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Abstract. A classical result of Cembranos and Freniche states that the C(K,X)
space contains a complemented copy of c0 whenever K is an infinite compact Hausdorff
space and X is an infinite-dimensional Banach space. This paper takes this result as a
starting point and begins a study of conditions under which the spaces C(α), α < ω1, are
quotients of or complemented in C(K,X).

In contrast to the c0 result, we prove that if C(βN×[1, ω], X) contains a complemented
copy of C(ωω) then X contains a copy of c0. Moreover, we show that C(ωω) is not even
a quotient of C(βN× [1, ω], `p), 1 < p <∞.

We then completely determine the separable C(K) spaces which are isomorphic to a
complemented subspace or a quotient of a C(βN× [1, α], `p) space for countable ordinals
α and 1 ≤ p < ∞. As a consequence, we obtain the isomorphic classification of the
C(βN × K, `p) spaces for infinite compact metric spaces K and 1 ≤ p < ∞. Indeed,
we establish the following more general cancellation law. Suppose that the Banach space
X contains no copy of c0 and K1 and K2 are infinite compact metric spaces, then the
following statements are equivalent:

(1) C(βN×K1, X) is isomorphic to C(βN×K2, X).
(2) C(K1) is isomorphic to C(K2).

These results are applied to the isomorphic classification of some spaces of compact oper-
ators.

1. Introduction. The isomorphic classification of the separable spaces
of continuous functions on a compact Hausdorff space was completed in 1966
when Milyutin [22], [24] showed that there was a single isomorphism class for
the continuous functions on uncountable compact metric spaces. For general
compact Hausdorff spaces some work has been done in special cases, e.g., [15]
or [18], but, unlike the isometric case which is completely determined by the
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Banach–Stone theorem, extended in [2] and [5], the isomorphic classification
seems hopeless.

In this paper we consider a special class of compact Hausdorff spaces but
allow the range space to be a Banach space instead of R. Thus we study
the spaces C(K,X) of continuous functions from K into X where X is a
Banach space, K is a compact Hausdorff space and the norm of an element
f is ‖f‖ = supk∈K ‖f(k)‖X . Usually K will be a compact metric space or a
product of a compact metric space and the Stone–Čech compactification of
the natural numbers, βN. Our interest in βN stems from application of some
of the results to the following question, [11, Problem 4.2.2]. From now on
K(X,Y ) denotes the space of compact operators from X to another Banach
space Y and [1, α] is the compact Hausdorff space of ordinals between 1 and
α in the order topology.

Problem 1.1. Classify, up to an isomorphism, the spaces of compact
operators K(`1, C([1, α], `p)), where α ≥ ω and 1 ≤ p <∞.

This problem covers some cases remaining from the development in [11]–
[14] and [25] of the isomorphic classification of some spaces of compact op-
erators. We give the solution to the above problem in the case where α is
countable. The connection to the spaces C(K,X) comes through the injective
tensor product. Notice that that since `1 has the approximation property,
by [7, Proposition 5.3] we know that for every ordinal α and 1 ≤ p <∞,

K(`1, C([1, α], `p)) ∼ C(βN× [1, α], `p).
The notation for the spaces is a bit cumbersome so we will shorten some

expressions. When the context clearly requires a compact Hausdorff space
we will write α rather than [1, α]. In particular, C(α,X) = C([1, α], X). If
X = R, we will write C(K) rather than C(K,R). We will also adopt some
standard notational conventions from Banach space theory. We write X ∼ Y
when the Banach spaces X and Y are isomorphic, Y ↪→ X when X contains
a copy of Y , that is, a subspace isomorphic to Y , Y

c
↪→ X if X contains a

complemented copy of Y , and X � Y when Y is a quotient of X. For other
notation and terminology we refer the reader to [16] and [20].

In C(K,X) an obvious part of the difficulty with the isomorphic clas-
sification is that structures in X can be used to find an alternate compact
Hausdorff space K1 so that C(K1, X) is isomorphic to C(K,X). A second
difficulty is that structures may arise that are present in neither C(K) norX.
Consider the following result, which was obtained independently by Cem-
branos [6, Main Theorem] and Freniche [9, Corollary 2.5].

Theorem 1.2. Let K be an infinite compact Hausdorff space and X an
infinite-dimensional Banach space. Then

c0
c
↪→ C(K,X).
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Consequently, both C(βN, C(βN)) and C(βN, `2) contain a complement-
ed subspace isomorphic to c0 despite the fact that neither C(βN) nor `2
contain complemented copies of c0.

It is natural to ask if there are other C(K) spaces for which the analogous
result holds. The next more complicated C(K) space is C(ωω). Our first
result gives a negative answer in this case. We prove that even when C(K)
contains a complemented copy of c0 and X is an infinite-dimensional Banach
space, C(K,X) may not contain a complemented copy of C(ωω). Indeed, it
is easy to see that C(βN×ω) contains a complemented copy of c0. However,
in Section 3, we prove the following.

Theorem 3.2. Let X be a Banach space. Then

C(ωω)
c
↪→ C(βN× ω,X) ⇒ c0 ↪→ X.

We then extend Theorem 3.2 to larger ordinals by using that result and
the structure of the ordinals.

Theorem 3.5. Let X be a Banach space containing no copy of c0, K an
infinite compact metric space and 0 ≤ α < ω1. Then

C(K)
c
↪→ C(βN× ωωα , X)⇔ C(K) ∼ C(ωω

ξ
) for some 0 ≤ ξ ≤ α.

In Section 4 we turn our attention to spaces of the form C(βN × α,X)
where X satisfies some geometrical properties, (†) and (‡), that are modeled
on simple properties of `p, 1 ≤ p <∞. In particular we show that C(ωω) is
not a quotient of C(βN× ω, `p), 1 < p <∞.

Theorem 4.2. Suppose that X is a Banach space satisfying the daggers.
Then C(ωω) is not a quotient of C(βN× ω,X).

Similar to the way we obtained Theorem 3.5 from Theorem 3.2 in Sec-
tion 4, we also extend Theorem 4.2 by proving

Theorem 4.5. Let K be an infinite compact metric space and 0≤α<ω1.
Then

C(βN× ωωα , `p) � C(K) ⇔ C(K) ∼ C(ωω
ξ
) for some 0 ≤ ξ ≤ α.

The next section concerns the isomorphic classification of the spaces
C(βN×α, `p). Our results also provide us with immediate information about
the isomorphic classifications of a wider class of Banach spaces, namely, the
C(βN×K,X) spaces, where X contains no copy of c0 and K is a metrizable
compact space, that is, C(K) is a separable space. Indeed, in Section 3 we
prove the following cancellation law which is the main application of the
results of the paper. The case X = `p, 1 ≤ p < ∞, gives the solution to
Problem 1.1.
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Theorem 3.7. Let X be a Banach space containing no copy of c0. Then
for any infinite compact metric spaces K1 and K2 we have

C(βN×K1, X) ∼ C(βN×K2, X) ⇔ C(K1) ∼ C(K2).

Moreover, in Section 5, we accomplish the isomorphic classification of
the spaces C(βN×K, `p) by considering also the case where K is finite. In
order to do this, we first prove a general result about the spaces of com-
pact operators K(`p(X), `q(Y )) (Theorem 5.3). From that we deduce the
following.

Corollary 5.4. C(βN, `q) is isomorphic to C(ω×βN, `q) for 1≤q<∞.
Finally, in Section 6, we pose some elementary questions which this work

raises.

2. Preliminaries. In this section we recall some results that we will use
in what follows.

In 1920 Mazurkiewicz and Sierpiński showed that if K is a countable
compact metric space then it is homeomorphic to an interval of ordinals
[1, α] with ω ≤ α < ω1 [21]. This was used in the isomorphic classification of
the C(α) spaces, ω ≤ α < ω1, obtained in 1960 by Bessaga and Pełczyński.
They showed that if ω ≤ α ≤ β < ω1 then C(α) is isomorphic to C(β)
if and only if β < αω (see [4] and [24]). In particular this means that the
spaces C(ωω

γ
), for 0 ≤ γ < ω1, are a complete set of representatives of

the isomorphism classes of C(K) where K is a countably infinite, compact
metric space.

Bessaga and Pełczyński actually prove some things for C(K,X), where
X is a Banach space.

Proposition 2.1. Suppose X is a Banach space and α is an infinite
ordinal. Then C(α,X) is isomorphic to

(1) C0(α,X) = {f ∈ C(α,X) : f(α) = 0}
and to

(2) C(ωω
β
, X) whenever ωωβ ≤ α < ωω

β+1
.

