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Infinitely divisible cylindrical measures on Banach spaces

by

Markus Riedle (London)

Abstract. In this work infinitely divisible cylindrical probability measures on arbi-
trary Banach spaces are introduced. The class of infinitely divisible cylindrical probability
measures is described in terms of their characteristics, a characterisation which is not
known in general for infinitely divisible Radon measures on Banach spaces. Further prop-
erties of infinitely divisible cylindrical measures such as continuity are derived. Moreover,
the classification result enables us to deduce new results on genuine Lévy measures on
Banach spaces.

1. Introduction. Probability theory in Banach spaces has been exten-
sively studied since 1960 and several monographs are dedicated to this field,
e.g. de Araujo and Giné [7], Ledoux and Talagrand [11] and Vakhaniya et
al. [21]. This area is closely related to the theory of Banach space geometry
and it has applications not only in probability theory but also in operator
theory, harmonic analysis and C∗-algebras.

Cylindrical stochastic processes in Banach spaces appear naturally as
the driving noise in stochastic differential equations in infinite dimensions,
such as interest rate models. Up to now, cylindrical Wiener processes are
the standard examples of the driving noise, which restricts the noise to
a Gaussian perturbation with continuous paths. A natural non-Gaussian
and discontinuous generalisation is introduced by cylindrical Lévy processes.
The notion of cylindrical Lévy process appears for the first time in Peszat
and Zabczyk [16] and it is studied by Brzeźniak et al. [3], Brzeźniak and
Zabczyk [4] and Priola and Zabczyk [17]. The first systematic introduction
to cylindrical Lévy processes appears in Applebaum and Riedle [1].

The introduction of cylindrical Lévy processes in [1] is based on the
theory of cylindrical or generalised processes and cylindrical measures (see
for example Schwartz [20] or Vakhaniya et al. [21]). The approach in [1] is
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inspired by the analogous definition for cylindrical Wiener processes (see
Kallianpur and Xiong [10], Métivier and Pellaumail [14] or Riedle [18]).
In the same way as cylindrical Wiener processes are related to the class
of Gaussian cylindrical measures, the introduction of cylindrical Lévy pro-
cesses in [1] leads to the new class of infinitely divisible cylindrical measures
which have not been considered so far. Since the article [1] focused on cylin-
drical Lévy processes and their stochastic integral, no further properties of
infinitely divisible cylindrical measures were derived. In this work we give a
rigorous introduction of infinitely divisible cylindrical measures in Banach
spaces and derive some of their fundamental properties. Some of our results
also give a new insight on genuine infinitely divisible Radon measures on
Banach spaces.

The main result is a characterisation of the class of infinitely divisible
cylindrical measures in a Banach space in terms of a triplet (p, q, ν) where
p, q are some functions and ν is a cylindrical measure. This result is surpris-
ing since for infinitely divisible Radon measures in Banach spaces such a
classification is not known in general (see de Araujo and Giné [7]). Further-
more, since in analogy to the characteristics of Lévy processes the triplet
describes the deterministic drift, the covariance structure of the Gaussian
part and the jump distribution, it provides the construction of an infinitely
divisible cylindrical random variable for given data specifying these prop-
erties. Moreover, this main result enables us to derive the following two
important conclusions.

The first one concerns the following problem: even in the finite-dimen-
sional case, a probability measure on R2 such that all image measures under
linear projections to R are infinitely divisible might not be infinitely divisible
(see Giné and Hahn [8] and Marcus [13]). However, a question left open is if
a probability measure on an infinite-dimensional space is infinitely divisible
whenever all its linear projections to Rn for all finite dimensions n ∈ N are
infinitely divisible. By the characterisation of the set of infinitely divisible
cylindrical measures mentioned above we are able to answer this question
in the affirmative.

The second conclusion of our main result concerns the characterisation
of Lévy measures in Banach spaces. In a Hilbert space H it is well known
that a σ-finite measure ν is the Lévy measure of an infinitely divisible Radon
measure if and only if

(1.1)
�

H

(‖u‖2 ∧ 1) ν(du) <∞

(see for example Parthasarathy [15]). Although this integrability condition
can be used to classify the type and cotype of Banach spaces (see de Araujo
and Giné [6]), in general Banach spaces such an explicit description of in-
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finitely divisible measures in terms of the Lévy measure ν is not known.
Even worse, the condition (1.1) might be neither sufficient nor necessary
for a σ-finite measure ν on an arbitrary Banach space U to guarantee that
there exists an infinitely divisible measure with characteristics (0, 0, ν) (see
for example U = C[0, 1] in Araujo [5]). However, we show in the last part
of this work that a σ-finite measure ν satisfying the weaker condition

(1.2)
�

U

(|〈u, a〉|2 ∧ 1) ν(du) <∞ for all a ∈ U∗

always generates an infinitely divisible cylindrical measure µ. This result
reduces the question whether a σ-finite measure ν generates an infinitely di-
visible Radon measure to the question whether the infinitely divisible cylin-
drical measure µ extends to a Radon measure.

2. Preliminaries. For a measure space (S,S, µ) we denote by Lpµ(S,S),
p ≥ 0, the space of equivalence classes of measurable functions f : S → R
which satisfy

	
|f(s)|p µ(ds) <∞.

Let U be a Banach space with dual U∗. The dual pairing is denoted by
〈u, a〉 for u ∈ U and a ∈ U∗. The Borel σ-algebra in U is denoted by B(U)
and the closed unit ball at the origin by BU := {u ∈ U : ‖u‖ ≤ 1}.

For every a1, . . . , an ∈ U∗ and n ∈ N we define a linear map

πa1,...,an : U → Rn, πa1,...,an(u) = (〈u, a1〉, . . . , 〈u, an〉).
Let Γ be a subset of U∗. Sets of the form

Z(a1, . . . , an;B) := {u ∈ U : (〈u, a1〉, . . . , 〈u, an〉) ∈ B} = π−1
a1,...,an

(B),

where a1, . . . , an ∈ Γ and B ∈ B(Rn), are called cylindrical sets. The set of
all cylindrical sets is denoted by Z(U, Γ ) and it is an algebra. The generated
σ-algebra is denoted by C(U, Γ ) and called the cylindrical σ-algebra with
respect to (U, Γ ). If Γ = U∗ we write Z(U) := Z(U, Γ ) and C(U) := C(U, Γ ).

A function µ : Z(U)→ [0,∞] is called a cylindrical measure on Z(U) if
for each finite subset Γ ⊆ U∗ the restriction of µ to the σ-algebra C(U, Γ )
is a measure. A cylindrical measure is called finite if µ(U) < ∞, and a
cylindrical probability measure if µ(U) = 1.

