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Fractional Laplacian with singular drift

by

Tomasz Jakubowski (Wrocław)

Abstract. For α ∈ (1, 2) we consider the equation ∂tu = ∆α/2u+ b · ∇u, where b is
a time-independent, divergence-free singular vector field of the Morrey class M1−α

1 . We
show that if the Morrey norm ‖b‖

M1−α
1

is sufficiently small, then the fundamental solution
is globally in time comparable with the density of the isotropic stable process.

1. Introduction. Let d ≥ 1 be a natural number and let α ∈ (1, 2). We
denote by p(t, x) the density function of the isotropic α-stable Lévy process
in Rd, i.e.

(1.1) p(t, x) = (2π)−d
�

Rd
e−ix·ξe−t|ξ|

α
dξ, t > 0, x ∈ Rd.

For φ ∈ C∞c (Rd) we define the operator

∆α/2φ(x) = Ad,α lim
ε→0+

�

|y|>ε

φ(x+ y)− φ(x)
|y|d+α

dy,

where Ad,α > 0 is a constant depending only on α and d. The operator
∆α/2 is the infinitesimal generator of the isotropic α-stable process with the
transition density p(t, x, y) = p(t, y − x),

∆α/2φ(x) = lim
t→0

1
t

�

Rd
p(t, x, y)(φ(y)− φ(x)) dy.

Let b(x) = (b1(x), . . . , bd(x)) be a vector field (not depending on time)
satisfying the following conditions: there is a (finite) number C such that

(1.2) sup
t>0

sup
x∈Rd

t−d+α−1
�

B(x,t)

|b(y)| dy ≤ C

and

div b = 0 in the sense of distributions.(1.3)
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Here B(x, t) denotes the ball centered at x with radius t. The condition (1.2)
means that b belongs to the Morrey space M1−α

1 , and the smallest possible
constant C in (1.2) is denoted by ‖b‖M1−α

1
. Using the estimate (2.1) below

and adapting the proof of [5, Lemma 11] we see that the condition (1.2) is
equivalent to

(1.4) sup
t>0

sup
x∈Rd

t1−1/α
�

Rd
p(t, x, y)|b(y)| dy ≤ Cb

for another (finite) constant Cb. In fact, for every Cb > 0, there exists δ > 0
such that (1.4) holds provided ‖b‖M1−α

1
< δ. The condition (1.2) is simpler

and easier to verify than (1.4), but (1.4) is more convenient in proofs. In this
paper we will study the equation

(1.5) ∂tu−∆α/2u− b · ∇u = 0, x ∈ Rd, t > 0.

We should note that (1.2) is less restrictive than the usual Kato condition
(see (1.8) below). For example, our results apply to d = 2 and

b0(y) = c(y2|y|−α,−y1|y|−α)

for small c > 0 (see also Example 1). We note that div b0 = 0 in the sense
of distributions and |b0(y)| = c|y|1−α, hence, b0 6∈ Kα−1

d . The main result of
the paper is the following.

Theorem 1. There is a constant η = η(α, d) > 0 such that if ‖b‖M1−α
1

≤ η then there is a function p̃(t, x, y) such that for φ ∈ C∞c (R,Rd), s ∈ R
and x ∈ Rd,

(1.6)
∞�

s

�

Rd
p̃(u− s, x, z)[∂uφ(u, z) +∆α/2

z φ(u, z) + b(z) · ∇zφ(u, z)] dz du

= −φ(s, x),

and there is a constant 0 < K <∞ depending only on d, α, η such that

(1.7) K−1p(t, x, y) ≤ p̃(t, x, y) ≤ Kp(t, x, y), t > 0, x, y ∈ Rd.

According to (1.6), p̃ is the integral kernel of the left inverse of −(∂t +
∆
α/2
z + b · ∇z). Put differently, the function f : (u, x) 7→ p̃(u− s, x, z) solves

(∂t−∆α/2
x − b ·∇x)f = δ(s,z) in the sense of distributions, because div b = 0.

Thus, p̃ is the fundamental solution of (1.5). As a consequence, we also find
that p̃ is the integral kernel of the Markov semigroup with (weak) generator
∆α/2 + b · ∇ (see Corollary 12 below).