Thus for some Banach spaces X there may be fewer isomorphism classes
for the spaces C(K,X) with K countable, compact metric, than for the case
X = R. That is what happens for Banach spaces which are isomorphic to
their squares or to the c0-sum of infinitely many copies of the space. Indeed,
for `p, 1 ≤ p < ∞, the finite ordinals all yield the same space; for c0 all of
the spaces C(α, c0), α < ωω, are isomorphic.

Remark 2.2. The order structure on the spaces of ordinals make it easy
to find contractively complemented subspaces of C(ωα) isometric to C(ωβ)
for β < α. Indeed, if A is a closed subset of [1, ωα] and A(1) is the set of
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non-isolated points of A, we can define a subspace Y of C(ωα) isometric to
C(A) by

Y = {f ∈ C(ωα) : f(γ) = f(ξ) for all γ such that

sup{ρ < ξ : ρ ∈ A} < γ < ξ and ξ ∈ A \A(1)}.
We can define a projection onto Y by restricting to A and then extending
by the formula in the definition of Y , i.e.,

Lg(γ) = g(ξ) for all γ such that

sup{ρ < ξ : ρ ∈ A} < γ < ξ and ξ ∈ A \A(1).

For γ > supA let Lg(γ) = 0.

The spaces c0 and C(βN) play a prominent role in this paper so we now
recall some important properties of these spaces. Bessaga and Pełczyński
made a study of c0 in [3] and introduced the notion of a weakly uncondi-
tionally Cauchy (w.u.c.) sequence. A sequence (xn) in a Banach space X is
said to be w.u.c. if and only if for every x∗ ∈ X∗,

∑
n |x∗(xn)| < ∞. A se-

quence equivalent to the standard basis of c0 is clearly w.u.c. We will use
the following result from their paper.

Proposition 2.3. Suppose that X is a Banach space which has no sub-
space isomorphic to c0. Then every w.u.c. sequence in X is unconditionally
convergent. Consequently, if (xn) is w.u.c. in X, then limn ‖xn‖ = 0.

C(βN) is isometric to `∞ = `∞(N), the space of bounded sequences with
the supremum norm. For any non-empty index set Γ , `∞(Γ ) is injective,
i.e., it is complemented in any space which contains it. Furthermore, c0 is
separably injective, i.e., it is complemented in any separable Banach space
that contains it. c0 is not complemented in `∞ and in fact the only infinite-
dimensional complemented subspaces of c0 or `∞ are isomorphs of the whole
space [20, pp. 54 and 57]. `∞ is an example of a Grothendieck space, i.e.,
any weak∗ convergent sequence in the dual is actually weakly convergent [8,
p. 179]. Actually this is the essential property of C(βN) that we use. Except
in one or two cases, e.g., Theorem 5.5, the results could be rewritten with
C(K) which is a Grothendieck space in place of C(βN).

While C(βN) and `∞ are isometric, for many infinite-dimensional Banach
spaces X, C(βN, X) is not isomorphic to `∞(X) = {(xn) : xn ∈ X for
all n, ‖(xn)‖ = supn ‖xn‖X < ∞}. This is the case if X does not contain a
complemented subspace isomorphic to c0 since, by [19], `∞(X) only contains
a complemented subspace isomorphic to c0 if X does.

We identify C(βN, X)∗ with the space of X∗-valued regular Borel mea-
sures µ on C(βN) with ‖µ‖ = sup

∑
n ‖µ(An)‖X∗ where the supremum is

over all partitions of βN into disjoint clopen sets An [8, p. 182]. Moreover if
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(µn) is a weak∗ convergent sequence of measures with limit µ, then for any
clopen set A, (µn(A)) converges weak∗ in X∗ to µ(A).

It will be convenient at times to shift the point of view as to the un-
derlying compact Hausdorff space and the range space. Thus we will use
the fact that C(K1 × K2, X) is isomorphic to C(K1, C(K2, X)) and to
C(K2, C(K1, X)) where K1 and K2 are compact Hausdorff spaces. Also be-
cause C(K,X) is isometric to the injective tensor product C(K) ⊗̌ X, we
may replace K by K1 if C(K) is isomorphic to C(K1).

Let maxσ{β1, β2} be the largest ordinal β = γ1 + α1 + · · · + γk + αk
obtained by writing β1 = γ1 + · · ·+ γk and β2 = α1 + · · ·+αk, where γj ≥ 0
and αj ≥ 0 for all j. This can also be obtained by writing the ordinals β1

and β2 in terms of prime components and arranging the terms of the sum in
decreasing order.

The topological results in [21] are based on the notion of derived set.
Recall that K(0) = K. For any ordinal α, K(α+1) is the set of non-isolated
points in K(α), and for a limit ordinal β, K(β) =

⋂
α<βK

(α). We will only
use this with countable compact spaces and will refer to the smallest ordinal
α such that K(α) 6= ∅ and K(α+1) = ∅ as the derived order of K.

Lemma 2.4. Let K1 and K2 be countable compact metric spaces and
β1, β2 be countable ordinals such that K(β1)

1 and K(β2)
2 are finite non-empty

sets. Then (K1 ×K2)(maxσ{β1,β2}) is a finite non-empty set.

Sketch of proof. First we can assume that K(β1)
1 and K(β2)

2 are singletons,
k1 and k2, respectively. The proof is by induction on β2 and for each β2 on
β1, 0 ≤ β1 ≤ β2. The result is clear for β2 = 0, 1 and β1 = 0, 1 and for all
β2 < ω1 and β1 = 0. Assume 1 < β2, 0 < β1 ≤ β2 and that the result holds
for K2 of derived order β < β2 and K1 of derived order γ ≤ β and for β = β2

and γ < β1.
To see that

(K1 ×K2)(maxσ{β1,β2}) = {(k1, k2)},

notice that by the induction assumption, if α1 < β1, α2 < β2, m1 ∈ K(α1)
1 \

K
(α1+1)
1 and m2 ∈ K(α2)

2 \K(α2+1)
2 , then

(m1,m2) ∈ (C1 × C2)(maxσ{α1,α2}),

where C1 and C2, are appropriately chosen clopen subsets of K1 and K2,
respectively. For i = 1, 2 writeKi\{ki} as a disjoint union of clopen sets C1,n,
of derived order βi−1 for all n or of derived order βi,n with (βi,n) increasing
to βi. Each set C1,n×[1, β2] and [1, β1]×C2,n satisfies the induction hypothesis
(possibly symmetrized). Notice that⋃

n

C1,n × [1, β2] ∪ [1, β1]× C2,n = K1 ×K2 \ {(k1, k2)}.
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There are four cases to check. It is easy to see that

max
σ
{β1, β2 − 1}+ 1 = max

σ
{β1, β2},

in the first case, and maxσ{β1, β2,n} increases to maxσ{β1, β2} in the second
case. The other two cases are similar.

The lemma shows that we do not really gain anything from simple ma-
nipulations of compact metric spaces. Indeed, for countable ordinals α and γ,
we have

C(βN× ωωα , C(ωω
γ
, X)) ∼ C(βN× ωωα × ωωγ , X).

However
ωω

max{α,γ} ≤ ωmaxσ{ωα,ωγ} ≤ ωωmax{α,γ}2

and thus

C(βN× ωωα × ωωγ , X) ∼ C(βN× ωωmax{α,γ}
, X).

In a series of papers from the 1970’s the first author developed some
tools for working with subspaces of C(K) spaces isomorphic to C(α). Some
of the proofs in this paper are motivated in part by that work, and versions
of some of the technical tools will be needed here. The first is similar to [1,
Lemma 2.5].

Lemma 2.5. Given a positive integer k and ε > 0 there is a positive
integer n such that if (x∗α)α≤ωn is a sequence in the unit ball of the dual
of a Banach space X such that the function α 7→ x∗α is an order-to-weak∗
continuous map, then there is a closed subset B of [1, ωn], order isomorphic
and homeomorphic via the order isomorphism to [1, ωk] such that∣∣‖x∗β‖ − ‖x∗β′‖∣∣ < ε for all β, β′ ∈ B.

The next lemma is a vector valued version of a typical construction of a
sequence of disjointly supported functions normed by a sequence of measures.

Lemma 2.6. Suppose that X is a Banach space, C,D are positive con-
stants, K is a compact Hausdorff space, (µn) is a sequence of elements of
C(K,X)∗ represented as X∗-valued measures on K, with ‖µn‖ ≤ C for all
n, and (gn) is a sequence of norm at most D elements of C(K,X) such that

�
gn dµn ≥ 1 for all n

and ‖gn(t)‖ → 0 as n → ∞ for all t ∈ K. Then for any ε > 0 there
are an infinite subset M of N and open subsets (Gm)m∈M of K such that
Gm ∩Gj = ∅ if m 6= j, and

�
gm1Gm dµm > 1− ε for all m ∈M.
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Proof. Let ε > 0, and εk = ε/2k+2 for k ∈ N. Choose ρ > 0 such that
ρ < ε/(4C). Then�

gn1{t: ‖gn(t)‖≥ρ} dµn > 1− ε/4, ∀n, 1 ≤ n < ω.