For every function f : U → C which is measurable with respect to
C(U, Γ ) for a finite subset Γ ⊆ U∗ the integral

	
f(u)µ(du) is well defined

as a complex valued Lebesgue integral if it exists. In particular, the char-
acteristic function ϕµ : U∗ → C of a finite cylindrical measure µ is defined
by

ϕµ(a) :=
�

U

ei〈u,a〉 µ(du) for all a ∈ U∗.

In contrast to probability measures on B(U) there exists an analogue of Boch-
ner’s theorem for cylindrical probability measures (cf. [21, Prop. VI.3.2]):
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a function ϕ : U∗ → C with ϕ(0) = 1 is the characteristic function of
a cylindrical probability measure if and only if it is positive-definite and
continuous on every finite-dimensional subspace.

For every a1, . . . , an ∈ U∗ we obtain an image measure µ ◦ π−1
a1,...,an

on
B(Rn). Its characteristic function ϕµ◦π−1

a1,...,an
is determined by that of µ:

(2.1) ϕµ◦π−1
a1,...,an

(t) = ϕµ(t1a1 + · · ·+ tnan)

for all t = (t1, . . . , tn) ∈ Rn.
If µ1 and µ2 are cylindrical probability measures on Z(U) their convo-

lution is the cylindrical probability measure defined by

(µ1 ∗ µ2)(Z) =
�

U

µ1(Z − u)µ2(du)

for each Z ∈ Z(U). Indeed if Z = π−1
a1,...,an

(B) for some a1, . . . , an ∈ U∗, B ∈
B(Rn), then it is easily verified that

(µ1 ∗ µ2)(Z) = (µ1 ◦ π−1
aa1,...,an

) ∗ (µ2 ◦ π−1
aa1,...,an

)(B).

A standard calculation yields ϕµ1∗µ2 = ϕµ1ϕµ2 . For more information about
convolution of cylindrical probability measures, see [19]. The k-fold convo-
lution of a cylindrical probability measure µ with itself is denoted by µ∗k.

3. Infinitely divisible cylindrical measures. For later reference, we
begin with the well understood class of infinitely divisible measures on R.
A probability measure ζ on B(R) is called infinitely divisible if for every
k ∈ N there exists a probability measure ζk such that ζ = (ζk)∗k. It is well
known that infinitely divisible probability measures on B(R) are charac-
terised by their characteristic function. The characteristic function is unique
but its specific representation depends on the chosen truncation function.

Definition 3.1. A truncation function is any measurable function h :
R→ R which is bounded and satisfies h = Id in a neighborhood D(h) of 0.

Given a truncation function h a probability measure ζ on B(R) is in-
finitely divisible if and only if its characteristic function is of the form

(3.1) ϕζ : R→ C, ϕζ(t) = exp
(
imt− 1

2r
2t2 +

�

R
ψ̃h(s, t) η(ds)

)
for some constants m ∈ R, r ≥ 0 and a Lévy measure η, which is a σ-finite
measure η on B(R) with η({0}) = 0 and�

R
(|s|2 ∧ 1) η(ds) <∞.

The function ψ̃h is defined by

ψ̃h : R× R→ C, ψ̃h(s, t) := eist − 1− ith(s).
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In this situation we call the triplet (m, r, η)h the characteristics of ζ. If h′ is
another truncation function then (m′, r, η)h′ is the characteristics of ζ with
respect to h′, where

m′ := m+
�

R
(h′(s)− h(s)) η(ds).

The integral exists because h′(s)−h(s) = 0 for s ∈ D(h′)∩D(h) and h and
h′ are both bounded. From Bochner’s theorem and Schoenberg’s correspon-
dence (see [21, Ch. IV.1.4]) it follows that the function

t 7→ −
�

R
ψ̃h(s, t) η(ds)

is negative-definite for all Lévy measures η. By choosing η = δs0 , where δs0
denotes the Dirac measure at s0 for a constant s0 ∈ R, we conclude that

(3.2) t 7→ −ψ̃h(s0, t) is negative-definite for all s0 ∈ R.
Now, we turn to the general situation of an arbitrary Banach space U .

A Radon probability measure µ on B(U) is called infinitely divisible if for
each k ∈ N there exists a Radon probability measure µk such that µ =
(µk)∗k. We generalise this definition to cylindrical measures:

Definition 3.2. A cylindrical probability measure µ on Z(U) is called
infinitely divisible if for each k ∈ N there exists a cylindrical probability
measure µk such that µ = (µk)∗k.

Bochner’s theorem for cylindrical probability measures [21, Prop. VI.3.2]
implies that a cylindrical probability measure µ on Z(U) is infinitely divis-
ible if and only if for every k ∈ N there exists a characteristic function ϕµk

of a cylindrical probability measure µk such that

ϕµ(a) = (ϕµk
(a))k for all a ∈ U∗.

One might conjecture that a cylindrical probability measure µ is infinitely
divisible if every image measure µ ◦ a−1 is infinitely divisible for all a ∈ U∗.
But this is wrong already in the case U = R2 as shown by Giné and Hahn [8]
and Marcus [13]. They constructed a probability measure µ on B(R2) such
that all projections µ ◦ a−1 are infinitely divisible for all linear functions
a : R2 → R but µ is not infinitely divisible. However, in infinite dimensions
one can require that all finite-dimensional projections are infinitely divisible.

Definition 3.3. A cylindrical probability measure µ on Z(U) is called
weakly infinitely divisible if

µ ◦ π−1
a1,...,an

is infinitely divisible for all a1, . . . , an ∈ U∗ and n ∈ N.
A cylindrical probability measure µ is weakly infinitely divisible if and

only if for each k ∈ N and all a1, . . . , an ∈ U∗, n ∈ N there exists a char-
acteristic function ϕξk,a1,...,an

of a probability measure ξk,a1,...,an on B(Rn)
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such that

ϕµ◦π−1
a1,...,an

(t) = (ϕξk,a1,...,an
(t))k for all t ∈ Rn.(3.3)

It follows that every infinitely divisible cylindrical probability measure
µ is also weakly infinitely divisible since for each t = (t1, . . . , tn) ∈ Rn we
have

ϕµ◦π−1
a1,...,an

(t) = ϕµ(t1a1 + · · ·+ tnan) = (ϕµk
(t1a1 + · · ·+ tnan))k

= (ϕµk◦π−1
a1,...,an

(t))k

for all a1, . . . , an ∈ U∗ and all k ∈ N. We will later see that the converse is
also true, i.e. that the concepts of Definitions 3.2 and 3.3 coincide.