Equations similar to (1.5) were widely studied for the Laplacian and more
general elliptic operators (see, e.g., [2], [27], [28], [18]). At first, authors con-
sidered drifts b satisfying Kato-type conditions similar to (1.8) below, includ-
ing drift functions b depending on time. Under such assumptions, Gaussian
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bounds for the resulting fundamental solution hold locally in time (i.e. with
constants deteriorating for large time). To obtain estimates uniform in time,
an additional assumption on the divergence of b is necessary. For example,
in [21] Osada proved that the fundamental solution of ∂tu = Au+ b ·∇u has
upper and lower Gaussian bounds, where A is a uniformly elliptic operator in
divergence form, b is the derivative of a bounded function and div b = 0. Sim-
ilar results were later obtained in [19] for the Laplacian and singular drifts b
(exceeding the Kato class) under some smallness assumption on divergence.
Recent results on Hölder continuity of solutions may be found in [23].

Additive perturbations of the fractional Laplacian were intensively stud-
ied in recent years (see, e.g., [13], [14], [5], [17], [4], [8], [6], [1], [11], [24], [25]).
In particular, the equation (1.5) was considered in [5] for b in the Kato class
Kα−1
d without further assumptions on divergence (see also [16] and [17] for

further developments). Recall that b ∈ Kα−1
d if

(1.8) lim
t→0

sup
x∈Rd

t�

0

�

Rd
s−1/αp(s, x, y)|b(y)| dy ds = 0.

The main result of [5] was the local in time comparability of p̃ and p, where
the function p̃ was constructed as the perturbation series p̃ =

∑∞
n=0 pn, with

p0(t, x, y) = p(t, x, y),(1.9)

pn(t, x, y) =
t�

0

[ �
Rd
pn−1(t− s, x, z)b(z) · ∇zp(s, z, y) dz

]
ds.(1.10)

The Kato condition on b ensures smallness of p1 with respect to p for small
time, and by iterating the result, we deduce that the perturbation series
converges for small time. For large time one can either use the Chapman–
Kolmogorov equations ([4]) or a more direct method developed in [17] for
time dependent gradient perturbations. A similar approach was used to study
the Green function of ∆α/2 + b(x) · ∇x (see [4], where these estimates are
further extended to arbitrary bounded smooth sets), and to estimate general
Schrödinger perturbations of transition densities ([15], [3]).

Gradient perturbations of the fractional Laplacian with divergence-free
drift were recently studied by many authors (see e.g. [7], [9], [12]). The
condition div b = 0 arises naturally from the quasi-geostrophic equation,
where the drift is of the form b(x) = (b1(x), b2(x)) = (−∂x2Ψ, ∂x1Ψ) for
some Ψ (see e.g. [22], [10]). Interestingly, this additional assumption on the
divergence of b also allows for considering more singular drifts in Morrey
class. The present paper may be considered as a contribution to this theory.

Here is a summary of our approach. As in [13] we will employ the per-
turbation series, but in the present case the conditions on b only ensure the
finiteness, rather than smallness, of p1 (see Lemma 5). In fact, the integral



260 T. Jakubowski

in (1.10) may fail to be absolutely convergent as a double integral, and has
to be interpreted as an iterated integral. To clarify, each iterated integral
converges absolutely, but the convergence of the second iterated integral de-
pends on subtle cancellations in the first iterated integral. This makes our
proofs much more complicated and delicate. In particular, it is not obvious
a priori that the functions pn are well defined. To study pn, we represent
them as integrals of auxiliary functions Pn(t, x, y, s, z) (see (3.1)), which we
integrate over (Rd)n and the n-dimensional simplex Sn(0, t) (see (4.6)). We
simultaneously consider the functions

|p|n(t, x, y) =
�

Sn(0,t)

∣∣∣ �

(Rd)n
Pn(t, x, y, s, z) dz

∣∣∣ ds,
majorants of pn (see (3.3) and (4.6)). We use induction to estimate |p|n
for n ≥ 2 and to this end we split the integral over the simplex Sn(0, t)
into suitable n+ 1 parts. As a consequence, Motzkin numbers appear in the
estimates of pn (see [15] for another connection of the perturbation series
with combinatorics). In order to ensure the convergence of the perturbation
series, a good bound for p1 is needed, which turns out to be a consequence
of the smallness assumption ‖b‖M1−α

1
< η in Theorem 1. We expect the

conclusion of Theorem 1 to hold if ‖b‖M1−α
1

is merely finite, but such an
extension calls for different methods.

One of the tools used in this paper is the so called 3P theorem (see [5],
[16], [17]). It allows us to suitably split a ratio of three functions p, when
estimating pn. Since for α = 2 (Gaussian case) the 3P theorem does not hold,
our method cannot be applied to perturbations of the classical Laplacian.