Because ‖gn(t)‖ converges to 0,
	
‖gn(t)‖ d|µi|(t) converges to 0 for each i.

Thus for i = 1, . . . , j1 with j1 > C/ε1, there are infinite subsets N ⊃
N1 ⊃ · · · ⊃ Nj1 such that, setting n1 = 1 and ni+1 = minNi,∑

n∈Ni

|µni |({t : ‖gn(t)‖ > ρ/2}) ≤
∑
n∈Ni

(2/ρ)
�
‖gn(t)‖ d|µni |(t) < ε/(4C).

For i = 1, . . . , j1, let

Ai = {t : ‖gni(t)‖ ≥ ρ} \
⋃
n∈Ni

{t : ‖gn(t)‖ > ρ/2}.

Find disjoint open sets H1, . . . ,Hj1 such that

{t : ‖gni(t)‖ > ρ/2} ⊃ Hi ⊃ Ai
for each i. Because ‖µm‖ ≤ C for all m and the sets Hi are disjoint, for some
infinite subset M1 of Nj1 and some i1, 1 ≤ i1 ≤ j1,

|µm|(Hi1) < ε/8 = ε1

for all m ∈ M1. Let m1 = ni1 and Gm1 be an open set containing Ai1 such
that Gm1 ⊂ Hi1 . Then m1 is the first element of M , and µm1 and Gm1 are
the corresponding measure and open set.

Let K1 = K \ Hi1 . Now notice that if we consider (µm|K1)m∈M1 and
(gm|K1)m∈M1 we have the original situation with 1 replaced by 1 − ε/8 as
the lower bound on �

K1

gm dµm.

Thus repeating the argument above with ε2 but choosing open sets as open
subsets of K \Gm1 rather than K1 (and hence open in K), we get µm2 and
Gm2 with Gm1 ∩Gm2 = ∅.

Continuing in this way we can construct the required indices and open
sets.

3. Complemented separable C(K) subspaces of C(βN× α,X). It
is clear that for any Banach space X, C(βN×ω,X) contains a complemented
copy of c0. This section is devoted to proving that c0 is, up to isomorphism,
the only separable C(K) space which is complemented in C(βN × ω,X)
whenever X contains no copy of c0. This is a direct consequence of Theo-
rem 3.2 below.

The next lemma is a technical analog of a result of Bessaga and Pełczyński
[3, Theorem 4].
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Lemma 3.1. Suppose that X and Y are Banach spaces and that T is an
operator from C(βN, X) into Y . If there exist an element f of C(βN, X),
δ > 0, a sequence (Gn) of disjoint non-empty clopen subsets of βN and a
sequence (µn) of X∗-valued measures contained in T ∗(BY ∗) such that∣∣∣ � f1Gn dµn

∣∣∣ > δ for all n,

then there is a subspace Z of C(βN, X) such that Z is isomorphic to `∞ and
T |Z is an isomorphism into Y .

Proof. Let |µn| denote the real-valued total variation measure induced
by µn. Observe that the sequence of pairs (|µn|, Gn) satisfy the hypotheses
of Rosenthal’s disjointness lemma [8, Lemma 1, p. 18]. Therefore there exists
a subsequence (|µn|, Gn)n∈M such that for all n ∈M ,∑

j∈M, j 6=n
|µn|(Gj) < δ/(8‖f‖).

We also need to have

|µn|
( ⋃
j∈M

Gj \
⋃
j∈M

Gj

)
< δ/(8‖f‖) for all n ∈M .

If for some n ∈M,

|µn|
( ⋃
j∈M

Gj \
⋃
j∈M

Gj

)
≥ δ/(8‖f‖),

we can argue as follows. Partition M into an infinite number of infinite
sets Mk. If for some k, for all n ∈Mk,

|µn|
( ⋃
j∈Mk

Gj \
⋃
j∈Mk

Gj

)
< δ/(8‖f‖),

we can continue with Mk in place of M . If not, for each k choose nk ∈ Mk

such that
|µnk |

( ⋃
j∈Mk

Gj \
⋃
j∈Mk

Gj

)
≥ δ/(8‖f‖).

Let M1 = {nk : k ∈ N}. Observe that for all k,( ⋃
j∈Mk

Gj \
⋃
j∈Mk

Gj

)
∩
⋃
j∈M1

Gj = ∅.

Now if for all n ∈M1,

|µn|
( ⋃
j∈M1

Gj \
⋃
j∈M1

Gj

)
< δ/(8‖f‖),

we can use M1 in place of M . If not, notice that for all n ∈M1,

‖µn|S
j∈M1 Gj

‖ ≤ ‖µn‖ − δ/(8‖f‖).



162 D. E. Alspach and E. M. Galego

We can splitM1 into infinitely many infinite sets and repeat the previous
argument. Each time this process reduces the norm of the part of µn under
consideration by δ/(8‖f‖). Thus in at most ‖f‖ ‖T‖8/δ repetitions of the
argument we will find the required infinite set M such that for all n ∈M ,

|µn|
( ⋃
j∈M

Gj \
⋃
j∈M

Gj

)
< δ/8,

and ∑
j∈M, j 6=n

|µn|(Gj) < δ/(8‖f‖).

Let Z be given by{
g ∈ C(βN, X) : g(t) = 0 ∀t /∈

⋃
n∈M

Gn, g1Gn = cnf1Gn , cn ∈ R ∀n ∈M
}
.

Because the range of f is compact, for any bounded sequence (cn)n∈M of
real numbers, the function h defined on N by

h(k) =
{

0 if k /∈
⋃
m∈M Gm,

cnf(k) if k ∈ Gn and n ∈M,

is in `∞(X) with relatively compact range and hence extends continuously to
some function H on βN with values in the symmetric radial hull of ‖(cn)‖∞
times the range of f . Moreover because N is dense, the extension is unique
and must agree with cnf1Gn on Gn for all n ∈M, and be 0 on the closure of{

k ∈ N : k /∈
⋃
n∈M

Gn

}
.

Therefore Z is isomorphic to `∞, and for (cn) and H as above,

(δ/‖T‖)‖(cn)n∈M‖∞ ≤ inf
n∈M
‖f1Gn‖ ‖(cn)n∈M‖∞

≤ ‖H‖ ≤ ‖f‖ ‖(cn)n∈M‖∞.

Continuing with the same notation, we can get a lower bound on ‖TH‖
as follows. Observe that for each n ∈M ,∣∣∣ � H dµn

∣∣∣ ≥∣∣∣ � H1Gn dµn
∣∣∣− ∑

j∈M,j 6=n
|µn|(Gj)‖f‖|cj |−|µn|

( ⋃
j∈M

Gj \
⋃
j∈M

Gj

)
‖f‖ ‖(cj)‖∞

≥ |cn|
∣∣∣ � f1Gn dµn

∣∣∣− ‖(cj)j∈M‖∞δ/4 ≥ δ(|cn| − ‖(cj)j∈M‖∞/4).

Taking the supremum over n and noting that µn ∈ T (BY ∗) completes the
proof.
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Theorem 3.2. Let X be a Banach space. Then

C(ωω)
c
↪→ C(βN× ω,X) ⇒ c0 ↪→ X.

Proof. Assume that X does not contain a subspace isomorphic to c0.
We will show that the existence of a complemented subspace isomorphic to
C(ωω) produces the situation in the hypothesis of the previous lemma. First
we will reduce to a simplified situation. By Proposition 2.1(1), C(βN×ω,X)
is isomorphic to C0(ω × βN, X), i.e., the c0-sum of C(βN, X). Assume now
that T is a projection from C0(ω× βN, X) onto a subspace Y isomorphic to
C(ωω). Let S : Y → C(ωω) be the isomorphism and suppose, without loss
of generality, that ‖S‖ ≤ 1. Then T ∗S∗ is an isomorphism with some lower
bound ε > 0, i.e.,

‖T ∗S∗z‖ ≥ ε‖z‖ for all z ∈ C(ωω)∗.

Choose N by Lemma 2.5 so that for n > 8‖T‖, there exists a subfamily
{µβ : β ≤ ωn} of {T ∗S∗δγ : γ ≤ ωN} such that β 7→ µβ is a (order-to-weak∗)
homeomorphism, β 7→ γ(β) defined by

µβ = T ∗S∗δγ(β)

is an order isomorphism and homeomorphism, n ≥ 8‖T‖/ε, and∣∣‖µβ‖ − ‖µβ′‖∣∣ < ε/(32‖T‖) for all β, β′ ≤ ωn.
The family of measures {δγ(β) : β ≤ ωn} is a natural basis of the dual of a
1-complemented subspace Z of C(ωω) isometric to C(ωn). Indeed, according
to Remark 2.2 it suffices to take for Z the subspace of C(ωω) of all functions
constant on order intervals (γ(β), γ(β + 1)] for β < ωn. Further because

lim
K
‖µωn |[K,ω)×βN‖ = 0,

and the restriction to [1,K]× βN is weak∗ continuous, we can assume that
the support of µγ is contained in [1,K] × βN for all γ ≤ ωn. Notice that
[1,K]× βN is homeomorphic to βN so we may replace [1,K]× βN by βN.