If µ is a weakly infinitely divisible cylindrical measure then µ ◦ a−1 is an
infinitely divisible measure in B(R), and thus

ϕµ(a) = ϕµ◦a−1(1)(3.4)

= exp
(
ima − 1

2r
2
a +

�

R
(eis − 1− is1BR(s)) ηa(ds)

)
for some constants ma ∈ R, ra ≥ 0 and a Lévy measure ηa on B(R). For
infinitely divisible cylindrical measures, this representation can be signifi-
cantly improved, as shown in Applebaum and Riedle [1]. The same proof
establishes the result for weakly infinitely divisible cylindrical measures in
the following theorem.

Theorem 3.4. Let µ be a weakly infinitely divisible cylindrical probabil-
ity measure on Z(U). Then its characteristic function ϕµ : U∗ → C is given
by

(3.5) ϕµ(a)

= exp
(
iw(a)− 1

2q(a) +
�

U

(ei〈u,a〉 − 1− i〈u, a〉1BR(〈u, a〉)) ν(du)
)
,

where w : U∗ → R is a mapping, q : U∗ → R is a quadratic form and ν is a
cylindrical measure on Z(U) such that ν ◦ π−1

a1,...,an
is the Lévy measure on

B(Rn) of µ ◦ π−1
a1,...,an

for all a1, . . . , an ∈ U∗, n ∈ N.

It is natural to call the measure ν appearing in (3.5) a cylindrical Lévy
measure as we do in the following definition. However, it turns out that it is
sufficient to require only that the image measures under all one-dimensional
linear projections to R are Lévy measures and it is not necessary to con-
sider the image measures under all linear projections to Rn for all finite-
dimensions n.

Definition 3.5. A cylindrical measure ν : Z(U) → [0,∞] is called a
cylindrical Lévy measure if ν ◦a−1 is a Lévy measure on B(R) for all a ∈ U∗.
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From (3.5) we can easily derive a representation of the characteristic
function ϕµ of a weakly infinitely divisible cylindrical probability measure µ
for an arbitrary truncation function h. Since h = Id on D(h) one can define

p : U∗ → R, p(a) := w(a) +
�

U

(h(〈u, a〉)− 〈u, a〉1BR(〈u, a〉)) ν(du).

It follows from (3.5) that

(3.6) ϕµ(a) = exp
(
ip(a)− 1

2q(a) +
�

U

ψh(〈u, a〉) ν(du)
)
,

where the kernel function ψh is defined by

ψh : R→ C, ψh(t) := eit − 1− ih(t),

for an arbitrary truncation function h.

Definition 3.6. Let h be a truncation function and let µ be a weakly in-
finitely divisible cylindrical probability measure on Z(U) with characteristic
function (3.6). Then we call the triplet (p, q, ν)h the cylindrical characteris-
tics of µ.

Analogously to the one-dimensional situation described after Definition
3.1 one can convert the cylindrical characteristics (p, q, ν)h into (p′, q, ν)h′ if
h′ is another truncation function.

It follows from (3.6) that the characteristic function ϕµ◦a−1 of the prob-
ability measure µ ◦ a−1 on B(R) is for all t ∈ R given by

ϕµ◦a−1(t) = ϕµ(at)(3.7)

= exp
(
ip(at)− 1

2q(a)t2 +
�

R
ψh(st) (ν ◦ a−1)(ds)

)
.

This representation of ϕµ◦a−1 does not coincide with the representation (3.1)
because the functions ψ̃h and ψh do not coincide. Thus, we cannot directly
read off the characteristics of µ ◦ a−1 from (3.7).

Lemma 3.7. Let µ be a weakly infinitely divisible cylindrical probability
measure on Z(U) with cylindrical characteristics (p, q, ν)h for a truncation
function h. Then µ ◦ a−1 has the characteristics (p(a), q(a), ν ◦ a−1)h for all
a ∈ U∗.

Proof. As above we can rewrite the characteristic function ϕµ◦a−1 in the
form (3.7) for the given truncation function h. In order to write ϕµ◦a−1 in
the standard form (3.1), we introduce the function p̃ : U∗ × R→ R defined
by

p̃(a, t) :=

{
p(at) +

�

R
(th(s)− h(st))(ν ◦ a−1)(ds) if t 6= 0,

0 if t = 0.
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Note that the integral is well defined because for each t 6= 0 we have

th(s)− h(st) = 0 for all s ∈ D(h) ∩ 1
t
D(h)

and because h is bounded. By defining the function

ψ̃h : R× R→ C, ψ̃h(s, t) = eist − 1− ith(s),

we can rewrite the characteristic function (3.7) of µ ◦ a−1 for all t ∈ R:

ϕµ◦a−1(t) = exp
(
ip̃(a, t)− 1

2q(a)t2 +
�

R
ψ̃h(s, t) (ν ◦ a−1)(ds)

)
.

By Theorem 3.4 the Lévy measure of the infinitely divisible probability
measure µ ◦ a−1 is given by ν ◦ a−1 for each a ∈ U∗. Thus, there exist some
constantsma ∈ R and ra ≥ 0 such that (ma, ra, ν◦a−1)h is the characteristics
of µ ◦ a−1. For all t ∈ R it follows that

ϕµ◦a−1(t) = exp
(
ip̃(a, t)− 1

2q(a)t2 +
�

R
ψ̃h(s, t) (ν ◦ a−1)(ds)

)
= exp

(
imat− 1

2r
2
at

2 +
�

R
ψ̃h(s, t) (ν ◦ a−1)(ds)

)
,

which results in p̃(a, t) = mat = p̃(a, 1)t = p(a)t. Consequently, we have

ϕµ◦a−1(t) = exp
(
ip(a)t− 1

2q(a)t2 +
�

R
ψ̃h(s, t) (ν ◦ a−1)(ds)

)
,

which completes the proof.

Recalling the Lévy–Khintchine decomposition for infinitely divisible mea-
sures we could expect from (3.6) that

a 7→ exp(ip(a)), a 7→ exp
( �
U

ψh(〈u, a〉) ν(du)
)
,

are the characteristic functions of some cylindrical measures on Z(U). But
the following example shows that we cannot separate the drift part p and
the integral term with respect to the cylindrical Lévy measure ν in order to
obtain cylindrical measures.