The paper is organized as follows. In Section 2 we collect basic properties
of the transition density p(t, x, y). In Section 3 we define and estimate the
functions pn. In Section 4 we prove Theorem 1.

All the functions considered are Borel measurable. When we write f(x) ≈
g(x), we mean that there is a number 0 < C < ∞ independent of x, i.e.
a constant, such that for every x we have C−1f(x) ≤ g(x) ≤ Cf(x). As
usual we write a ∧ b = min(a, b) and a ∨ b = max(a, b). The notation C =
C(a, b, . . . , c) means that C is a constant which depends only on a, b, . . . , c.

2. Preliminaries. Throughout the paper d ≥ 1, and unless stated oth-
erwise, α ∈ (1, 2). In Lemmas 1, 2, 3 we recall well-known results about the
density p(t, x, y) of the isotropic d-dimensional α-stable process (see [5] for
details).

Lemma 1. There exists a constant C such that, for t ∈ (0,∞) and x ∈ Rd,

(2.1) C−1

[
t−d/α ∧ t

|x|d+α

]
≤ p(t, x) ≤ C

[
t−d/α ∧ t

|x|d+α

]
.
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Lemma 2 (3P). There exists a constant C such that, for s, t ∈ (0,∞)
and x, y ∈ Rd,

p(t, x, z)p(s, z, y) ≤ Cp(t+ s, x, y)[p(t, x, z) + p(s, z, y)].

Let p(m) be the α-stable density in dimension m.

Lemma 3. For all t > 0 and x ∈ Rd,

(2.2) ∇xp(d)(t, x) = −2πxp(d+2)(t, x̃),

where x̃ ∈ Rd+2 is such that |x̃| = |x|.
Applying (2.1) to (2.2), we get

(2.3) |∇xp(t, x)| ≤ Ct−1/αp(t, x), t ∈ (0,∞), x ∈ Rd.

We also note that by Lemma 2 and (1.4),

(2.4)
�

Rd
p(t− s, x, z)|b(z)|p(s, z, y) dz

≤ cp(t, x, y)
�

Rd
(p(t− s, x, z) + p(s, z, y))|b(z)| dz

≤ cCb[(t− s)1/α−1 + s1/α−1]p(t, x, y).

Our aim is to prove that the functions pn defined in (1.9) and (1.10) sat-
isfy |pn(t, x, y)| ≤Cnp(t, x, y), where Cn are constants with

∑∞
n=0Cn <∞.

This requires appropriate assumptions on b. We will ensure smallness of

(2.5)
t�

0

∣∣∣ �
Rd
p(t− s, x, z)b(z) · ∇zp(s, z, y) dz

∣∣∣ ds.
To estimate the integral above, we will use the following lemma.

Lemma 4. For all s, t ≥ 0 and x, y ∈ Rd, we have

(2.6)
�

Rd
p(t, x, z)b(z) · ∇zp(s, z, y) dz = −

�

Rd
∇zp(t, x, z) · b(z)p(s, z, y) dz.

Proof. Let g ∈ C∞c (Rd) be such that

g(z) =
{

1 for |z| ≤ 1,
0 for |z| ≥ 2.

Then the function fn(z) := g(z/n)p(t, x, z)p(s, z, y) is in C∞c (Rd) and we
have ∇zfn(z)→ ∇z(p(t, x, z)p(s, z, y)) as n→∞. Furthermore,

|∇zfn(z)| ≤ c(|∇z(p(t, x, z)p(s, z, y))|+ p(t, x, z)p(s, z, y))

for some constant c > 0. By (2.3) and (2.4),�

Rd
[|∇z(p(t, x, z)p(s, z, y))|+ p(t, x, z)p(s, z, y)]|b(z)| dz <∞.
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Therefore, by (1.3) and Lebesgue’s theorem,

0 = lim
n→∞

�

Rd
∇zfn(z) · b(z) dz =

�

Rd
∇z(p(t, x, z)p(s, z, y)) · b(z) dz,

which ends the proof.

Similarly, condition (1.3) implies that for all s, t > 0 and ξ, y ∈ Rd,

(2.7)
�

Rd
[b(ξ) · ∇ξp(t, ξ, z)]b(z) · ∇zp(s, z, y) dz

= −
�

Rd
∇z[b(ξ) · ∇ξp(t, ξ, z)] · b(z)p(s, z, y) dz.

In the following lemma we will use (2.6) to show that the function p1 in-
troduced in (1.10) is well defined. In a similar way we will apply (2.7) to
estimate pn, n ≥ 2.

