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Multidimensional decay in the van der Corput lemma

by

Michael Ruzhansky (London)

Abstract. We establish a multidimensional decay of oscillatory integrals with degen-
erate stationary points, gaining the decay with respect to all space variables. This bridges
the gap between the one-dimensional decay for degenerate stationary points given by the
classical van der Corput lemma and the multidimensional decay for non-degenerate sta-
tionary points given by the stationary phase method. Complex-valued phase functions as
well as phases and amplitudes of limited regularity are considered. Conditions for estimates
to be uniform in parameter are also given.

1. Introduction. This paper is devoted to estimates for oscillatory in-
tegrals of the type

I(λ) =
�

RN
eiλΦ(x)a(x) dx,

where the support of a ∈ C∞0 (RN ) is sufficiently small. An estimate for
I(λ) as λ → ∞ is well-known in one dimension N = 1 as the van der
Corput lemma. If Φ is real-valued and |Φ(k)(x)| ≥ 1 on the support of a,
then |I(λ)| ≤ ckλ

−1/k for k ≥ 2, or for k = 1 and Φ′(x) monotonic. In this
case the bound ck is also independent of Φ and λ (see e.g. Sogge [So] or Stein
[St]), and the decay rate is sharp. This result plays a crucial role in various
areas of analysis. For example, it is closely related to sublevel set estimates
of the form

meas{s ∈ supp a : |Φ(s)| ≤ t} ≤ ckt1/k,
where Φ is a function as above, with numerous applications in partial dif-
ferential equations, microlocal analysis, harmonic analysis, etc.

A multidimensional version of these results would be of great value, but
presents many difficulties. It is known that for dimensions N ≥ 1, if, for
example, |∂αΦ| ≥ 1 on supp a, then |I(λ)| ≤ cα|λ|−1/|α|. The decay rate
here is sharp, but the constant cα may depend on Φ and the estimate does
not scale well. Again, such an estimate is closely related to the multilinear
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sublevel set problem (see e.g. Phong, Stein and Sturm [PSS]). Certain pa-
rameter dependent sublevel set estimates were recently established and used
by Kamotski and Ruzhansky [KR] in the analysis of elliptic and hyperbolic
systems with multiplicities, to yield Sobolev space estimates for relevant
classes of oscillatory integrals and for the solutions.

There are different versions of the van der Corput lemma but still with
one-dimensional rate of decay. For example, Christ, Carbery and Wright
[CCW] and Carbery and Wright [CW] proposed versions of the van der Cor-
put lemma for functions of several variables, in formulations where also the
constant in the estimate is independent of the phase function. This aspect is
of significant importance for applications, allowing one to investigate various
perturbation and other properties of the integrals. However, there, the decay
rate of the corresponding oscillatory integral is always one-dimensional and
the non-degeneracy of only one (higher-order) derivative is assumed.

At the same time, the decay rate exhibited in many problems of inter-
est is better than one-dimensional. If one compares this with the case of
non-degenerate stationary points of Φ, the stationary phase method will
readily yield the decay rate |I(λ)| ≤ Cλ−N/2. However, if a stationary point
degenerates, the situation becomes much more delicate (see e.g. Hörmander
[H, Chapter 7]), and no good estimates are available in general.

The aim of the present paper is to bridge the gap between the van der
Corput lemma and the estimates provided by the stationary phase method.
On one hand, the standard van der Corput lemma works well for degenera-
cies of high orders but produces only one-dimensional decay rate. On the
other hand, the stationary phase method produces a multidimensional decay
rate, but does not work well for degenerate stationary points. The result of
this paper (Theorem 2.1) was announced in [Ru] without proof in a slightly
different setting.

Thus, the main features of the result we are after here are:

• to obtain a multidimensional decay rate, but
• allow degenerate stationary points;
• allow complex-valued phase functions;
• allow dependence on parameters, with estimates, uniform in the parame-

ter;
• allow low regularity phase and amplitude, keeping track of the number of

derivatives needed for the estimates.

The result of this paper yields a multidimensional decay rate for degener-
ate stationary points. We identify a class of functions for which this can be
achieved. These functions have certain convexity type properties. It is clear
that certain convexity conditions are necessary to ensure the multidimen-
sional decay rate. In fact, conditions of the one-dimensional van der Corput
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lemma guarantee that the function (or some derivative of the function) is
convex in one dimension. Thus, it is natural that an analogue of convexity
also appears in several dimensions to ensure that we gain one-dimensional
decays in all directions. It is then a question of putting all these rates to-
gether to yield a full multidimensional decay, which will turn out to be N
times better than the standard van der Corput estimate.