In order to simplify notation we can now assume that we have a projection
T from C(βN, X) onto a subspace Y isomorphic by an operator S to C(ωn)
such that

‖T ∗S∗z‖ ≥ ε‖z‖ for all z ∈ C(ωn)∗

and ∣∣‖T ∗S∗δβ‖ − ‖T ∗S∗δβ′‖∣∣ < ε/(8‖T‖) for all β, β′ ≤ ωn.
Let

gωn = S−1(1(0,ωn]) and gωn−1k = S−1(1(ωn−1(k−1),ωn−1k]) for all k ∈ N.
Then (gωn−1k) is w.u.c. Because X does not contain c0, for each t, (gωn−1k(t))
is unconditionally convergent and thus converges in norm to 0 for all t ∈ βN.
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Because ‖gωn−1k(·)‖ ≤ ‖S−1‖ for all k, (‖gωn−1k(·)‖) converges to 0 weakly
in C(βN). Because �

gωn−1k dµωn−1k = 1,

by Lemma 2.6 there exists a subsequence (µωn−1k)k∈M1 and a sequence of
disjoint clopen sets (Gωn−1k)k∈M1 such that�

gωn−1k1Gωn−1k
dµωn−1k ≥ 7/8 for all k ∈M1.

If there is an infinite subset K of M1 and δ > 0 such that

(3.1)
∣∣∣ � gωn1Gωn−1k

dµωn−1k

∣∣∣ ≥ δ for all k ∈ K,

then Lemma 3.1 would imply that C(ωω) is non-separable. Notice that the
same contradiction would result if for each k, we replace Gωn−1k in (3.1) by
any of its clopen subsets.

We also have �
gωn dµωn−1k = 1 for all k,

thus, by replacingM1 by an infinite subset, for each k ∈M1 there are disjoint
clopen sets G0

ωn−1k and G1
ωn−1k such that

•
	
gωn−1k1G1

ωn−1k
dµωn−1k > 3/4,

•
	
gωn1G dµωn−1k < 1/8 for all clopen G ⊂ G1

ωn−1k,

•
	
gωn1G0

ωn−1k
dµωn−1k > 3/4.

This is the first step of an at most n-step induction argument.
Fix k1 ∈ M1. Consider the sequence (ωn−1(k1 − 1) + ωn−2k). For suffi-

ciently large k, �
gωn−1k11G1

ωn−1k1

dµωn−1(k1−1)+ωn−2k > 3/4,

and �
gωn1G0

ωn−1k1

dµωn−1(k1−1)+ωn−2k > 3/4.

Because

gωn−1(k1−1)+ωn−2k = S−1(1(ωn−1(k1−1)+ωn−2(k−1),ωn−1(k1−1)+ωn−2k])

converges weakly to 0, by applying Lemma 2.6, there exist a subsequence

(µωn−1(k1−1)+ωn−2k)k∈M2

and disjoint clopen sets (Gk)k∈M2 such that�
gωn−1(k1−1)+ωn−2k1Gk dµωn−1(k1−1)+ωn−2k > 7/8 for all k ∈M2.

For every δ > 0 and clopen Hk ⊂ Gk for k ∈ M2, Lemma 3.1 tells us that
there are only finitely many k for which∣∣∣ � gωn−1k11Hk dµωn−1(k1−1)+ωn−2k

∣∣∣ > δ,



Geometry of the Banach spaces C(βN×K,X) 165

or ∣∣∣ � gωn1Hk dµωn−1(k1−1)+ωn−2k

∣∣∣ > δ.

Thus taking δ = 1/8, for sufficiently large k ∈M2 we can find disjoint clopen
sets

Gj
ωn−1(k1−1)+ωn−2k

, j = 0, 1, 2,

such that

•
	
gωn−1(k1−1)+ωn−2k1G2

ωn−1(k1−1)+ωn−2k
dµωn−1(k1−1)+ωn−2k > 5/8,

•
	
gωn−1k11G1

ωn−1(k1−1)+ωn−2k
dµωn−1(k1−1)+ωn−2k > 5/8,

•
	
gωn1G0

ωn−1(k1−1)+ωn−2k
dµωn−1(k1−1)+ωn−2k > 5/8.

An induction argument shows that we can choose k1, . . . , kn and disjoint
clopen sets

Gj
ωn−1(k1−1)+ωn−2(k2−1)+···+kn , j = 0, 1, . . . , n− 1,

such that�
gωn−1(k1−1)+ωn−2(k2−1)+···+ωn−jkj1Gj

ωn−1(k1−1)+···+kn
dµωn−1(k1−1)+···+kn

is strictly greater than 1/2 + 1/2n. This implies that

‖µωn−1(k1−1)+ωn−2(k2−1)+···+kn‖>n/2> ‖T‖ ‖δωn−1(k1−1)+ωn−2(k2−1)+···+kn‖.
This contradiction shows that no such projection T exists.

Remark 3.3. The conclusion of this proposition is equivalent to the
statement that C(βN × ω,X) does not contain C(ωn) uniformly comple-
mented. Obviously if X contains C(ωn) uniformly complemented then it
follows that C(βN × ω,X) contains C(ωn) uniformly complemented. It is
possible that the hypothesis on X could be weakened to something like X
does not contain C(ωn) uniformly or uniformly complemented. We do not
know whether C(βN×ω,C(βN)) contains a complemented subspace isomor-
phic to C(ωω). If there is a counterexample then assuming additionally that
X is separable may provide a strong enough hypothesis.

The next result generalizes the previous one to larger ordinals.

Theorem 3.4. Let X be a Banach space and 0 ≤ α < β < ω1. Then

C(ωω
β
)

c
↪→ C(βN× ωωα , X) ⇒ c0 ↪→ X.

Proof. Let α be a countable ordinal and X a Banach space containing
no copy of c0. We will show by induction that α is the smallest ordinal γ
such that C(βN×ωωγ , X) contains a complemented subspace isomorphic to
C(ωω

α
). Theorem 3.2 shows this for α = 1. Assume that the result holds for

ordinals less than α, α > 1, and that γ < α is the smallest ordinal such that
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C(βN × ωωγ , X) contains a complemented subspace isomorphic to C(ωω
α
).

We will show that this leads to a contradiction.
In place of C(βN× ωωγ , X), we will use the isomorphic space, C0(ωω

γ ×
βN, X). Now assume that T is a projection defined on the latter space with
range isomorphic to C(ωω

α
). Let αk ↑ ωα and βk ↑ ωγ , where αk = ωα

′
k

if α = α′ + 1 for some α′, or αk = ωξk if α is a limit ordinal and ξk ↑ α,
and βk = ωγ

′
k if γ = γ′ + 1 for some γ′, or βk = ωγk if γ is a limit ordinal

and γk ↑ γ. Choose k0 such that αk ≥ ωγ for all k ≥ k0. By Lemma 2.5 for
each k > k0, there is a k′ such that {T ∗δβ : β ≤ ωαk′} contains a subfamily
{µρ : ρ ≤ ωαk} such that ρ 7→ µρ is a homeomorphism, ρ 7→ β(ρ) is an order
homeomorphism, where µρ = T ∗δβ(ρ), and∣∣‖µρ‖ − ‖µρ′‖∣∣ < 1/(4‖T‖) for all ρ, ρ′ ≤ ωαk .

For each m let Pm be the canonical projection from C0(ωω
γ × βN, X) onto

C(ωβm × βN, X). There exists an m such that

‖(I − P ∗m)(µωαk )‖ < 1/(8‖T‖).
It follows by passing to a suitable neighborhood of ωαk that we may assume
that

‖(I − P ∗m)(µρ)‖ < 3/(8‖T‖) for all ρ ≤ ωαk .
According to Remark 2.2 we can find a 1-complemented subspace Z of
C(ωω

α
) which is isometric to C(ωαk) and has natural basis of its dual

{µρ : ρ ≤ ωαk}. This implies that Pm(Z) is a complemented subspace of
C(βN × ωβm , X) isomorphic to C(ωαk). Because βm < ωγ and αk ≥ ωγ ,
C(βN × ωβm , X) cannot contain a complemented copy of C(ωω

γ
) by the

inductive hypothesis. Thus we have a contradiction and the theorem is
proved.