Lemma 5. There exists a constant C such that for all t>0 and x, y∈Rd,

(2.8)
t�

0

∣∣∣ �
Rd
p(t− s, x, z)b(z) · ∇zp(s, z, y) dz

∣∣∣ ds ≤ Cp(t, x, y).
Proof. By Lemma 4, (2.3) and (2.4), we obtain

t�

0

∣∣∣ �
Rd
p(t− s, x, z)b(z) · ∇zp(s, z, y) dz

∣∣∣ ds
=

t/2�

0

∣∣∣ �
Rd
p(t− s, x, z)b(z) · ∇zp(s, z, y) dz

∣∣∣ ds
+

t�

t/2

∣∣∣ �
Rd
p(t− s, x, z)b(z) · ∇zp(s, z, y) dz

∣∣∣ ds
=

t/2�

0

∣∣∣ �
Rd
∇zp(t− s, x, z) · b(z)p(s, z, y) dz

∣∣∣ ds
+

t�

t/2

∣∣∣ �
Rd
p(t− s, x, z)b(z) · ∇zp(s, z, y) dz

∣∣∣ ds ≤ cp(t, x, y).
In the following example we will see that

t�

0

�

Rd
|p(t− s, x, z)b(z) · ∇zp(s, z, y)| dz ds =∞

for some functions b ∈M1−α
1 . This should be compared with (2.8).
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Example 1. Let d = 2, α ∈ (1, 2) and b1(y) = (|y2|1−α, |y1|1−α). Clearly,
div b1 = 0, and �

B(x,t)

|b1(y)| dy ≤
�

B(0,t)

(|y2|1−α + |y1|1−α) dy2 dy1

=
4
√
πΓ (1− α/2)

(3− α)Γ ((3− α)/2)
t3−α.

Hence,

‖b‖M1−α
1
≤ 4

√
πΓ (1− α/2)

(3− α)Γ ((3− α)/2)
.

Furthermore, taking x = y = 0 and applying (2.2) and (2.1), we get

t�

0

�

Rd
|p(t− s, z)b1(z) · ∇zp(s, z)| dz ds

= 2π
t�

0

�

Rd
p(t− s, z)|b1(z) · z|p(d+2)(s, z) dz ds

≥ c
t/2�

0

�

B(0,s1/α)

(t− s)−2/α|b1(z) · z|s−4/α dz ds

≥ c
t/2�

0

�

B(0,1)

s−1(t− s)−2/α|b1(w) · w| dw ds =∞.

We note that Lemma 5 extends to α = 1, but the following lemma does
not, and this is why we generally assume α ∈ (1, 2) in this paper. Lemma 6
will allow us to estimate the functions pn for n ≥ 2.

Lemma 6. There exists a constant C such that for all t>0 and x, y∈Rd,

(2.9)
t/2�

0

t�

t/2

�

Rd

�

Rd
dw dξ dr du

p(u, x, ξ)
∣∣∇w(b(ξ) · ∇ξp(r − u, ξ, w)

)
· b(w)

∣∣p(t− r, w, y) < Cp(t, x, y).

Proof. First, we show that there is a constant c1 such that for all t > 0
and z, w ∈ Rd,

(2.10) |b(z) · ∇z(b(w) · ∇wp(t, z, w))| ≤ c1|b(z)| |b(w)|p(t, z, w)t−2/α.

From (2.2) we get

∇wp(d)(t, z, w) = 2π(z − w)p(d+2)(t, z̃, w̃),

∇zp(d+2)(t, z̃, w̃) = −2π(z − w)p(d+4)(t, ẑ, ŵ),
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where z̃ = (z, 0, 0) ∈ Rd+2 and ẑ = (z̃, 0, 0) ∈ Rd+4 (and w̃, ŵ are defined
accordingly). Therefore,

b(z) · ∇z(b(w) · ∇wp(t, z, w)) = 2πb(z) · ∇z[b(w) · (z − w)p(d+2)(t, z̃, w̃)]

= 2πb(z) · [b(w)p(d+2)(t, z̃, w̃)− 2π(b(w) · (z − w))(z − w)p(d+4)(t, ẑ, ŵ)]

= 2πb(z) · b(w)p(d+2)(t, z̃, w̃)−4π2(b(w) · (z−w))b(z) · (z−w)p(d+4)(t, ẑ, ŵ).