In what follows we will also allow the phase function Φ to be complex-
valued and to depend on an arbitrary set of parameters. These two situations
often happen in applications to partial differential equations, in particular in
the analysis of solutions represented as oscillatory integrals, leading to the
dispersive and to the subsequent Strichartz estimates. Thus, the complex
phase corresponds to the fact that characteristics of the analysed evolution
equations may be complex (see e.g. Trèves [T]). At the same time, the de-
pendence of the phase and of the amplitude on parameters is also essential,
and is related to uniform sublevel set estimates. Also, in applications to the
Strichartz estimates for hyperbolic equations of high orders considered by
Ruzhansky and Smith [RS], a parameter is essential to encode the informa-
tion on low order perturbations of the equation, in order to establish the
dispersive estimates for solutions uniformly over such perturbations. At the
same time, in hyperbolic equations with time dependent coefficients (e.g.
considered by Matsuyama and Ruzhansky [MR]), the parameter encodes
the information on the perturbations of the limiting behaviour of the coeffi-
cients, again allowing one to obtain dispersive estimates uniformly over such
perturbations. Another such application to hyperbolic systems with oscil-
lating coefficients appeared in Ruzhansky and Wirth [RW]. We will leave
out these and other applications outside the scope of this short paper.

We will use the standard multi-index notation: α = (α1, . . . , αN ), |α| =
α1+· · ·+αN and ∂α = ∂α1

x1
· · · ∂αNxN . We will also use the standard convention

to denote all constants by C although they may have different values on
different occasions.

2. Multidimentional decay of oscillatory integrals. The following
theorem is the main result that establishes the multidimensional decay rate
for a class of oscillatory integrals.

Theorem 2.1. Consider the oscillatory integral

I(λ, ν) =
�

RN
eiλΦ(x,ν)a(x, ν)χ(x) dx,

where N ≥ 1, and ν is a parameter. Let γ ≥ 2 be an integer. Assume that

(A1) there exists a sufficiently small δ > 0 such that χ ∈ C∞0 (Bδ/2(0)),
where Bδ/2(0) is the ball with radius δ/2 around 0;
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(A2) Φ(x, ν) is a complex-valued function such that ImΦ(x, ν) ≥ 0 for
all x ∈ suppχ and all parameters ν;

(A3) for some fixed z ∈ suppχ, the function

F (ρ, ω, ν) := Φ(z + ρω, ν), |ω| = 1,

satisfies the following conditions: for each µ = (ω, ν), F (·, µ) is of
class Cγ+1 on suppχ, and if its γth order Taylor expansion in ρ
at 0 is

F (ρ, µ) =
γ∑
j=0

aj(µ)ρj +Rγ+1(ρ, µ),

where Rγ+1 is the remainder term, then

(F1) a0(µ) = a1(µ) = 0 for all µ;
(F2) there exists a constant C > 0 such that

∑γ
j=2|aj(µ)| ≥ C for

all µ;
(F3) for each µ, |∂ρF (ρ, µ)| is increasing in ρ for 0 < ρ < δ;
(F4) for each k ≤ γ + 1, ∂kρF (ρ, µ) is bounded uniformly in 0 <

ρ < δ and µ;

(A4) for each multi-index α with |α| ≤ [N/γ]+1, there exists a constant
Cα > 0 such that |∂αx a(x, ν)| ≤ Cα for all x ∈ suppχ and all ν.

Then there exists a constant C = CN,γ > 0 such that

(2.1) |I(λ, ν)| ≤ C(1 + λ)−N/γ for all λ ∈ [0,∞) and all ν.

Theorem 2.1 obviously includes the case where a and Φ depend on dif-
ferent sets of parameters. In this case we may let ν run over the whole space
of parameters. Also, [N/γ] stands for the integer part of N/γ.

In Theorem 2.1, if γ = 2 we recover the decay given by the stationary
phase method and if N = 1 we recover the decay given by the van der
Corput lemma.

Condition (F1) is not restrictive, since a0(µ) can be taken out of the
integral, and non-zero a1(µ) would actually give a faster decay rate. Indeed,
if a1(µ) 6= 0, we could integrate by parts under the integral with respect to
ρ any number of times, giving a decay in λ of any power. Thus, avoiding
this trivial situation, the situation with a1(µ) = 0 is our main interest.