Example 3.8. Let ` : U∗ → R be a linear but not necessarily continuous
functional and λ > 0 a constant. We will see later in Example 3.11 that

ϕ : U∗ → C, ϕ(a) := exp(λ(ei`(a) − 1)),

is the characteristic function of an infinitely divisible cylindrical probability
measure. In order to write ϕ in the form (3.6) let ν be the cylindrical measure
on Z(U) defined by

ν(Z(a1, . . . , an;B)) :=
{
λ if (`(a1), . . . , `(an)) ∈ B,
0 else,
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for every a1, . . . , an ∈ U∗, B ∈ B(Rn) and n ∈ N. Then we can represent ϕ
by

ϕ(a) = exp
(
ip(a) +

�

U

ψh(〈u, a〉) ν(du)
)
,

where p(a) := λh(`(a)). Since a 7→ exp(ip(a)) is not positive-definite in
general there does not exist a cylindrical measure with this function as its
characteristic function.

Example 3.8 leads us to the insight that some necessary conditions guar-
anteeing the existence of an infinitely divisible cylindrical probability mea-
sure with cylindrical characteristics (p, 0, ν) rely on the interplay of the
entries p and ν. The following result gives some properties of the entries p,
q and ν of the cylindrical characteristics, but also the interplay of p and ν.

Lemma 3.9. Let µ be a weakly infinitely divisible cylindrical probability
measure on Z(U) with cylindrical characteristics (p, q, ν)h for a continuous
truncation function h. Then:

(a) The function

a 7→ κ(a) := −
(
ip(a) +

�

U

ψh(〈u, a〉) ν(du)
)

is negative-definite.
(b) For every sequence an → a in a finite-dimensional subspace V ⊆ U∗

equipped with ‖·‖U∗ we have:

(i) p(an)→ p(a);
(ii) q(an)→ q(a);
(iii) (|s|2 ∧ 1) (ν ◦ a−1

n )(ds)→ (|s|2 ∧ 1) (ν ◦ a−1)(ds) weakly.

Proof. (a) Let Z be a cylindrical random variable on a probability space
(Ω,A, P ) with cylindrical distribution µ. As in Theorem 3.9 of [1], it follows
that there exist two cylindrical random variables W and X such that Z =
W +X P -a.s. where the cylindrical distributions µ1 of W and µ2 of X have
the characteristic functions ϕ1 and ϕ2 given by

ϕ1(a) := exp(−1
2q(a)), ϕ2(a) := exp(−κ(a)).

For fixed a1, . . . , an ∈ U∗ the Rn-valued random variable (Za1, . . . , Zan) is
infinitely divisible since µ is assumed to be weakly infinitely divisible and
the Rn-valued random variable (Wa1, . . . ,Wan) is also infinitely divisible
as it is Gaussian. Thus, the Rn-valued random variable (Xa1, . . . , Xan) is
infinitely divisible, that is, the cylindrical measure µ2 is weakly infinitely
divisible.

We show (a) by applying Schoenberg’s correspondence (see [21, Prop-
erty(h), p. 192]), for which we have to show that a 7→ exp(−k−1κ(a)) is
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positive-definite for all k ∈ N and that κ is Hermitian, i.e. κ(−a) = κ(a)
for all a ∈ U∗. To prove positive-definiteness, fix k ∈ N, a1, . . . , an ∈ U∗

and z1, . . . , zn ∈ C and let ei denote the ith unit vector in Rn. Since µ2 is
weakly infinitely divisible there exists a characteristic function ϕξk,a1,...,an

of
a probability measure ξk,a1,...,an on B(Rn) such that

ϕµ2◦π−1
a1,...,an

(t) = (ϕξk,a1,...,an
(t))k for all t ∈ Rn.

Consequently, we have
n∑

i,j=1

ziz̄j exp
(
−1
k
κ(ai − aj)

)
=

n∑
i,j=1

ziz̄j(ϕµ2(ai − aj))1/k

=
n∑

i,j=1

ziz̄j(ϕµ2◦π−1
a1,...,an

(ei − ej))1/k =
n∑

i,j=1

ziz̄jϕξk,a1,...,an
(ei − ej) ≥ 0,

where the inequality follows from the fact that ϕξk,a1,...,an
is a characteristic

function on Rn.
Next, we want show that κ is Hermitian. Since rewriting the character-

istic function of µ2 for different truncation functions does not affect κ, we
can fix h(s) = s1BR(s) for s ∈ R, which yields ψ̃h(−s, t) = ψ̃h(s,−t) for all
s, t ∈ R. By Lemma 3.7, for all t ∈ R we obtain

ϕµ2◦a−1(t) = ϕµ2◦(−a)−1(−t)

= exp
(
ip(−a)(−t) +

�

R
ψ̃h(s,−t) (ν ◦ (−a)−1)(ds)

)
= exp

(
ip(−a)(−t) +

�

R
ψ̃h(−s,−t) (ν ◦ a−1)(ds)

)
= exp

(
ip(−a)(−t) +

�

R
ψ̃h(s, t) (ν ◦ a−1)(ds)

)
,

which implies p(−a) = −p(a). It follows that

κ(−a) = −ip(−a)−
�

U

ψh(〈u,−a〉) ν(du)

= −ip(a)−
�

U

ψh(〈u, a〉) ν(du) = κ(a)

for all a ∈ U∗, which completes the proof of (a).
To see (b), let an → a in a finite-dimensional subspace V ⊆ U∗ and let

the truncation function h be continuous. Then Bochner’s theorem implies
that

(3.8) lim
n→∞

ϕµ◦a−1
n

(t) = lim
n→∞

ϕµ(tan) = ϕµ(ta) = ϕµ◦a−1(t)

for all t ∈ R. By Lemma 3.7 the measures µ◦a−1
n are infinitely divisible with



Infinitely divisible cylindrical measures 245

characteristics (p(an), q(an), ν ◦a−1
n ). It follows from (3.8) that the infinitely

divisible measures with characteristics (p(an), q(an), ν◦a−1
n ) converge weakly

to µ◦a−1 which has the characteristics (p(a), q(a), ν ◦a−1). Applying Theo-
rem VII.2.9 and Remark VII.2.10 (p. 396) in Jacod and Shiryaev [9], which
characterises the weak convergence of infinitely divisible measures in terms
of their characteristics, implies p(an)→ p(a) and

q(an) δ0(ds) + (|s|2 ∧ 1) (ν ◦ a−1
n )(ds)

→ q(a) δ0(ds) + (|s|2 ∧ 1) (ν ◦ a−1)(ds) weakly.

But since q is a quadratic form and therefore it is continuous on a finite-di-
mensional space, we have q(an) → q(a), which is property (ii) and which
implies (iii).