Now we can prove

Theorem 3.5. Let X be a Banach space containing no copy of c0, K an
infinite compact metric space and 0 ≤ α < ω1. Then

C(K)
c
↪→ C(βN× ωωα , X) ⇔ C(K) ∼ C(ωω

ξ
) for some 0 ≤ ξ ≤ α.

Proof. Since C([0, 1]) contains complemented copies of every C(ωω
α
),

0 ≤ α < ω1, it follows directly fromMilyutin’s theorem and Theorem 3.4 that
K must be countable if C(K)

c
↪→ C(βN × ωωα , X). If K is countable, then

C(K) is isomorphic to C(ωω
ξ
) for some countable ordinal ξ and Theorem

3.4 determines the possible values of ξ. The converse is obvious.

Remark 3.6. Because C(βN, `1) is isomorphic to its c0-sum (see Theo-
rem 5.4), the above result in the case X = `1 does not mimic that for the
scalar case where there is an additional isomorphism class. Indeed, since c0
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is not isomorphic to a complemented subspace of C(βN), the spaces C(βN)
and C(βN× ω) are not isomorphic.

We can now prove the main result of this section.

Theorem 3.7. Let X be a Banach space containing no copy of c0. Then
for any infinite compact metric spaces K1 and K2 we have

C(βN×K1, X) ∼ C(βN×K2, X) ⇔ C(K1) ∼ C(K2).

Proof. Let us show the non-trivial implication. Suppose that

C(βN×K1, X) ∼ C(βN×K2, X).

It is convenient to consider two subcases:

Case 1: K1 and K2 are countable. Hence there are countable ordinals ξ
and η such that C(K1) ∼ C(ωω

ξ
) and C(K2) ∼ C(ωω

η
). Then according to

our hypothesis,

C(ωω
η
)

c
↪→ C(ωω

η × βN, X) ∼ C(ωω
ξ × βN, X).

Therefore by Theorem 3.5 we deduce that ωωη ≤ ωω
ξ . Similarly, we show

that ωωξ ≤ ωωη . Hence C(K1) ∼ C(K2).

Case 2: K1 or K2 is uncountable. Without loss of generality we sup-
pose that K2 is uncountable. To prove that C(K1) ∼ C(K2), it is enough
by Milyutin’s theorem to show that K1 is also uncountable. Assume the
contrary. Then there exists an ordinal ξ such that C(K1) ∼ C(ωω

ξ
). Since

C(K2) ∼ C([0, 1]), by our hypothesis we have

C(ωω
ξ+1

)
c
↪→ C(βN× [0, 1], X)

c
↪→ C(ωω

ξ × βN, X),

a contradiction of Theorem 3.5. This completes the proof.

Corollary 3.8. Let X be a Banach space containing no copy of c0.
Then for any infinite compact metric spaces K1 and K2 we have

C(K1, X) ∼ C(K2, X) ⇔ C(K1) ∼ C(K2).

Proof. One direction is immediate. If C(K1, X)∼C(K2, X) then C(βN×
K1, X) ∼ C(βN×K2, X), so this follows from the previous result.

The next result can be considered as an extension of the Cembranos–
Freniche result although the proof does not yield a proof of that result. To
include the original result we would need to use the Josefson–Nissenzweig
Theorem [17], [23].

Proposition 3.9. Suppose that 0 ≤ α < ω1, 0 ≤ γ < ω1, and either (γn)
is (ωβn) where (βn) increases to γ, or (γn) is (ωβn) and γ = β + 1 for some
ordinal β. Let X be a Banach space such that with constants independent
of n, C(ωγn) is isomorphic to a complemented subspace of X. Then for
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any infinite compact Hausdorff space K, C(ωω
α × ωωγ ) is isomorphic to a

complemented subspace of C(K × ωωα , X).
If X is also separable then C(ωω

γ
) is isomorphic to a complemented sub-

space of C(K,X).

Proof. Clearly C(ωω
α
) is isomorphic to a complemented subspace of

C(K × ωωα , X). We also know by Lemma 2.4 that

C(ωω
α × ωωγ ) ∼ C(ωω

max{α,γ}
).

So we need only show that C(ωω
γ
) is isomorphic to a complemented subspace

of C(K×ωωα , X). The case γ = 0 is the Cembranos–Freniche result but also
is immediate from the fact that α ≥ 0. Now assume γ ≥ 1.

Notice that C(K × ωωα , X) is isomorphic to C0(ω × ωωα ×K,X). This
in turn is isomorphic to (∑

j∈N
C(ωω

α ×K,X)
)
c0
.

For each n ∈ N let Xn be a complemented subspace of X which is isomorphic
to C(ωγn) and let Pn be a projection from X onto Xn. By the hypothesis
we can assume that the norms of the isomorphisms and the projections are
bounded independently of n. Choose any point a ∈ ωω

α × K. If (fj) ∈
(
∑

j C(ωω
α ×K,X))c0 , then

P ((fj)) = (Pj(fj(a))1ωωα×K)

defines a projection onto a space isometric to the c0-sum of Xj . Because
(
∑

j∈NC(ωγj ))c0 is isomorphic to C(ωω
γ
), the c0-sum of Xj is isomorphic to

C(ωω
γ
).

If X is separable, then with Xn as before let Yn be the subspace of Xn

which is the image of C0(ωγn) under the isomorphism from C(ωγn), and Qn
be the projection from X onto Yn. Because X is separable there is a decreas-
ing sequence of weak∗ open sets Gj which is a base for the neighborhoods
of 0 in the ball of X∗, BX∗ . For each n there is a sequence of complemented
subspaces Yn,k of Yn with projections Qn,k, Yn,k ⊃ Yn,k+1 and Yn,k isomor-
phic to C0(ωγn) for all k, such that for each j and n there is a K such that
for all k ≥ K,

Q∗n,k(X
∗) ∩BX∗ ⊂ Gj .

Indeed if ρk ↗ ωγn , then f 7→ f1(ρk,ωγn ] is a projection onto a subspace of
C0(ωγn) isomorphic to C0(ωγn) and Yn,k can be taken to be the image of
this subspace in Yn.

Let (gn) be a sequence of disjointly supported non-negative norm one
elements in C(K) such that for each n there is an open set

Hn ⊃ {t : gn(t) > 0},
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with Hn ∩Hm = ∅ for all m 6= n, and tn ∈ K such that gn(tn) = 1 for all n.
Let

D = sup
s,k
‖Qs,k‖,

and choose kn such that

D−1Q∗n,kn(BX∗) ⊂ Gn for all n,

and let
Z = [gnyn : yn ∈ Yn,kn , n ∈ N].

Clearly Z is isomorphic to (
∑

nC0(ωγn))c0 , which is isomorphic to C(ωω
γ
).

Define an operator T from C(K,X) into Z by

Tf(t) = gn(t)Qn,kn(f(tn)) for all t ∈ supp gn

and Tf(t) = 0 if t /∈
⋃
n supp gn. Because each gn is continuous, Tf is

continuous on Hn for all n. If ε > 0 and t′n ∈ supp gn, and if t is an accumu-
lation point of {t′n}, then by the continuity of f, ‖f(t) − f(t′n)‖ < ε for all
t′n ∈ H where H is some neighborhood of t. Because t cannot be in any Hn,
T (f(t)) = 0. By the choice of kn we have

lim
n

sup
x∗∈BX∗

|(Q∗n,knx
∗)(f(t))| = 0

and for t′n ∈ H,

ε sup
s,k∈N

‖Qs,k‖ > sup
x∗∈BX∗

|(Q∗n,knx
∗)(f(t′n))− (Q∗n,knx

∗)(f(t))|.

Thus

‖(Tf)(t)‖ = 0 = lim
n∈N

sup
x∗∈BX∗

|(Q∗n,knx
∗)(f(tn))g(t′n)| = lim

n∈N
‖(Tf)(t′n)‖,

where the limit is over some net (t′n)n∈N such that limn∈N t
′
n = t.

It is easy to see that

‖T‖ ≤ sup
s,k∈N

‖Qs,k‖

and, because gn(tn) = 1 and each Qn,kn is a projection, T is a projection.

Remark 3.10. We do not know whether the separability condition in
the second part is necessary but the argument fails for the natural choices
of Xn if X = {(xn) : ∀n ∈ N, xn ∈ C(ωn), ‖(xn)‖ = supn ‖xn‖ <∞}.

In the next section we will prove some results about quotients of C(K,X)
isomorphic to C(ωω

α
). If we consider quotients in the previous proposition

instead of complemented subspaces, the analogous results hold. The proof is
similar to the previous one except that the argument is now entirely in the
dual.
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Proposition 3.11. Suppose that 0 ≤ α < ω1, 0 ≤ γ < ω1, and (γn)
is either (ωβn) where (βn) increases to γ, or (ωβn) and γ = β + 1. Let
X be a Banach space such that with constants independent of n, C(ωγn)
is isomorphic to a quotient of X. Then for any infinite compact Hausdorff
space K, C(ωω

α × ωωγ ) is isomorphic to a quotient of C(K × ωωα , X).
If X is also separable then C(ωω

γ
) is isomorphic to a quotient of C(K,X).