Applying (2.1), we obtain (2.10).
Now, by (2.10) and (2.4),

�

Rd

�

Rd
p(u, x, ξ)|∇w(b(ξ) · ∇ξp(r − u, ξ, w)) · b(w)|p(t− r, w, y) dw dξ

≤ c1
�

Rd

�

Rd
p(u, x, ξ)|b(ξ)|(r − u)−2/αp(r − u, ξ, w)|b(w)|p(t− r, w, y) dw dξ

≤ Cbc2
�

Rd
|b(ξ)|(r−u)−2/αp(u, x, ξ)p(t−u, ξ, y)((t−r)1/α−1+(r−u)1/α−1) dξ

≤ C2
b c2p(t, x, y)(r−u)−2/α((t−r)1/α−1+(r−u)1/α−1)((t−u)1/α−1+u1/α−1).

Now, we only need to show that for all t > 0,
t/2�

0

t�

t/2

(r−u)−2/α((t−r)1/α−1+(r−u)1/α−1)((t−u)1/α−1+u1/α−1) dr du < c3,

for some constant c3. By homogeneity, we may consider only t = 1. We note
that ap + bp ≤ 21−p(a + b)p for a, b ≥ 0 and 0 < p < 1. Consequently,
a−p+b−p ≤ 21−p(a+b)p(ab)−p. Hence, it suffices to show convergence of the
integral

1/2�

0

1�

1/2

(r − u)−1/α−1(1− r)1/α−1u1/α−1 dr du.

Splitting the second integral into integrals on the intervals (1/2, 3/4) and
(3/4, 1), we get

1/2�

0

1�

1/2

(r − u)−1/α−1(1− r)1/α−1u1/α−1 dr du

≤ c
1/2�

0

(1/2− u)−1/αu1/α−1du <∞.

3. Perturbation series. In this section we study the functions |p|n,
which are majorants of pn (see (1.10)). For a < b and n ≥ 1, we denote

Sn(a, b) = {(s1, . . . , sn) ∈ Rn : a ≤ s1 ≤ · · · ≤ sn ≤ b}.
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For t > 0 and x, y ∈ Rd, let

Pn(t, x, y, s, z)(3.1)
= p(s1, x, z1)b(z1) · ∇z1p(s2 − s1, z1, z2) . . . b(zn) · ∇znp(t− sn, zn, y),

where s = (s1, . . . , sn) ∈ Sn(0, t) and z = (z1, . . . , zn) ∈ (Rd)n.

Definition 7. For any t > 0 and x, y ∈ Rd, we define

|p|0(t, x, y) = p(t, x, y),(3.2)

|p|n(t, x, y) =
�

Sn(0,t)

∣∣∣ �

(Rd)n
Pn(t, x, y, s, z) dz

∣∣∣ ds.(3.3)

We note that for t > 0, x, y ∈ Rd and s in the interior of Sn(0, t), by
Lemma 2, (1.4) and (2.3),

(3.4)
�

(Rd)n
|Pn(t, x, y, s, z)| dz <∞.

Hence, the functions |p|n are well-defined (possibly infinite). The integral�

Sn(0,t)

�

(Rd)n
|Pn(t, x, y, s, z)| dz ds

may be divergent because singularities of the gradient of the functions p in
(3.1) may not be integrable in the whole simplex Sn(0, t) (see Example 1).
To estimate (3.3), we will use the decomposition

(3.5) Sn(0, t) = Sn(0, t/2) ∪
(n−1⋃
k=1

Sn−k(0, t/2)× Sk(t/2, t)
)
∪ Sn(t/2, t),

along with Lemma 4 and (2.7) to move these singularities outside the region
of integration.

Lemma 8. If 1 ≤ k ≤ n− 1, t > 0, and x, y ∈ Rd, then

(3.6)
�

Sn−k(0,t/2)×Sk(t/2,t)

∣∣∣ �

(Rd)n
Pn(t, x, y, s, z) dz

∣∣∣ ds
≤

t/2�

0

t�

t/2

�

Rd

�

Rd
dw dξ

|p|n−k−1(u, x, ξ)|∇w(b(ξ) · ∇ξp(r − u, ξ, w)) · b(w)||p|k−1(t− r, w, y) dr du.