We note that assumption (F3) is of non-strict increase, i.e. we assume
that

|∂ρF (ρ1, µ)| ≤ |∂ρF (ρ2, µ)| for all 0 < ρ1 < ρ2 < δ.

We also note that assumption (A3), or rather (F3), can be viewed as an
analogue of a convexity assumption. Indeed, if F is real-valued, then (F3)
implies that the second order derivative ∂2

ρF (ρ, µ) does not change sign for
0 < ρ < δ, because ∂ρF (0, µ) = 0 by (F1). In turn, this is ensured if the
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Hesse matrix of second order derivatives ∇2Φ is sign-definite, i.e. ∇2Φ ≥ 0
or ∇2Φ ≤ 0 on suppχ. We note that compared to non-degenerate critical
points in the stationary phase method, critical points may degenerate here.

Remark 2.2. Thus, if Φ is real-valued, in place of (A3) we can make
the following assumption for Theorem 2.1 to hold. Assume that for all ν
we have Φ(·, ν) ∈ Cγ+1 on suppχ and that for some fixed z ∈ suppχ and
uniformly for all parameters ν we have

(F1) Φ(z, ν) = 0, ∇zΦ(z, ν) = 0;
(F2) there exists some C > 0 such that, for all ω with |ω| = 1, the sum

of multilinear forms satisfies

(2.2)
γ∑
j=2

|∇jzΦ(z, ν)(
j︷ ︸︸ ︷

ω, . . . , ω)| ≥ C > 0;

(F3) the Hesse matrix ∇2Φ(·, ν) is non-negative or non-positive on
suppχ (with the same sign for all ν);

(F4) |∇kxΦ(x, ν)| ≤ Ck <∞ for all k ≤ γ + 1 and x ∈ suppχ.

Moreover, we note that the statement of the theorem can be easily gen-
eralised to the following setting concerning assumption (F3):

Remark 2.3. Suppose first that Φ is real-valued. If D2Φ is not sign-
definite on suppχ, we can restrict to a subspace where it is. Indeed, let V
be a d-dimensional affine subspace of Rn (or a smooth surface if we change
variables appropriately, e.g. by the Morse lemma) such that z ∈ V and D2Φ
is sign-definite on V ∩ suppχ. Then instead of (2.1) we have

(2.3) |I(λ, ν)| ≤ C(1 + λ)−d/γ for all λ ∈ [0,∞) and all ν.

There are different trivial reformulations of this assumption, for example by
looking at the number of non-negative and non-positive eigenvalues of D2Φ
over suppχ (or its affine subspace through z).

The same conclusion (2.3) is true if Φ is complex-valued and if we replace
(F3) by the assumption that |∂ρF (ρ, µ)| is increasing in ρ for 0 < ρ < δ, for
all parameters µ = (ω, ν) with z + ρω ∈ V ∩ suppχ.

Finally, let us make a remark on the sharpness of estimate (2.1). We can
observe that if Φ is a sum of monomials xγj , j = 1, . . . , N , then estimate (2.1)
reduces to the standard one-dimensional van der Corput lemma in each j,
with each dimension giving a contribution of (1 + λ)−1/γ , which is sharp in
general.

Proof of Theorem 2.1. It is clear that (2.1) holds for 0 ≤ λ ≤ 1 since
|I(λ, ν)| is bounded for such λ, in view of assumptions (A1), (A2) and (A4).
So, we may consider the case where λ ≥ 1. Let z ∈ RN be as in (A3), and
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set x = z + ρω, where ω ∈ SN−1, ρ > 0. For N = 1, we use S0 = {−1, 1}.
Then we can write

I(λ, ν) =
�

SN−1

∞�

0

eiλΦ(z+ρω,ν)a(z + ρω, ν)χ(z + ρω)ρN−1 dρ dω.

It suffices to prove (2.1) for the inner integral.
Choose a function θ ∈ C∞0 ([0,∞)), 0 ≤ θ(s) ≤ 1 for all s, such that θ(s)

is identically 1 for 0 ≤ s ≤ 1/2 and is identically zero for s ≥ 1. Then with
our notation F (ρ, ω, ν) = Φ(z + ρω, ν), we split the inner integral into the
sum of the two integrals

I1(λ, ν, ω, z) =
∞�

0

eiλF (ρ,ω,ν)a(z + ρω, ν)χ(z + ρω)θ(λ1/γρ)ρN−1 dρ,

I2(λ, ν, ω, z) =
∞�

0

eiλF (ρ,ω,ν)a(z + ρω, ν)χ(z + ρω)(1− θ)(λ1/γρ)ρN−1 dρ.