Proof. Clearly C(ωω
α
) is isomorphic to a quotient of C(K×ωωα , X).We

also know by Lemma 2.4 that

C(ωω
α × ωωγ ) ∼ C(ωω

max{α,γ}
).

Thus as before we need only show that C(ωω
γ
) is isomorphic to a quotient

of C(K × ωωα , X). The case γ = 0 is the Cembranos–Freniche result but is
also immediate from the fact that α ≥ 0. Assume γ ≥ 1.

Notice that C(K × ωωα , X) is isomorphic to C0(ω × ωωα × K,X), and
this is isomorphic to (∑

j

C(ωω
α ×K,X)

)
c0
.

For each n ∈ N let Xn be a quotient of X which is isomorphic to C(ωγn),
and Pn be the quotient map from X onto Xn. By hypothesis we can assume
that the norms of the isomorphisms and the quotient maps are bounded
independently of n. Thus P ∗n(X∗n) is weak∗ isomorphic to C(ωγn)∗, and the
subspace

Z = {(zn) : zn ∈ P ∗n(X∗n) for all n ∈ N}
of (
∑

j C(ωω
α × K,X))c0)∗ is weak∗ isomorphic to ((

∑
j C(ωγn))c0)∗. This

space is weak∗ isomorphic to C(ωγ)∗, giving us the required quotient.
If X is separable, then with Xn as before let Yn be the complemented

subspace of Xn which is the image of C0(ωγn) under the isomorphism, and
Qn be the quotient map from X onto Yn. Because X is separable there is
a decreasing sequence of weak∗ open sets Gj which is a base for the neigh-
borhoods of 0 in BX∗ . As in the proof of Proposition 3.9 for each n there
is a sequence of complemented subspaces Yn,k of Yn with projections Qn,k,
Yn,k ⊃ Yn,k+1 and Yn,k isomorphic to C0(ωγn) for all k, such that for each j
and n there is a K such that for all k ≥ K,

Q∗n,k(Y
∗
n ) ∩BX∗ ⊂ Gj .

Let (tn) be a sequence of points in K such that for each n there is an
open set Hn containing tn with Hn ∩Hm = ∅ for all m 6= n. Let

D = sup
s,k
‖Qs,k‖,

and choose kn such that

D−1Q∗n,kn(BY ∗n ) ⊂ Gn for all n,
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and let
Z = [znδtn : zn ∈ Q∗n,kn(Y ∗n ) for all n ∈ N].

Clearly Z is isomorphic to (
∑

nC0(ωγn)∗)`1 . We need to show that Z is
weak∗ isomorphic to ((

∑
nC0(ωγn))c0)∗. This however follows immediately

from the choice of (kn) and the fact that no point tj is an accumulation point
of {tn : n ∈ N} (as was shown in the proof of Proposition 3.9).

4. Separable C(K) quotients of C(βN × α,X). By Theorem 1.2 we
know that C(βN, `p), 1 < p <∞, contains a complemented copy of c0. The
main aim of this section is to show that C(ωω) is not even a quotient of this
space (Proposition 4.2). Of course, this implies that c0 is, up to isomorphism,
the only separable C(K) space which is a quotient of C(βN, `p), 1 < p <∞.

In this section we will work with Banach spaces X that satisfy the fol-
lowing properties:

(†) X∗ has a monotone weak∗ FDD (X∗m).
(‡) For every constant C, 0 < C < 1, there is a constant C ′ such that

for all x∗ ∈ X∗ and j ∈ N,
‖(I − Pj)x∗‖ ≤ C‖x∗‖+ C ′(‖x∗‖ − ‖Pjx∗‖),

where (Pj) is the sequence of FDD projections, i.e., Pj(X∗) = [X∗m :
m ≤ j].

We will refer to such spaces as satisfying the daggers. Before proceeding to
the main results we will verify that `p, for 1 < p <∞, satisfies the daggers.

Remark 4.1. Suppose that P is an operator on X∗ such that for some
x∗ ∈ X∗,

‖(I − P )x∗‖p + ‖Px∗‖p ≤ ‖x∗‖p

and 0 < C < 1. We claim

‖(I − P )x∗‖ ≤ C‖x∗‖+ C1−p(‖x∗‖ − ‖Px∗‖).
Indeed, by Hölder’s inequality with q = p/(p− 1),

‖(I − P )x∗‖+ C1−p‖Px∗‖ ≤ (1 + C−p)(p−1)/p(‖(I − P )x∗‖p + ‖Px∗‖p)1/p

≤ (1 + C−p)(1 + C−p)−1/p‖x∗‖
≤ (1 + C−p)C‖x∗‖.

Thus any space with a weak∗ FDD satisfying the p-concavity inequality

‖(I − Pj)x∗‖p + ‖Pjx∗‖p ≤ ‖x∗‖p

for all j and x∗ ∈ X∗ for some 1 < p < ∞ will satisfy (‡). In particular `q,
1 < q <∞, satisfies the daggers.

The next result is the initial case of the main theorem of this section.
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Theorem 4.2. Suppose that X is a Banach space satisfying the daggers.
Then C(ωω) is not a quotient of C(βN× ω,X).

Proof. First we can replace C(βN × ω,X) = C(ω × βN, X) by the iso-
morphic space C0(ω × βN, X). Suppose that there exists a bounded linear
operator T from C0(ω×βN, X) onto C(ωω). We will show that this leads to a
contradiction. We may assume that ‖T‖ = 1. Because T ∗ is a weak∗ isomor-
phism from C(ωω)∗ into C0(ω×βN, X)∗, there is a constant K such that for
every n ∈ N, {δα : α ≤ ωn} is mapped to {x∗α : α ≤ ωn} ⊂ C0(ω × βN, X)∗

and {x∗α : α ≤ ωn} is K-equivalent to the usual unit vector basis of `1, i.e.,∥∥∥∑
α

cαx
∗
α

∥∥∥ ≥∑
α

|cα|/K

for all sequences (cα) of scalars.
Let C = (8K)−1 in (‡), and choose ρ, 1/2 > ρ > 0, such that

(1− ρ)−1

(
1− (1− ρ)3

1 + ρ

)
C ′ < (4K)−1.

By Lemma 2.5 for k = 1 and n sufficiently large, we can find (x∗α(γ))γ≤ω
with ∣∣‖x∗α(γ)‖ − ‖x

∗
α(γ′)‖

∣∣ < ρ/K for all γ, γ′ ≤ ω.

Moreover, as in the proof of Theorem 3.2, we may assume that the measures
are all supported in [1,K] × βN and thus reduce to measures supported
on βN. By our identification of C(βN, X)∗ with a space of X∗-valued mea-
sures and switching to a more suggestive notation we have (µn), a weak∗
convergent sequence of X∗-valued measures with limit µ, with

‖µ‖(1 + ρ) > ‖µn‖ > ‖µ‖(1− ρ) for all n.

Choose a finite partition {Bj} of βN into clopen sets such that∑
j

‖µ(Bj)‖X∗ > ‖µ‖(1− ρ).

As in (‡) let Pm denote the FDD projection of X∗ onto the span of the
first m subspaces. With a slight abuse of notation we will also use Pm for
the operator on the X∗-valued measures defined by

(Pmµ)(A) = Pm(µ(A)) for all measurable A.

Choose N such that

‖PN (µ(Bj))‖ > (1− ρ)‖µ(Bj)‖ for all j.

By passing to a subsequence we may assume that

‖PN (µn(Bj))‖ > (1− ρ)‖µ(Bj)‖ for all j and n.
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Hence

‖PNµn‖ ≥
∑
j

‖PNµn(Bj)‖ ≥ (1− ρ)
∑
j

‖µ(Bj)‖

≥ (1− ρ)2‖µ‖ ≥ (1− ρ)2

1 + ρ
‖µn‖.

Fix n and choose a partition {Ak} that refines {Bj} such that

•
∑

k ‖µn(Ak)‖ ≥ (1− ρ)‖µn‖,
•
∑

k ‖PNµn(Ak)‖ ≥ (1− ρ)‖PNµn‖,
•
∑

k ‖(I − PN )µn(Ak)‖ ≥ (1− ρ)‖(I − PN )µn‖.
For each k let λk satisfy

λk‖µn(Ak)‖ = ‖PNµn(Ak)‖.
Then ∑

k

λk‖µn(Ak)‖ ≥
(1− ρ)3

1 + ρ
‖µn‖ ≥

(1− ρ)3

1 + ρ

∑
k

‖µn(Ak)‖.