Proof. By (3.4) and Fubini’s theorem, we may change the order of inte-
gration in integrals over (Rd)n. We note that

(3.7) |p|m(t− r, x, y) =
�

Sm(r,t)

∣∣∣ �

(Rd)m
Pm(t− r, x, y, s, z) dz

∣∣∣ ds.
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Changing the order of integration:
�

Sm(a,b)

f(s) dsm dsm−1 . . . ds1 =
�

(a,b)×Sm−1(a,sm)

f(s) dsm−1 . . . ds1 dsm,

and using (2.7) and Fubini’s theorem, we get

�

Sn−k(0,t/2)×Sk(t/2,t)

∣∣∣ �

(Rd)n
Pn(t, x, y, s, ξ) dξ

∣∣∣ ds
=

t/2�

0

�

Sn−k−1(0,rn−k)

t�

t/2

�

Sk−1(uk,t)

du duk dr drn−k∣∣∣ �

(Rd)n
Pn−k−1(rn−k, x, zn−k, r, z)b(zn−k) · ∇zn−kp(u1 − rn−k, zn−k, w1)

b(w1) · ∇w1Pk−1(t− u1, w1, y, u, w) dw dw1 dz dzn−k

∣∣∣
=

t/2�

0

�

Sn−k−1(0,rn−k)

t�

t/2

�

Sk−1(uk,t)

du duk dr drn−k∣∣∣ �

(Rd)n
Pn−k−1(rn−k, x, zn−k, r, z)Pk−1(t− u1, w1, y, u, w)

b(w1) · ∇w1 [b(zn−k) · ∇zn−kp(u1 − rn−k, zn−k, w1)] dw dw1 dz dzn−k

∣∣∣.
Here r = (r1, . . . , rn−k−1), u = (u1, . . . , uk−1), z = (z1, . . . , zn−k−1) and w =
(w2, . . . , wk). Splitting the integral over (Rd)n into integrals over (Rd)n−k−1,
(Rd)k−1 and (Rd)2, and applying (3.7), we get (3.6).

Lemma 9. For n ≥ 2, t > 0 and x, y ∈ Rd,

|p|n(t, x, y) ≤
t/2�

0

�

Rd
|p|n−1(u, x, z)|b(z) · ∇zp(t− u, z, y)| dz du

+
t�

t/2

�

Rd
|∇zp(u, x, z) · b(z)||p|n−1(t− u, z, y) dz du

+
n−2∑
k=0

t/2�

0

t�

t/2

�

Rd

�

Rd
dw dz dr du |p|k(u, x, z)

× |b(z) · ∇z(b(w) · ∇wp(r − u, z, w))||p|n−2−k(t− r, w, y).
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Proof. By (3.5), we get

|p|n(t, x, y) =
�

Sn(0,t/2)

∣∣∣ �

(Rd)n
Pn(t, x, y, s, ξ) dξ

∣∣∣ ds(3.8)

+
�

Sn(t/2,t)

∣∣∣ �

(Rd)n
Pn(t, x, y, s, ξ) dξ

∣∣∣ ds(3.9)

+
�

Sn−1
k=1 Sn−k(0,t/2)×Sk(t/2,t)

∣∣∣ �

(Rd)n
Pn(t, x, y, s, ξ) dξ

∣∣∣ ds(3.10)

The integral in (3.8) is estimated as follows:
�

Sn(0,t/2)

∣∣∣ �

(Rd)n
Pn(t, x, y, s, ξ) dξ

∣∣∣ ds
=

t/2�

0

�

Sn−1(0,sn)

∣∣∣ �

(Rd)n
Pn−1(sn, x, ξn, s∗, ξ∗)b(ξn) · ∇ξnp(t− sn, ξn, y) dξ

∣∣∣ ds
≤

t/2�

0

�

Sn−1(0,sn)

�

Rd
dξn ds

∗ dsn

× |b(ξn)∇ξnp(t− sn, ξn, y)|
∣∣∣ �

(Rd)n−1

Pn−1(sn, x, ξn, s∗, ξ∗) dξ∗
∣∣∣

≤
t/2�

0

�

Rd
|p|n−1(sn, x, ξn)|b(ξn) · ∇ξnp(t− sn, ξn, y)| dξn dsn,

where s∗ = (s1, . . . , sn−1) and ξ∗ = (ξ1, . . . , ξn−1). Applying Lemma 4 and
using a similar method, we estimate (3.9). Next, we split (3.10) into n − 1
integrals over the sets Sn−k(0, t/2)× Sk(t/2, t) and apply Lemma 8 to each
integral.

By using the lemmas from Sections 2, 3 and induction, we will show
that all functions |p|n are finite, and consequently, the functions pn are well
defined. Detailed estimates will be given in the next section.