Theorem 3.10. Let ν : Z(U) → [0,∞] be a given set function, let
p, q : U∗ → R be given functions and let h be a continuous truncation
function. Then the following are equivalent:

(a) There exists an infinitely divisible cylindrical probability measure µ
with cylindrical characteristics (p, q, ν)h.

(b) The following are satisfied:

(1) p(0) = 0 and p(an) → p(a) for every sequence an → a in a
finite-dimensional subspace V ⊆ U∗ equipped with ‖·‖U∗;

(2) q : U∗ → R is a quadratic form;
(3) ν is a cylindrical Lévy measure;
(4) the mapping a 7→ κ(a) := −(ip(a) +

	
U ψh(〈u, a〉) ν(du)) is nega-

tive-definite.

In this situation, the characteristic function of µ is given by

ϕµ : U∗ → C, ϕµ(a) = exp
(
ip(a)− 1

2q(a) +
�

U

ψh(〈u, a〉) ν(du)
)

and µ = µ1 ∗ µ2 where µ1 and µ2 are cylindrical probability measures with
characteristic functions ϕµ1(a) = exp(−1

2q(a)) and ϕµ2(a) = exp(−κ(a)).

Proof. (a)⇒(b): Properties (2) and (3) are stated in Theorem 3.4, and
(1) and (4) are derived in Lemma 3.9. The property p(0) = 0 is an immediate
consequence of Bochner’s theorem, as is the fact that q(0) = 0.

(b)⇒(a): Property (2) implies that

ϕ1 : U∗ → C, ϕ1(a) := e−
1
2
q(a),

is the characteristic function of a Gaussian cylindrical probability measure
µ1 (see [18] or [21, p. 393]). Since also k−1q is a quadratic form for every
k ∈ N it follows that (ϕ1)1/k is the characteristic function of a cylindrical
measure, which verifies that µ1 is infinitely divisible. Thus, it remains to
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establish that
ϕ2 : U∗ → C, ϕ2(a) := e−κ(a),

is the characteristic function of an infinitely divisible cylindrical measure.
For that purpose we show that the function

ϕk : U∗ → C, ϕk(a) := exp
(

1
k

(
ip(a) +

�

U

ψh(〈u, a〉) ν(du)
))

,

is the characteristic function of a cylindrical probability measure for each
k ∈ N. The case k = 1 shows that there exists a cylindrical measure µ with
characteristic function ϕ1, and the cases k ≥ 1 show that µ is infinitely
divisible. Note first that the integral in the definition of ϕk exists and is
finite because of condition (3).

Obviously, ϕk(0) = 1 by (1) and (3). Property (4) implies by Schoen-
berg’s correspondence for functions on Banach spaces (property (h), p. 192
in [21]) that ϕk is positive-definite. In order to verify the last condition
of Bochner’s theorem let V ⊆ U∗ be a finite-dimensional subspace, say
V = span{b1, . . . , bd} for b1, . . . , bd ∈ U∗, and suppose an → a0 in V as
n → ∞. Then (U,Z(U, {b1, . . . , bd}), ν) is a measure space. Let f : R → R
be a bounded continuous function and define

gn : U → R, gn(u) := f(〈u, an〉)(|〈u, an〉|2 ∧ 1),

for n ∈ N ∪ {0}. By (3), each gn is in L1
ν(U,Z(U, {b1, . . . , bd})) and

|gn(u)| ≤ ‖f‖∞(1 + c)(|〈u, a0〉|2 ∧ 1)

for a constant c > 0. Lebesgue’s dominated convergence theorem implies
that

lim
n→∞

�

U

gn(u) ν(du) =
�

U

g0(u) ν(du),

which shows that

(3.9) (|s|2 ∧ 1)(ν ◦ a−1
n )(ds)→ (|s|2 ∧ 1)(ν ◦ a−1)(ds) weakly.

Condition (3) guarantees that for each a ∈ U∗,

ϕµa : R→ C, ϕµa(t) = exp
(
ip(a)t+

�

R
ψ̃h(s, t) (ν ◦ a−1)(ds)

)
,

is the characteristic function of an infinitely divisible probability measure,
say µa, on B(R) with characteristics (p(a), 0, ν ◦ a−1)h. Then condition (1)
together with the weak convergence in (3.9) imply by Theorem VII.2.9 and
Remark VII.2.10 (p. 396) in [9] that ϕµan

(t) → ϕµa0
(t) for all t ∈ R. Be-

cause ϕk(a) = (ϕµa(1))1/k for all a ∈ U∗ and k ∈ N, the functions ϕk are
continuous on every finite-dimensional subspace, which is the last condition
in Bochner’s theorem.

The remaining part follows directly from the proof of (b).
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Example 3.11. Now we can show that the function ϕ in Example 3.8 is
in fact the characteristic function of an infinitely divisible cylindrical mea-
sure. The linearity of ` implies that the mapping a 7→ p(a) = λh(`(a)) is
continuous on each finite-dimensional subspace of U∗ if the truncation func-
tion h is continuous. The measure ν satisfies ν ◦a−1 = λδ`(a) for each a ∈ U∗
and is therefore a cylindrical Lévy measure. Since (3.2) implies that

f : R→ C, f(t) := −λ(eit − 1),

is negative-definite, it follows for z1, . . . , zn ∈ C, a1, . . . , an ∈ U∗ that
n∑

i,j=1

ziz̄jκ(ai − aj) =
n∑

i,j=1

ziz̄jf(`(ai)− `(aj)) ≤ 0.

Thus, κ is negative-definite, which proves the claim due to Theorem 3.10.

For a given cylindrical Lévy measure ν there does not exist in general
an infinitely divisible cylindrical probability measure with cylindrical char-
acteristics (0, 0, ν) (see Example 3.8). But one might be able to construct a
function p : U∗ → R such that there exists a cylindrical probability measure
with cylindrical characteristics (p, 0, ν).

The following example shows the construction of the function p for a
given cylindrical Lévy measure ν with weak second moments. In Section 5
we consider the case where the cylindrical Lévy measure extends to a σ-finite
measure on B(U).

Example 3.12. Let ν be a cylindrical Lévy measure which satisfies�

U

|〈u, a〉|2 ν(du) <∞ for all a ∈ U∗.

