

2
< CLIF ool +7) = £/ ®)llp-

Let now estimate B. First of all

q
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(3.16)

B<|[fll {Sin[ﬁ(fn(t))—ﬁ(fn(()))]—Sin[ﬁ(fn(tJrT))—ﬁ(fn(T))]}Cot% -

On the other hand, using again the Holder inequality we have

{sin[B(fn () = B(fn(0))] — sin[B(fn(t + 7)) = B(fa(r))]} cotg 1
< [{sin[B(fa (1)) — B(Ufa(0)] = sn[B(falt + 7)) = BUa(r)]F

X |[{sin[B(fa(t)) = B(fu(0))] = sin[B(fu(t + 7)) = B(fu(r))]}~ cot é

q

Further
I{sin[B(f(1)) — (0))]—Sm[5(fn(t+7)) BU Nl
HH . B(fn(0)) = B(fu(t + 7)) + B(fa(7)) }‘5
2 p
i BUn(t+ 7)) = BU) 1
<|{P O
i BUn(0) = BU(0) 1
| it
< wﬁ(|frlz‘oo7')6 +wﬁ(‘f’r/L’OOT)6 = 2wﬁ(|frlz‘oo7'>5 < 2wﬁ(|f,‘oo7')6a
and

{sin[B(fn(t)) — B(fn(0))] — sin[B(f(t + 7)) — B(fu(7))]} ° cot %

q
_ t
< HQWﬁﬂfHoot)l 5cot§ .
q

Choose g and § such that
(¢ —ad —1)g > —1.
Then the integral

_ t
20| foloct) !~ cot 5

a
converges and it is less than or equal to

CONNISS < CNNFII?.

Therefore

(3.17) B < 2| f'llocCONILI I3 wp I/ o).
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Since translation is continuous (see [33, Theorem 9.5]), (3.15)) and (3.17) im-
ply that the family {T[f,]} is equicontinuous. By the Arzela—Ascoli theorem
it follows that

(3.18) lim || T[fn] = T[f]llec = 0.
n—00
Thus T'[f] is continuous. Moreover for sufficiently large n, for
0 =min{T[f](s): 0 <s <27} >0,
from (3.18)), we obtain
Tlfal(s) = T[f)(s) —6/2=6/2>0, se€0,27].
Since f,, is a diffeomorphism, f} (7) > 0. Thus for sufficiently large n,
Jun (€7) = [u(DT[fa)(€7) >0, €T eT.
Since f, € C*°, it follows that
w, = P[F,] € C*(D).

Therefore all the conditions of Proposition [1.1] are satisfied. This means that
wy, is a harmonic diffeomorphism of the unit disk onto the domain D.

Since, by a result of Hengartner and Schober [9], the limit function w
of a locally uniformly convergent sequence of univalent harmonic mappings

wy, on U is either univalent on U, a constant, or its image lies on a straight
line, we deduce that w = P[F] is univalent. m

REMARK 3.2. If v is a C'® convex curve, then

Re[(g(f(t)) = g(f(7))) -ig'(f(7))] = 0

and therefore T[f](7) > 0. By the proof of Theorem T — T[f](7) is
continuous. Therefore min ¢jg o T[f](7) = 6 > 0.

4. Quasiconformal harmonic mappings. An injective harmonic map-
ping w = u + v is called K-quasiconformal (K-q.c), K > 1, if

(4.1) lwz| < k|w,|
on D where k = (K —1)/(K + 1). Notice that, since
[Vw(z)| := max{|Vw(z)h| : [h| = 1} = |w.| + [wz]
and
[(Vw(2)) :== min{|Vw(z)h| : |h| = 1} = ||w.| — |ws]
the condition is equivalent to
(4.2) |IVw(z)| < KI(Vw(z)).

For a general definition of quasiregular mappings and quasiconformal map-
pings we refer to the book of Ahlfors [I]. In this section we apply Theorem [L.2]
to the class of q.c. harmonic mappings. The area of quasiconformal harmonic

)



132 D. Kalaj

mappings is a very active area of research. For background on this theory
we refer [10], [I8]—[25], [26], [28], [29], [5]. In this section we obtain some new
results concerning a characterization of this class. We will restrict ourselves
to the class of q.c. harmonic mappings w between the unit disk U and a
Jordan domain D. The unit disk is taken because of simplicity. Namely, if
w : {2 — D is g.c. harmonic, and a : U — (2 is conformal, then w o a is also
g.c. harmonic. However the image domain D cannot be replaced by the unit
disk.

The case when D is a convex domain is treated in detail by the author
and others in the above cited papers. In this section we will use our main
result to yield a characterization of quasiconformal harmonic mappings of
the unit disk onto a Jordan domain that is not necessarily convex in terms
of boundary data.

To state the main result of this section, we make use of Hilbert transform
formalism. It provides a necessary and a sufficient condition for the harmonic
extension of a homeomorphism from the unit circle to a C? Jordan curve
v to be a q.c mapping. It is an extension of the corresponding result [12]
Theorem 3.1] relating to convex Jordan domains.