Let us first estimate I1 = I1(λ, ν, ω, z). Since θ(λ1/γρ) = 0 for λ1/γρ ≥ 1,
changing variable τ = λ1/γρ we have

|I1| ≤ C
∞�

0

θ(λ1/γρ)ρN−1 dρ = C

∞�

0

τN−1λ−(N−1)/γθ(τ)λ−1/γ dτ,

which yields

(2.4) |I1| ≤ Cλ−N/γ
1�

0

τN−1 dτ ≤ Cλ−N/γ .

In order to estimate I2 = I2(λ, ν, ω, z), let us first establish a useful
estimate for functions F satisfying condition (F3). We claim that under
condition (A3), or rather under (F1)–(F4), there exist constants C,Cm > 0
such that

|∂ρF (ρ, µ)| ≥ Cργ−1,(2.5)

|∂mρ F (ρ, µ)| ≤ Cmρ1−m|∂ρF (ρ, µ)|,(2.6)

for all 0 < ρ < δ, all parameters µ, and all m ≤ γ + 1. First, note that for
0 < ρ ≤ 1 and m = γ + 1, estimate (2.6) follows from (2.5) and assumption
(F4). So we may only consider m ≤ γ.

Now, assumption (F2) implies that

(2.7) π(ρ, µ) :=
γ∑
j=2

j|aj(µ)|ρj−1 ≥ Cργ−1.

Thus, in order to prove (2.5), it suffices to show that

(2.8) |∂ρF (ρ, µ)| ≥ Cπ(ρ, µ) for all 0 < ρ < δ and all µ.
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For 1 ≤ m ≤ γ, we have, using (A3),

(2.9) ∂mρ F (ρ, µ) =
γ−m∑
k=0

(k +m)!
k!

ak+m(µ)ρk +Rm,γ−m(ρ, µ),

where

Rm,γ−m(ρ, µ) =
ρ�

0

∂γ+1
s F (s, µ)

(ρ− s)γ−m

(γ −m)!
ds

is the remainder term of the (γ − m)th Taylor expansion of ∂mρ F (ρ, µ).
By (F4) and (2.7), we get

(2.10) |Rm,γ−m(ρ, µ)| ≤ Cγ,mργ−m+1 ≤ Cγ,mπ(ρ, µ)ρ2−m for 0 < ρ < δ.

Hence, for 0 < ρ < δ, we have

|∂ρF (ρ, µ)| =
∣∣∣γ−1∑
k=0

(k + 1)ak+1(µ)ρk +R1,γ−1(ρ, µ)
∣∣∣

≥
∣∣∣ γ∑
j=2

jaj(µ)ρj−1
∣∣∣− |R1,γ−1(ρ, µ)|

≥
∣∣∣ γ∑
j=2

jaj(µ)ρj−1
∣∣∣− Cγπ(ρ, µ)ρ.

It now follows from assumptions (F1) and (F3) that

|∂ρF (ρ, µ)| = max
0≤σ≤ρ

|∂ρF (σ, µ)|

≥ max
0≤σ≤ρ

∣∣∣ γ∑
j=2

jaj(µ)σj−1
∣∣∣− max

0≤σ≤ρ
Cγπ(σ, µ)σ

= max
0≤σ̄≤1

∣∣∣ γ∑
j=2

jaj(µ)ρj−1σ̄j−1
∣∣∣− Cγπ(ρ, µ)ρ,

since π(σ, µ)σ =
∑γ

j=2 j|aj(µ)|σj achieves its maximum on 0 ≤ σ ≤ ρ at
σ = ρ. Noting that

max
0≤σ̄≤1

∣∣∣ γ∑
j=2

zj σ̄
j−1
∣∣∣ and

γ∑
j=2

|zj |

are both norms on Cγ−1, and hence are equivalent, we immediately get

|∂ρF (ρ, µ)| ≥ C
γ∑
j=2

j|aj(µ)|ρj−1 − Cγπ(ρ, µ)ρ

≥ (C − Cγδ)π(ρ, µ) ≥ Cπ(ρ, µ)
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for some constant C > 0 if δ is sufficiently small. This completes the proof
of (2.8).