The existence of the weak second moments enables us to define

p : U∗ → R, p(a) :=
�

U

(h(〈u, a〉)− 〈u, a〉) ν(du),

for a continuous truncation function h. With a careful analysis similar to
the one in the proof of Theorem 5.1 it can be shown that p is continuous on
every finite-dimensional subspace of U∗. From (3.2) it follows that

f : R→ C, f(t) := −(eit − 1− it),
is negative-definite. For z1, . . . , zn ∈ C, a1, . . . , an ∈ U∗ we have

n∑
i,j=1

−ziz̄j
(
ip(ai − aj) +

�

U

ψh(〈u, ai − aj〉) ν(du)
)

=
�

U

n∑
i,j=1

ziz̄jf(〈u, ai〉 − 〈u, aj〉) ν(du) ≤ 0.
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Theorem 3.10 shows that there exists an infinitely divisible cylindrical mea-
sure with cylindrical characteristics (p, 0, ν)h.

We finish this section by establishing that our two Definitions 3.2 and
3.3 of infinite divisibility for cylindrical measures coincide. In particular, this
result enables us to show that a Radon measure is infinitely divisible if all
its finite-dimensional projections are infinitely divisible.

Theorem 3.13.

(a) A cylindrical probability measure µ on Z(U) is infinitely divisible if
and only if it is weakly infinitely divisible.

(b) A Radon probability measure µ on B(U) is infinitely divisible if and
only if µ ◦ π−1

a1,...,an
is an infinitely divisible probability measure for

all a1, . . . , an ∈ U∗, n ∈ N.

Proof. (a) If µ is weakly infinitely divisible then Theorem 3.4 and Lemma
3.9 guarantee that the cylindrical characteristics of µ satisfy the conditions
in Theorem 3.10.

(b) Suppose that all finite-dimensional projections of the Radon measure
µ are infinitely divisible. Then the restriction of µ to Z(U) is a weakly
infinitely divisible cylindrical measure and it follows from (a) that for each
k ∈ N there exists a cylindrical probability measure µk such that µ = µ∗kk .
Theorem 1 in [19] implies that there exists ` in the algebraic dual U∗′ of U∗

such that µk ∗ δ` is a Radon probability measure where

δ`(Z) :=
{

1 if (`(a1), . . . , `(an)) ∈ B,
0 otherwise,

for every Z := Z(a1, . . . , an;B) ∈ Z(U). Since

µ ∗ δ∗k` = µ∗kk ∗ δ∗k` = (µk ∗ δ`)∗k

and the right hand side is Radon it follows from [2, Prop. 7.14.50] that δ∗k`
is a Radon probability measure, which implies ` ∈ U by considering the
characteristic functions. Since then µk ∗ δ` and δ` are Radon probability
measures, a further application of [2, Prop.7.14.50] implies that µk is a
Radon probability measure, which shows that µ is infinitely divisible.

4. Continuous infinitely divisible cylindrical measures. Continu-
ity of cylindrical measures is defined with respect to an arbitrary vector
topology O in U∗. We assume here that the topological space (U∗,O) is
first countable, that is, the neighborhood system of every point in U∗ has
a countable base. In such spaces, convergence is equivalent to sequential
convergence. In particular, U∗ equipped with the norm topology is first
countable.
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Definition 4.1. A cylindrical probability measure µ on Z(U) is called
O-continuous if for each ε > 0 there exists a neighborhood N of 0 such that

µ({u ∈ U : |〈u, a〉| ≥ 1}) ≤ ε

for all a ∈ N . If O is the norm topology we say µ is continuous.

A cylindrical probability measure µ is O-continuous if and only if its
characteristic function ϕµ : U∗ → C is continuous in the topology O (see
[20, Th. II.3.1]). This enables us to derive the following criterion:

Lemma 4.2. Let µ be an infinitely divisible cylindrical probability mea-
sure on Z(U) with cylindrical characteristics (p, q, ν)h for a continuous trun-
cation function h. Then the following are equivalent:

(a) µ is O-continuous.
(b) For every sequence an → a in (U∗,O) we have:

(i) p(an)→ p(a);
(ii) q(an) δ0(ds) + (|s|2 ∧ 1) (ν ◦ a−1

n )(ds)
→ q(a)δ0(ds) + (|s|2 ∧ 1) (ν ◦ a−1)(ds) weakly.

Proof. The cylindrical measure µ is O-continuous if and only if its char-
acteristic function ϕµ : U∗ → C is continuous in (U∗,O), or equivalently,
ϕµ : U∗ → C is sequentially continuous. It follows as in the proof of Theorem
3.10 that

ϕµ(an)→ ϕµ(a) for all sequences an → a in (U∗,O)
⇔ ϕµ◦a−1

n
(t)→ ϕµ◦a−1(t) for all sequences an → a in (U∗,O), t ∈ R.

By applying Theorem VII.2.9 and Remark VII.2.10 in [9] and Lemma 3.7
the right hand side is equivalent to conditions (i) and (ii) in (b), which
completes the proof.

In Lemma 4.2 it does not follow from (a) that we can consider separately
the quadratic form q and the term depending on the cylindrical Lévy mea-
sure ν in condition (b). This is due to the well known fact that a sequence of
infinitely divisible measures on B(R) can converge weakly in such a way that
the small jumps contribute to the Gaussian part in the limit. But since an
infinitely divisible cylindrical measure µ is the convolution of two other in-
finitely divisible cylindrical measures it is of interest whether the continuity
of µ is inherited by the convolution cylindrical measures.

Definition 4.3. An infinitely divisible cylindrical probability measure
with cylindrical characteristics (p, q, ν)h is called regularly O-continuous if
the infinitely divisible cylindrical probability measures with cylindrical char-
acteristics (0, q, 0)h and (p, 0, ν)h are O-continuous.
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Lemma 4.4. Let h be a continuous truncation function. For an O-con-
tinuous infinitely divisible cylindrical probability measure µ with cylindrical
characteristics (p, q, ν)h the following are equivalent:

(a) µ is regularly O-continuous.
(b) q : U∗ → R is continuous in (U∗,O).
(c) For every sequence an → a in (U∗,O) we have:

(i) p(an)→ p(a);
(ii) (|s|2 ∧ 1) (ν ◦ a−1

n )(ds)→ (|s|2 ∧ 1) (ν ◦ a−1)(ds) weakly.

Proof. Let ϕµ be the characteristic function of µ. Then ϕµ = ϕ1 · ϕ2

where ϕ1 is the characteristic function of the cylindrical measure µ1 with
cylindrical characteristics (0, q, 0)h and ϕ2 is the characteristic function of
the cylindrical measure µ2 with cylindrical characteristics (p, 0, ν)h. Since
the characteristic function of an infinitely divisible measure does not vanish
at any point, the continuity of ϕ1 and ϕµ results in the continuity of ϕ2, and
analogously if ϕ2 and ϕµ are continuous then so is ϕ1. Thus, µ is regularly
O-continuous if and only if either µ1 or µ2 is O-continuous.