4. Proof of Theorem 1. Before we pass to the proofs of the main
theorem we briefly introduce the Motzkin numbers. In combinatorics the
Motzkin number Mn represents the number of different ways of drawing
non-intersecting chords on a circle between n points ([20]). The recurrence
relation

(4.1) Mn = Mn−1 +
n−2∑
k=0

MkMn−2−k, M0 = M1 = 1,
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leads to the generating function (see [26])

(4.2) M(x) =
∞∑
n=0

Mnx
n =

1− x−
√

1− 2x− 3x2

2x2
.

We may now prove the main estimates of this paper.

Lemma 10. There is a constant C such that for all t > 0, x, y ∈ Rd and
n ≥ 1,

(4.3) |p|n(t, x, y) ≤MnC
np(t, x, y).

Proof. Let c1 be the constant such that (see the proof of Lemma 5)

(4.4)
t/2�

0

�

Rd
p(s, x, z)|b(z) · ∇zp(t− s, z, y)| dz ds

+
t�

t/2

�

Rd
|∇zp(s, x, z) · b(z)|p(t− s, z, y) dz ds ≤ c1p(t, x, y).

Let C = c1 ∨
√
c2, where c2 is the constant from Lemma 6.

We use induction. For n = 1 we apply Lemma 5. Suppose (4.3) holds for
n = 1, . . . , k − 1. By Lemma 9, we get

|p|k(t, x, y) ≤ Ck−1Mk−1

t/2�

0

�

Rd
p(u, x, z)|b(z) · ∇zp(t− u, z, y)| dz du

+ Ck−1Mk−1

t�

t/2

�

Rd
|∇zp(u, x, z) · b(z)|p(t− u, z, y) dz du

+
k−2∑
j=0

CjMjC
k−2−jMk−2−j

t/2�

0

t�

t/2

�

Rd

�

Rd
dw dz dr du

p(u, x, z)|b(z) · ∇z(b(w) · ∇wp(r − u, z, w))|p(t− r, w, y).

Now by (4.4), Lemma 6 and (4.1), we obtain

|p|k(t, x, y) ≤
(
Ck−1c1Mk−1 +

k−2∑
j=0

CjMjC
k−2−jMk−2−jc2

)
p(t, x, y)

≤ Ck
(
Mk−1 +

k−2∑
j=0

MjMk−2−j

)
p(t, x, y) = CkMkp(t, x, y).
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Corollary 11. The functions pn, n ∈ N, may be defined by (1.9) and
(1.10) and there exists a constant C such that for all t > 0, x, y ∈ Rd and
n ≥ 1,

(4.5) |pn(t, x, y)| ≤MnC
np(t, x, y).

We note that for any C > 0, (4.5) holds provided ‖b‖M1−α
1

is sufficiently
small (see remark below (1.4)).

Proof of Corollary 11. We simultaneously prove the above estimates of
pn and the fact that they are well defined. To this end we will first show that
for n ≥ 1,

(4.6) pn(t, x, y) =
�

Sn(0,t)

[ �

(Rd)n
Pn(t, x, y, s, z) dz

]
ds, t > 0, x, y ∈ Rd.

According to our discussion in the Introduction, the right hand side of (4.6)
should be considered an iterated integral. The inner integral is absolutely
convergent (see (3.4)). By Lemma 10,

|p|n(t, x, y) =
�

Sn(0,t)

∣∣∣ �

(Rd)n
Pn(t, x, y, s, z) dz

∣∣∣ ds <∞,
so the right-hand side of (4.6) is well-defined.

To prove (4.6) we use induction. For n = 1, (4.6) matches the definition
of p1. Suppose (4.6) holds for n ∈ N. By Lemmas 10, 2 and 3, for u ∈ (0, t),

(4.7)
�

Rd

�

Sn(0,t−u)

∣∣∣ �

(Rd)n
Pn(t− u, x, ξ, s, z) dz

∣∣∣ |b(ξ)| |∇ξp(u, ξ, y)| ds dξ
≤ c

�

Rd
p(t− u, x, ξ)|b(ξ)|u−1/αp(u, ξ, y)| dξ

≤ c((t− u)1/α−1 + u1/α−1)u−1/αp(t, x, y) <∞.

Therefore, by Fubini’s theorem with respect to ds dξ, and by (4.7),

pn+1(t, x, y) =
t�

0

�

Rd
pn(t− u, x, ξ)b(ξ) · ∇ξp(u, ξ, y) dξ du

=
t�

0

�

Rd

�

Sn(0,t−u)

�

(Rd)n
Pn(t− u, x, ξ, s, z) dz dsb(ξ) · ∇ξp(u, ξ, y) dξ du

=
t�

0

�

Sn(0,t−u)

�

Rd

[ �

(Rd)n
Pn(t− u, x, ξ, s, z)b(ξ) · ∇ξp(u, ξ, y) dz

]
dξ ds du.