Equivalently,(
1− (1− ρ)3

1 + ρ

)∑
k

‖µn(Ak)‖ ≥
∑
k

(1− λk)‖µn(Ak)‖.

We need to estimate ‖(I − PN )µn‖. Let
M = {k : ‖(I − Pk)µn(Ak)‖ ≤ C‖µn(Ak)‖}.

Then by the choice of C,∑
k

‖(I − PN )µn(Ak)‖ ≤
∑
k∈M

C‖µn(Ak)‖+
∑
k/∈M

(C + C ′(1− λk))‖µn(Ak)‖

≤
∑
k

C‖µn(Ak)‖+ C ′
∑
k

(1− λk)‖µn(Ak)‖

≤ C‖µn‖+ C ′
(

1− (1− ρ)3

1 + ρ

)
‖µn‖.

Because ‖T‖ = 1, ‖µn‖ ≤ 1. Therefore

‖(I − PN )µn‖ ≤ (1− ρ)−1C + (1− ρ)−1C ′
(

1− (1− ρ)3

1 + ρ

)
≤ (2K)−1.

Notice that (PNµn) converges to PNµ in the weak∗ topology. Because
C(βN) is a Grothendieck space, so is C(βN, [Xm : m ≤ N ]). Thus (PNµn)
converges to PNµ in the weak topology. Because (µn) is K-equivalent to
the usual unit vector basis of `1, the estimate on ‖(I − PN )µn‖ implies that
(PNµn) is also equivalent to that basis. This is a contradiction because the
unit vector basis of `1 has no weak Cauchy subsequence.
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Remark 4.3. The proof of the theorem shows that C(ωn) is not a quo-
tient of C(ω × βN, X) uniformly in n. Because C(ωω) is isomorphic to
(
∑

nC(ωn))c0 , this is equivalent to C(ωω) not being a quotient. It is conceiv-
able that the conclusion of Theorem 4.2 could be proved under the hypothesis
that X does not have C(ωn) as a quotient uniformly in n.

The following theorem generalizes Theorem 4.2 to higher ordinals.

Theorem 4.4. Suppose that X is a Banach space such that C(ωω) is not
isomorphic to a quotient of C(ω,X). Let α ≥ 1. Then C(ωω

α
) is isomorphic

to a quotient of C(βN× ξ,X) if and only if ξ ≥ ωωα .
Proof. It is easy to see that C(γ) is isomorphic to a complemented sub-

space of C(βN× γ,X) for all γ ≥ 1. Thus the sufficiency is clear.
On the other hand, by Proposition 2.1,

C(βN× ωn, X) = C(ωn, C(βN, X)) ∼ C(ω,C(βN, X)) = C(βN× ω,X)

for all positive integers n. Thus the necessity is true for α = 1. Because
C(ωω) is not isomorphic to a quotient of C(ω,X) or of C(βN× ω,X), it is
sufficient to prove the result for C(ξ,X) rather than C(βN× ξ,X).

Now suppose that α > 1 and for all γ < α, C(ωω
γ
) is not isomorphic to

a quotient of C(ξ,X) if ξ < ωω
γ
. We will show that if β < ωω

α and there
is a bounded operator T from C(β,X) onto C(ωω

α
) then this leads to a

contradiction. Without loss of generality we assume that ‖T‖ = 1.
If α is a limit ordinal and αn ↑ α, then ωω

αn
> β for some n. Now

C(ωω
αn ) is isomorphic to a quotient of C(ωω

α
) and by assumption also to a

quotient of C(β,X), which contradicts the induction hypothesis.
Now suppose that α = γ + 1 for some ordinal γ. By Proposition 2.1,

C(β,X) is isomorphic to C0(β,X). Hence we may assume that T goes from
C0(β,X) onto C(ωω

α
). Also by Proposition 2.1 we may assume that β = ωω

ζ

for some 1 ≤ ζ < α. Let ζk = ωζ−1k if ζ is not a limit ordinal and ζk ↑ ωζ
otherwise. Let {x∗ρ : ρ ≤ ωω

α} be the corresponding images of the Dirac
measures {δρ : ρ ≤ ωωα} under T ∗. Then {x∗ρ : ρ ≤ ωωα} is, for some R > 1,
R-equivalent to the usual unit vector basis of `1. By Lemma 2.5 there is an
N sufficiently large such that if {y∗ρ : ρ ≤ ωωγN} is contained in the unit ball
of C0(β,X)∗ and the mapping ρ 7→ y∗ρ is weak∗ continuous, then there is a
continuous map φ from [1, ωω

γ
] into [1, ωω

γN ] such that∣∣‖y∗φ(ρ)‖ − ‖y
∗
φ(ρ′)‖

∣∣ < 1
4R

for all ρ, ρ′ ≤ ωωγ .

Applying this to {x∗ρ : ρ ≤ ωω
γN}, we get a map φ as above. Because

C0(β,X)∗ is weak∗ isomorphic and norm-isometric to (
∑
C(ωζk , X)∗)c∗0 ,

there exists K such that

‖(I − PK)x∗φ(ωω
γ ‖ < 1

4R
,
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where PK is the weak∗ continuous projection (truncation) from( ∞∑
k=1

C(ωζk , X)∗
)
c∗0

onto
(∑
k≤K

C(ωζk , X)∗
)
c∗0
.

By passing to a neighborhood of ωωγ we may assume that

‖PKx∗φ(ρ)‖ > ‖PKx
∗
φ(ωω

γ
)‖ −

1
4R

> ‖x∗φ(ρ)‖ −
3

4R
for all ρ ≤ ωωγ .

Thus C(ωω
γ
)∗ is weak∗ isomorphic to a subspace of(∑

k≤K
C(ωζk , X)∗

)
c∗0
,

and consequently C(ωω
γ
) is isomorphic to a quotient of

C(ωζ1 + · · ·+ ωζK , X).

But ωζ1 + · · ·+ ωζK < ωω
γ , contradicting the inductive hypothesis. No such

β exists.

The purpose of this section is to prove Theorem 4.5 below. This result now
follows from Theorem 4.4 and Milyutin’s theorem by an argument similar
to the deduction of Theorem 3.5 from Theorem 3.2. We leave the details to
the reader.

Theorem 4.5. Let K be an infinite compact metric space and 0≤α<ω1,
and let X satisfy the daggers. Then

C(βN× ωωα , X) � C(K) ⇔ C(K) ∼ C(ωω
ξ
) for some 0 ≤ ξ ≤ α.

Corollary 4.6. Let K be an infinite compact metric space and 0 ≤
α < ω1. Then

C(βN× ωωα , `p) � C(K) ⇔ C(K) ∼ C(ωω
ξ
) for some 0 ≤ ξ ≤ α.

5. The isomorphism of C(βN × ω, `p) and C(βN, `p), 1 ≤ p < ∞.
As an immediate consequence of Theorem 3.2, for every 1 ≤ p < ∞ and
α ≥ ωω, we have

C(βN× α, `p) � C(βN, `p).
For α finite βN × α is homeomorphic to βN, so the case ω ≤ α < ωω of
Theorem 5.4 remains. This result is the case p = 1 of Theorem 5.3 below.
To prove this theorem we need the following lemma.

Lemma 5.1. Let X and Y be Banach spaces and let 1 ≤ p < ∞ and
p ≤ q ≤ ∞ with (p, q) 6= (1,∞). Then c0(ω × K(X,Y )) is isomorphic to a
complemented subspace of K(`p(X), `q(Y )).

Proof. Let T ∈ K(`p(X), `p(Y )). Represent T as a matrix with entries
in K(X,Y ). For the moment assume that q < ∞. By [20, Proposition 1.c.8
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and following Remarks] the operator given by the diagonal of this matrix
is a bounded linear operator with norm no larger than ‖T‖. Therefore the
mapping from K(`p(X), `q(Y )) into the diagonal operators with respect to
this representation is a contraction. If p > 1 and q = ∞, then sign change
operators are contractive and the argument from [20] shows that the map
from K(`p(X), `∞(Y )) into the diagonal operators is contractive. Also for
compact operators that are diagonal the map is the identity.

The norm of a diagonal operator is the supremum of the norms of the
operators on the diagonal. For the case q =∞ this is clear. If q <∞, let Dj

be the jth block of the diagonal operator D and (xj) ∈ `p(X). Then

‖(Djxj)‖`q(Y ) =
(∑

‖Djxj‖qY
)1/q

≤
(∑

‖Dj‖q‖xj‖qX
)1/q

≤ (sup
j
‖Dj‖)‖(xj)‖`p(X),

since q ≥ p. Clearly ‖D‖ ≥ sup ‖Dj‖.
Let Ej be the natural inclusion map from X into the elements of `p(X)

which are zero except in the jth coordinate and Pj be the projection from
`q(Y ) onto Y given by choosing the jth coordinate. For all j, let xj ∈ BX
be such that

‖PjTEjxj‖ = ‖Djxj‖ ≥ ‖Dj‖/2.