Applying Lemma 4.2 to µ1 shows the equivalence (a)⇔(b), and applying
Lemma 4.2 to µ2 shows the equivalence (a)⇔(c).

Remark 4.5. If U∗ is equipped with the norm topology then (b) in
Lemma 4.4 can be replaced by

(b′) there exists a positive, symmetric operator Q : U∗ → U∗∗ such that
q(a) = 〈a,Qa〉 for all a ∈ U∗.

Proof. According to Proposition IV.4.2 in [21] there exist a probability
space (Ω,A, P ) and a cylindrical random variable X : U∗ → L0

P (Ω,A)
with cylindrical distribution (0, q, 0) and with characteristic function a 7→
ϕ(a) = exp(−1

2q(a)). If q is continuous Proposition VI.5.1 in [21] implies
that the mappingX : U∗ → L0

P (Ω,A) is continuous. Consequently, it follows
from Theorem 4.7 in [1] that (Qa)b := E[(Xa)(Xb)] for a, b ∈ U∗ defines
a positive, symmetric operator Q : U∗ → U∗∗. Obviously, q(a) = (Qa)a for
each a ∈ U∗.

Example 4.6. Let (Ω,A, P ) be a probability space and let L := (L(t) :
t ≥ 0) be a cylindrical process, that is, the mappings L(t) : U∗ → L0

P (Ω,A)
are linear. In Applebaum and Riedle [1] we call L a cylindrical Lévy process
if

((L(t)a1, . . . , L(t)an) : t ≥ 0)

is a Lévy process in Rn for all a1, . . . , an ∈ U∗, n ∈ N. If L is a cylindrical
Lévy process we derive in [1] that it can be decomposed as

L(t) = W (t) + Y (t) for all t ≥ 0 P -a.s.,
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where (W (t) : t ≥ 0) and (Y (t) : t ≥ 0) are cylindrical processes. Their
characteristic functions are for all a ∈ U∗ given by

ϕW (t)(a) := E[exp(iW (t)a)] = exp(−1
2q(a)t)

for a quadratic form q : U∗ → R and

ϕY (t)(a) := E[exp(iY (t)a)] = exp
(
t
(
ip(a) +

�

U

ψh(〈u, a〉) ν(du)
))

for a mapping p : U∗ → R and a cylindrical Lévy measure ν. Obviously,
(p, q, ν)h is the triplet of cylindrical characteristics of an infinitely divisible
cylindrical measure µ. If µ is regularly continuous, i.e. the cylindrical mea-
sures with the characteristic functions ϕW (1) and ϕL(1) are continuous, it
follows that also the mappings

W (t) : U∗ → L0
P (Ω,A), Y (t) : U∗ → L0

P (Ω,A)

are continuous (see [21, Prop.VI.5.1]). Moreover, according to Remark 4.5
the quadratic form q is of the form q(a) = 〈a,Qa〉 for all a ∈ U∗ and some
symmetric, positive operator Q : U∗ → U∗∗. If Q(U∗) ⊆ U then W is a
cylindrical Wiener process in the strong sense as is usually considered in the
literature (see Riedle [18]).

5. Lévy measures on Banach spaces. In this section we consider the
situation where the cylindrical Lévy measure ν extends to a σ-finite measure
on B(U), also denoted by ν. The unit ball is denoted by BU := {u ∈ U :
‖u‖ ≤ 1}.

Theorem 5.1. Let ν be a cylindrical Lévy measure which extends to a
σ-finite measure on B(U) with ν(Bc

U ) < ∞. Then there exists a regularly
continuous infinitely divisible cylindrical probability measure µ with cylin-
drical characteristics (dν , 0, ν)h, where

dν : U∗ → R, dν(a) :=
�

U

(h(〈u, a〉)− 〈u, a〉1BU
(u)) ν(du).

Proof. First we show that the integral in the definition of dν is well
defined for every truncation function h. Choose a constant c > 0 such that

{t ∈ R : |t| ≤ c} ⊆ D(h)

and define for every a ∈ U∗ the set

D(a) := {v ∈ U : |〈v, a〉| ≤ c}.

For the integrand fa(u) := h(〈u, a〉)−〈u, a〉1BU
(u) it follows for every u ∈ U

that

fa(u) 6= 0 ⇒ u ∈ (D(a) ∩Bc
U ) ∪ (Dc(a) ∩BU ) ∪ (Dc(a) ∩Bc

U ).



252 M. Riedle

But on these three domains we obtain�

D(a)∩Bc
U

|fa(u)| ν(du) ≤
�

Bc
U

c ν(du) = c ν(Bc
U ) <∞,

and �

Dc(a)∩BU

|fa(u)| ν(du) ≤
�

c<|〈u,a〉|≤‖a‖

|h(〈u, a〉)− 〈u, a〉| ν(du)

=
�

c<|s|≤‖a‖

|h(s)− s| (ν ◦ a−1)(ds)

≤ (‖h‖∞ + ‖a‖) (ν ◦ a−1)({s ∈ R : |s| > c}) <∞,
because ν ◦ a−1 is a Lévy measure on B(R), and�

Dc(a)∩Bc
U

|fa(u)| ν(du) ≤ ‖h‖∞
�

Bc
U

ν(du) = ‖h‖∞ν(Bc
U ) <∞.

Now we choose the truncation function h to be continuous and show by a
similar decomposition that dν is continuous. Let an → a in U∗ and choose
a constant c > 0 such that

{t ∈ R : |t| ≤ c+ ε} ⊆ D(h)

for a constant ε > 0. Let D(a) = {v ∈ U : |〈v, a〉| ≤ c}. Since for every
u ∈ BU we have

|〈u, an〉 − 〈u, a〉| ≤ ‖an − a‖,
we can conclude that there exists n0 ∈ N such that u ∈ D(a) ∩ BU implies
that 〈u, a〉, 〈u, an〉 ∈ D(h) for every n ≥ n0. Consequently, we have for
fa,n(u) := h(〈u, an〉) − h(〈u, a〉) − (〈u, an〉 − 〈u, a〉)1B(u) and n ≥ n0 the
implication

fa,n(u) 6= 0 ⇒ u ∈ (D(a) ∩Bc
U ) ∪ (Dc(a) ∩BU ) ∪ (Dc(a) ∩Bc

U ).

As above it can be shown that fa,n is dominated by an integrable function
on all three sets, and therefore Lebesgue’s dominated convergence theorem
shows that dν is continuous.