THEOREM 4.1. Let F : T — v be a sense preserving homeomorphism of
the unit circle onto the Jordan curve v = 0D € C?%. Then w = P[F] is a
quasiconformal mapping of the unit disk onto D if and only if F' is absolutely
continuous and

(4.3) 0 < I(F) := essinf I(Vw(e')),
(4.4) | F'||so := esssup |F'(1)| < oo,
(4.5) |H(F")||co := esssup |H(F')(T)] < co.

If F satisfies (4.3)—(4.5)), then w = P[F] is K-quasiconformal, where
_ VIFE + [HE)E, - 1(F)?
I(F) '
The constant K is approximately sharp for small values of K: if w is the

identity or if it is a mapping close to the identity, then K =1 or K is close
to 1 (respectively).

(4.6) K:

Proof of necessity. Suppose that w = P[F| = g+ h is a K-q.c. harmonic
mapping that satisfies the conditions of the theorem. By [12] Theorem 2.1],
we see that w is Lipschitz continuous,

(4.7) L:=|F|e < 00
and

(4.8) |[Vw(z)] < KL.



Invertible harmonic mappings 133

By [16, Theorem 1.4] we have, for b = w(0),
(4.9) |Ow(2)| — [ow(z)| > C(2,K,b) >0, =z€U.

Because of (4.8)), the analytic functions w(z) and dw(z) are bounded, and
thus there exist functions Fi, F5 € L>°(T) such that Ow(z) = P[F1](z) and
Ow(z) = P[F](z) (see Claim 1 in Subsection [2.2)). Therefore by Fatou’s
theorem,

(4.10) lirili(lﬁw(re”)\ — [Dw(re™)|) = [ow(e™)| — |Ow(eT)|  a.e.
Combining ([I7), (E10) and (9, we get (L3) and (1),

Next we prove ([£.5]). Observe first that w, = e'"w, + e~"ws. Thus
(4.11) |wy| < |[Vw| < KL.

Therefore rw, = P[H(F")] is a bounded harmonic function, which implies
that H(F') € L*°(T). Therefore (4.5)) holds and the necessity is proved.

Proof of sufficiency. We have to prove that under the conditions (4.3])—
(4.5), w is quasiconformal. From

0 < I(F) = essinf [(Vw(e'™))
we obtain
Juw(€T) = (|wy] + |wz)I(Vw(e™)) > 1(F)*  ae.

Since F is absolutely continuous with [|F'||s < oo, it follows that F’ €
L*>(T). From ({2.14) and (2.15) we have

(4.12) linlni wy(re™) = H(F')(7) and  lim w,(re'™) = F'(7) a.e.

r—

As

1 w2
s * + [ws]* = 5 <|wr|2 + r2>

it follows that for a.e. 7 € [0, 27),
(@13) T (e + fws(re)) = [wa(e) [ + fws(e)
r—1-

1
< SUF IS + 1H (FIZ)-

To continue we make use of (4.3). From (4.13)), (4.3) and (4.2)), for a.e.
T € [0,27),

w2 (€T + [wz(e NI _ 1[5 + IH ()%

(lw=(eT)| = lwz(eT)])* — 21(F)?

(4.14)

Hence

(4.15) w:(e)? + [wz(e™)* < S(lwa(e)] — [wz(eT)])?  ae,
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where
1F 113, + [1H (F")1%,
4.1 =
(4.16) 5 2l(F)?
According to (4.14), S > 1. Let
TN . wz(eiT)
ule) = ’UJZ(eiT) .

Since every C? curve is Ch®, Theorem [1.2|shows that w = g+k is univalent
and according to Lewy’s theorem, J,(z) = [¢'(2)]* — [W/(2)|* > 0. Thus
a(z) = Wz/w, = h'/g’ is an analytic function bounded by 1. As u(e'”) =
la(e’™)|, we have pu(e’™) < 1. Then ({.15)) can be written as

L4 267 < 51— p(e)2,
i.e. if S =1, then u(e’”) = 0 a.e. and if S > 1, then

(4.17) pAS = 1) =2pS + 8 — 1= (8 —1)(pp — ) (n — p2) > 0,
where
S+v25—-1 S—1

H1 = S—l ) /J/2:S+ /725,_1

If S > 1, then from (4.17) it follows that p(e’™) < pg or p(eT) > py. But
wu(e'™) < 1 and therefore

. S—1
4.18 N < .e.
(4.18) M) s s Rs =T M

If S =1, then (4.18)) clearly holds. Define pu(z) = |a(z)|. Since a is a
bounded analytic function, by the maximum principle it follows that

w(z) < k= o
for z € U. This yields

K s K= =~ Ba=1+1
h k(o) < YIFTB F THE) R U

I(F)

which means that w is K = \/“F/||§o+|\fII(PI;/)Hg°4(F)2-quasiconfomal. The

result is asymptotically sharp because K = 1 for w being the identity. This
finishes the proof of Theorem .

CONJECTURE. Let F : T — v C C be a homeomorphism of bounded
variation, where « is Dini smooth. Let D be the bounded domain such that
0D = ~. The mapping w = P[F] is a diffeomorphism of U onto D if and
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only if
(4.19) essinf{J,(e") : t € [0,27]} > 0.

Acknowledgments. I am grateful to the referee for providing very con-

structive comments and help in improving the contents of this paper.
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