Because we began with a compact operator, {TEjxj} is relatively compact
in `q(Y ). If 1 ≤ q <∞, ‖PjTEjxj‖ converges to 0 because T (B`p(X)) is rel-
atively compact and thus

∑
‖Pjy‖qY converges uniformly for y ∈ T (B`p(X)).

If q = ∞, then p > 1 and (Ejxj) converges weakly to 0. Because T is
compact, (TEjxj) converges in norm to 0. Therefore the limit of the norms
of the operators Dj must be 0. Conversely, any sequence (Ti) of operators
with Ti ∈ K(X,Y ) for all i and lim ‖Ti‖ = 0 induces a diagonal operator in
K(`p(X), `q(Y )) by D(xj) = (Tjxj). Clearly each truncation D(n) of D,

D(n)(xj) = (T1x1, . . . , Tnxn, 0, 0, . . . ),

is compact and D(n) converges to D in norm.

Remark 5.2. The conditions on p and q are not necessary for the proof
that the space of diagonals of the compact operators is the range of a con-
tractive map. In fact `p and `q can be replaced by spaces with unconditional
basis. The computation of the bound on the norm of the diagonal operator
requires that the norm on the domain dominate the norm on the range. In
addition, to prove compactness of the diagonal we used the fact that the
norm of the tail of an element in `q(Y )∩T (B`p(X)) goes to zero. If p = 1 and
q = ∞, this may fail and the diagonal of a compact operator may not be
compact. An example of this is the one-dimensional operator T : `1 → `∞
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defined by T (aj) = (
∑
aj)1N. The corresponding diagonal operator is the

inclusion map, J(aj) =
∑
aj1{j}.

Theorem 5.3. Let X and Y be Banach spaces and 1 ≤ p < ∞ and
p ≤ q ≤ ∞ with (p, q) 6= (1,∞). Then

K(`p(X), `q(Y )) ∼ C(ω,K(`p(X), `q(Y ))).

Proof. By Lemma 5.1 with X1 = `p(X) and Y1 = `q(Y ) in place of X
and Y , we see that

C0(ω,K(`p(X), `q(Y ))) = C0(ω,K(X1, Y1))
c
↪→ K(X1, Y1)

= K(`p(X), `q(Y )).

Therefore by the Pełczyński decomposition method [20, p. 54] and 2.1 we
infer

K(`p(X), `q(Y )) ∼ C0(ω,K(`p(X), `q(Y ))) ∼ C(ω,K(`p(X), `q(Y ))).

Corollary 5.4. C(βN, `q) is isomorphic to C(ω×βN, `q) for 1≤q<∞.
Proof. Let p = 1, X = `1 and Y = `q in the previous result. Recall that

K(`1, `q) is isomorphic to C(βN, `q). Thus
C(βN, `q) ∼ C(ω,C(βN, `q)) ∼ C(ω × βN, `q).

An analysis of the proof for the special case p = 1 shows that we can
prove a version of the Cembranos–Freniche result for the case K = βN.

Proposition 5.5. Suppose that X is a Banach space, K <∞, and (Pj)
is a sequence of projections defined on X with range Xj and ‖Pj‖ ≤ K for
all j such that limj ‖Pjx‖ = 0 for all x ∈ X. Then (

∑
j C(βN, Xj))c0 is

complemented in C(βN, X).

Proof. Let {Nj} be a partition of N into countably many disjoint infinite
sets. Define an operator P on C(βN, X) by (Pf)(n) = Pj(f(n)) for all
f ∈ C(βN, X), for all n ∈ Nj , j = 1, 2, . . . . We will show that Pf has norm
relatively compact range and thus extends to a continuous function on βN.
The bound K on the norms of the projections shows that the range of Pf
is bounded in X. To see that the range is totally bounded, let ε > 0 and
{xm : m ∈ M} be a finite ε/(4K)-net in f(βN). For each m ∈ M , there is
an integer Jm such that ‖Pjxm‖ < ε/4 for all j ≥ Jm, Let J = maxm Jm. If
j ≥ J and x ∈ f(βN) then

‖Pjx‖ ≤ min
m

(‖Pjxm‖+ ‖Pj(xm − x)‖) < ε/2.

Thus the range of Pf is contained in⋃
j≤J

Pj(f(βN)) ∪ ε
2
BX ,

and an ε/2-net in the compact set
⋃
j≤J Pj(f(βN)) will yield an ε-net.
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Clearly P will be linear, bounded and the identity on C(βNj , Xj) for
all j. Moreover the argument above shows that

Pf ∈
(∑

j

C(βNj , Xj)
)
c0
.

Remark 5.6. The results in Sections 3–5 allow us to point out some lim-
itations of our approach if one considers more general classification problems
for the spaces C(K,X). Notice that C(βN, `2 ⊕ c0) is isomorphic to

C(βN, `2)⊕ C(βN, c0) ∼ C(ω × βN, `2)⊕ C(ω × βN) ∼ C(βN, `2).

If we instead use C(ωω), we get a different outcome:

C(βN, `2 ⊕ C(ωω)) ∼ C(βN, `2)⊕ C(βN, C(ωω)).

This space is not isomorphic to C(βN, `2). It is complemented in C(βN ×
ωω, `2) but it does not seem likely that it contains C(ωω, `2) as a comple-
mented subspace. It also seems doubtful that there is any compact Hausdorff
space K such that C(βN, `2 ⊕ C(ωω)) is isomorphic to C(K, `2).

6. Open questions. We end this paper by stating some questions which
it raises. We do not know whether the statement of our main result (Theo-
rem 3.7) remains true in the case where X = `∞, that is,

Problem 6.1. Let K1 and K2 be infinite compact metric spaces. Does it
follow that

C(βN× βN×K1) ∼ C(βN× βN×K2) ⇒ C(K1) ∼ C(K2)?

Notice that with X = R in Theorem 3.7 we have (see also [10, Theorem
5.7])

C(βN×K1) ∼ C(βN×K2) ⇒ C(K1) ∼ C(K2)

for any infinite compact metric spaces K1 and K2.
The case K1 = ω and K2 = {1} of Problem 6.1 is the statement of

Corollary 5.4 when q =∞, that is,

Problem 6.2. Is it true that

C(ω × βN× βN) ∼ C(βN× βN)?

This is a special case of the following question for which Corollary 5.4
gives some answers:

Problem 6.3. For which infinite-dimensional Banach spaces X is

C(ω × βN, X) ∼ C(βN, X)?

Of course ifX is a finite-dimensional space, this is false. IfX is isomorphic
to C(ω, Y ), then

C(ω × βN, X) ∼ C(βN, C(ω × ω, Y )) ∼ C(βN, C(ω, Y )),

and thus such X are examples.
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One way to approach Problem 6.2 is to study the isomorphic classification
of the complemented subspaces of C(βN×βN). Thus, it would be interesting
to solve the following intriguing problem which is a particular case of the well
known complemented subspace problem for C(K) spaces (see for instance
[24, Section 5]).

Problem 6.4. Let X be a complemented subspace of C(βN× βN). Sup-
pose that X is an infinite-dimensional separable space. Is X isomorphic
to c0?

In particular, the other separable C(K) spaces would be eliminated if
the answer to the following is no.

Problem 6.5. Is it true that C(ωω)
c
↪→ C(βN× βN)?

Finally, observe that Theorem 3.2 leads naturally to the following prob-
lem which is connected with the Cembranos and Freniche theorem (Theo-
rem 1.2):

Problem 6.6. Suppose that X is a Banach space and K is an infinite
compact space. Is it true that

(1) C(ωω)
c
↪→ C(K,X) ⇒ c0

c
↪→ C(K) or c0 ↪→ X?

(2) C(ωω)
c
↪→ C(βN, X) ⇒ c0

c
↪→ X?

If X is separable, then c0 is always complemented so the latter is true
by Theorem 3.2. As noted after the proof of that theorem, variations of this
problem with either C(ωω) or uniformly complemented copies of (ωn) could
also be considered.

It is possible that the proper context for this line of investigation is
actually injective tensor products.

Problem 6.7. Suppose that X and Y are Banach spaces, α > 0 and αn ↑
ωα are ordinals, and C(ωω

α
) is isomorphic to a (complemented) subspace of

X ⊗̌ Y . Is

• C(ωω
α
) isomorphic to a (complemented) subspace of X or Y , or

• C(ωαn) uniformly isomorphic to a (complemented) subspace of one of
X and Y and c0 isomorphic to a subspace of the other?
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