It follows for h′(s) := s1BR(s) from (3.2) that

f : R→ C, f(s0, t) := −ψ̃h′(s0, t),
is negative-definite for each s0 ∈ R. For z1, . . . , zn ∈ C, a1, . . . , an ∈ U∗ we
have

n∑
i,j=1

−ziz̄j
(
idν(ai − aj) +

�

U

ψh(〈u, ai − aj〉) ν(du)
)

=
n∑

i,j=1

−ziz̄j
�

U

(ei〈u,ai−aj〉 − 1− i〈u, ai − aj〉1BU
(u)) ν(du)
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=
n∑

i,j=1

−ziz̄j
�

U

(
e
i
〈u,ai−aj〉
‖u‖ ‖u‖ − 1− i〈u, ai − aj〉

‖u‖
‖u‖1BR(‖u‖)

)
ν(du)

=
�

U

n∑
i,j=1

ziz̄jf

(
‖u‖, 1

‖u‖
(〈u, ai〉 − 〈u, aj〉)

)
ν(du) ≤ 0.

Theorem 3.10 implies that there exists an infinitely divisible cylindrical prob-
ability measure µ with cylindrical characteristics (dν , 0, ν)h. In order to show
that µ is continuous let an → a0 in U∗. For a bounded continuous function
f : R→ R define

gn : U → R, gn(u) := f(〈u, an〉)(|〈u, an〉|2 ∧ 1)

for n ∈ N ∪ {0}. It follows that each gn is in L1
ν(U,B(U)) and

|gn(u)| ≤ ‖f‖∞(1 + c)(|〈u, a0〉|2 ∧ 1)

for a constant c > 0. Lebesgue’s dominated convergence theorem implies

lim
n→∞

�

U

gn(u) ν(du) =
�

U

g0(u) ν(du),

which shows that

(5.1) (|s|2 ∧ 1) (ν ◦ a−1
n )(ds)→ (|s|2 ∧ 1) (ν ◦ a−1

0 )(ds) weakly.

Lemma 4.2 implies that µ is continuous and thus µ is regular continuous by
Lemma 4.4.

A cylindrical Lévy measure which extends to a σ-finite measure on B(U)
is an obvious candidate to be a Lévy measure in the usual sense. We recall
the definition from Linde [12]: a σ-finite measure ν on B(U) is called a Lévy
measure if

(a)
	
U (〈u, a〉2 ∧ 1) ν(du) <∞ for all a ∈ U∗.

(b) There exists a Radon probability measure µ on B(U) with charac-
teristic function

(5.2) ϕµ : U∗ → C, ϕµ(a) = exp
( �
U

(ei〈u,a〉 − 1− i〈u, a〉1BU
(u)) ν(du)

)
.

In fact, this is rather a result (Theorem 5.4.8) in Linde [12] than his defini-
tion. Note furthermore that this definition includes already the requirement
that a Radon probability measure on B(U) exists with the corresponding
characteristic function. In general, no conditions on a measure ν are known
which guarantee that ν is a Lévy measure. In particular, the condition�

U

(‖u‖2 ∧ 1) ν(du) <∞

is sufficient and necessary in Hilbert spaces, but in general spaces it is neither
sufficient nor necessary, e.g. in the space of continuous functions on [0, 1] (see
Araujo [5]).
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Corollary 5.2. Let ν be a σ-finite measure on B(U) and h be a trun-
cation function. Then the following are equivalent:

(a) ν is a Lévy measure.
(b) There exists an infinitely divisible cylindrical probability measure µ

with cylindrical characteristics (dν , 0, ν)h which extends to a Radon
measure on B(U).

In this situation, the Radon probability measure with characteristic func-
tion (5.2) corresponding to the Lévy measure ν coincides with the Radon
extension of µ.

Proof. It is easily seen that the characteristic function of the cylindrical
measure with cylindrical characteristics (dν , 0, ν)h is of the form (5.2). Con-
sequently, (b) implies (a). If ν is a Lévy measure, Proposition 5.4.5 in [12]
guarantees that ν(Bc

U ) <∞. Theorem 5.1 implies that there exists a cylin-
drical probability measure with cylindrical characteristics (dν , 0, ν)h which
extends to a Radon probability measure, because its characteristic function
is of the form (5.2).

Remark 5.3. If ν is a Lévy measure and µ the infinitely divisible Radon
probability measure with characteristic function (5.2), one calls the triplet
(0, 0, ν) the characteristics of µ. However, according to Corollary 5.2 the
measure µ considered as an infinitely divisible cylindrical probability mea-
sure has the cylindrical characteristics (dν , 0, ν)h. Even if we choose the
truncation function to be s 7→ h(s) := s1BR(s), the entry dν does not van-
ish. This asymmetry illustrates the interaction of the components p and ν
of the cylindrical characteristics (p, 0, ν) of an infinitely divisible cylindrical
measure. Even if ν is a Lévy measure and p = dν then the function

a 7→ κ(a) := −
( �
U

(e−i〈u,a〉 − 1− i〈u, a〉1BU
(u)) ν(du)

)
is negative-definite by Bochner’s theorem and Schoenberg’s correspondence.
But although

κ(a) = −
(
idν(a) +

�

U

ψh(〈u, a〉) ν(du)
)
,

none of the summands in this representation is negative-definite in general.

In general, condition (b) in Corollary 5.2 may be verified by applying
Prokhorov’s theorem [21, Th. VI.3.2], and proving that the cylindrical mea-
sure µ is tight. In Sazonov spaces this is simplified:

Remark 5.4. If U is a Sazonov space then condition (b) in Corollary
5.2 can be replaced by:

(b′) (i) there exists an infinitely divisible cylindrical probability measure
µ with cylindrical characteristics (dν , 0, ν);
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(ii) a 7→ κ(a) = −(idν(a) +
	
U ψh(〈u, a〉) ν(du)) is continuous in an

admissible topology.

Example 5.5. If U is a Hilbert space then the Sazonov topology is
admissible. If (dν , 0, ν)h are cylindrical characteristics the function κ is nec-
essarily negative-definite by Theorem 3.10 and if it is also continuous in the
Sazonov topology one obtains the well known Lévy–Khintchine formula in
Hilbert spaces (see [15, Th. 6.4.10]).

Acknowledgements. The author thanks Dave Applebaum for some
very helpful comments and discussions.
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London Math. Soc. 101 (2010), 697–726.

[2] V. I. Bogachev, Measure Theory. Vols. I, II, Springer, Berlin, 2007.
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