To prove (2.6), we will use the representation (2.9). Since 1 ≤ m ≤ γ, it
follows from the definition of π(ρ, µ) that∣∣∣∣γ−m∑

k=0

(k +m)!
k!

ak+m(µ)ρk
∣∣∣∣ ≤ Cmπ(ρ, µ)ρ1−m,

which, together with (2.10) and (2.8), yields

|∂mρ F (ρ, µ)| ≤ Cm,δρ1−m|∂ρF (ρ, µ)| for 0 < ρ < δ.

This completes the proof of the claimed estimates (2.5) and (2.6).
Let us now come back to the estimate for I2. Define the operator

L := (iλ∂ρF (ρ, ω, ν))−1 ∂

∂ρ
,

which clearly satisfies the useful identity L(eiλF (ρ,ω,ν)) = eiλF (ρ,ω,ν). Denot-
ing the adjoint of L by L∗, we have, for each l ∈ N ∪ {0},

I2 =
∞�

0

eiλF (ρ,ω,ν)(L∗)l[a(z + ρω, ν)χ(z + ρω)(1− θ)(λ1/γρ)ρN−1] dρ.

Now,

(L∗)l =
(
i

λ

)l∑
Cs1,...,sp,p,r,l

∂s1ρ F · · · ∂
sp
ρ F

(∂ρF )l+p
(ρ, ω, ν)

∂r

∂ρr
,

where the sum is over all integers s1, . . . , sp, p, r ≥ 0 such that s1 + · · · +
sp + r − p = l. From (2.5) and (2.6) it follows that∣∣∣∣∂s1ρ F . . . ∂spρ F(∂ρF )l+p

(ρ, ω, ν)
∣∣∣∣ ≤ Cρp−s1−···−sp−lγ+l = Cρr−lγ .

Also, it is easy to see that for r ≤ [N/γ] + 1, we have

(2.11)
∣∣∣∣ ∂r∂ρr [a(z+ρω, ν)χ(z+ρω)(1−θ)(λ1/γρ)ρN−1]

∣∣∣∣ ≤ CNρN−1−rχ̃(λ, ρ),

where χ̃(λ, ρ) is a smooth function in ρ which is zero for λ1/γρ < 1/2. Let
us now take l = [N/γ] + 1, so that N − lγ < 0. Then we can estimate

|I2| ≤ CNλ−l
∞�

0

∑
Cs1,...,sp,p,r,l ρ

r−lγ ρN−1−r χ̃(λ, ρ) dρ

≤ CNλ−l
∞�

1
2
λ−1/γ

ρN−1−lγ dρ = CNλ
−l
[
ρN−lγ

N − lγ

]∞
1
2
λ−1/γ

= CN,γλ
−N/γ .

Combining this estimate with estimate (2.4) for I1, we obtain the desired
estimate (2.1). This completes the proof of the theorem.
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We note that in the proof we showed that if F satisfies conditions (F1)–
(F4), it also satisfies estimates (2.5) and (2.6). A version of this part of the
argument was discussed by Sugimoto [Su] for real-valued analytic functions
without dependence on µ, where the analysis was based on Cauchy’s integral
formula for analytic functions (see also Randol [Ra] and Beals [B]). The proof
that we give for (2.5) and (2.6) works in the generality required for Theorem
2.1, tracing the parameter, but more importantly, eliminating the Cauchy
integral argument, which allows us to relax the analyticity assumptions.

In fact, let us also briefly indicate a smooth version of these estimates.
Suppose that a function F (·, µ) is smooth in the first variable, and that
it satisfies conditions (F1)–(F3), as well as condition (F4) for all m ∈ N.
Then we claim that for sufficiently small δ > 0, estimates (2.5) and (2.6)
are satisfied also for all m ∈ N.

Indeed, we already proved (2.5) and we also proved (2.6) for m ≤ γ. It
remains to consider the case m > γ. Since γ + 1 − m ≤ 0, from (F4) it
trivially follows that for 0 < ρ < δ we have a stronger estimate

|∂mρ F (ρ, µ)| ≤ Cm ≤ Cm,δργ+1−m ≤ Cm,δρ2−m|∂ρF (ρ, µ)|,

where the last inequality is a consequence of (2.5).
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