In particular pn+1 is well-defined, and |pn+1| < |p|n+1 <∞.
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Proof of Theorem 1. Let us fix C > 0 such that M(C) < 2 (see (4.2)).
There exists η = η(d, α) such that (4.5) holds, provided ‖b‖M1−α

1
< η, which

we will assume in what follows. Then p̃(t, x, y) =
∑∞

n=0 pn(t, x, y) satisfies

p̃(t, x, y) ≤M(C)p(t, x, y),

and

p̃(t, x, y) ≥ p(t, x, y)−
∞∑
n=1

|pn(t, x, y)|

= 2p(t, x, y)−
∞∑
n=0

|pn(t, x, y)| ≥ (2−M(C))p(t, x, y).

We next prove that for φ ∈ C∞c (R,Rd), s ∈ R and x ∈ Rd,
∞�

s

�

Rd
p̃(u−s, x, z)(∂uφ(u, z)+∆α/2

z φ(u, z)+b(z)·∇zφ(u, z)) dz du = −φ(s, x).

By the definition of p̃, we get

p̃(t, x, y) = p(t, x, y) +
∞∑
n=1

pn(t, x, y)(4.8)

= p(t, x, y) +
∞∑
n=1

t�

0

�

Rd
pn−1(t− s, x, z)b(z) · ∇zp(s, z, y) dz ds

= p(t, x, y) +
t�

0

�

Rd
p̃(t− s, x, z)b(z) · ∇zp(s, z, y) dz ds.

Here the application of Fubini’s theorem is justified as in the proof of (4.6).
The rest of the proof is the same as in [17, Theorem 1].

Corollary 12. The function p̃ satisfies the Chapman–Kolmogorov equa-
tion

(4.9)
�

Rd
p̃(s, x, z)p̃(t, z, y) dz = p̃(t+ s, x, y), s, t > 0, x, y ∈ Rd,

and the family of operators P̃t, defined by

P̃tf(x) =
�

Rd
p̃(t, x, y)f(y) dy,

forms a Markov semigroup with (weak) generator ∆α/2 + b(x) · ∇x.

Proof. For the proof of (4.9) see [17, Lemmas 15, 16]. By (4.8), (1.7) and
Fubini’s theorem,
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�

Rd
p̃(t, x, y) dy =

�

Rd

(
p(t, x, y) +

t�

0

�

Rd
p̃(t− s, x, z)b(z) · ∇zp(s, z, y) dz ds

)
dy

= 1 +
t�

0

�

Rd
p̃(t− s, x, z)b(z) · ∇z

( �

Rd
p(s, z, y) dy

)
dz ds = 1.

Now, let f, g ∈ C∞c (Rd). We will show that

(4.10) lim
t→0

�

Rd

P̃tf(x)− f(x)
t

g(x) dx =
�

Rd
(∆α/2f(x) + b(x) · ∇f(x))g(x) dx.

By (4.8),

�

Rd

P̃tf(x)− f(x)
t

g(x) dx

=
�

Rd

�

Rd

p(t, x, y)(f(y)− f(x))
t

g(x) dy dx

+
1
t

�

Rd

�

Rd

t�

0

�

Rd
p̃(t− s, x, z)b(z) · ∇zp(s, z, y)f(y)g(x) dz ds dy dx

= I1(t) + I2(t).

The first summand converges to
	
Rd ∆

α/2f(x)g(x)dx. By a careful use of
Fubini’s theorem,

I2(t) =
1
t

�

Rd

�

Rd

�

Rd

t�

0

p̃(t− s, x, z)p(s, z, y)b(z) · ∇yf(y)g(x) dz ds dy dx.

If we denote by p(b) the function p perturbed by b then p̃(t, x, y) = p(b)(t, x, y)
= p(−b)(t, y, x). Hence,

	
Rd p̃(t, x, y)dx = 1 for t > 0 and y ∈ Rd. Therefore

by (1.7),∣∣∣I2(t)− �

Rd
b(z) · ∇f(z) g(z) dz

∣∣∣ ≤ c �

Rd

�

Rd

�

Rd

t�

0

p(t− s, x, z)p(s, z, y)
t

|b(z)|

× |∇yf(y)g(x)−∇zf(z)g(z)| dz ds dy dx.

To prove that the last expression converges to 0 as t → 0 we may follow
the proof of [5, Theorem 1] with some slight modifications concerning the
conditions on b.
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