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A Paley–Wiener type theorem for generalized
non-quasianalytic classes

by

Jordi Juan-Huguet (València)

Abstract. Let P be a hypoelliptic polynomial. We consider classes of ultradiffer-
entiable functions with respect to the iterates of the partial differential operator P (D)
and prove that such classes satisfy a Paley–Wiener type theorem. These classes and the
corresponding test spaces are nuclear.

1. Introduction. A Paley–Wiener type theorem is any theorem that
deals with decay properties of the Fourier transform of a function or distri-
bution.

Paley–Wiener type theorems and their applications to several areas of
mathematical analysis have been studied in several settings: we refer for
example to [BH], [BMT] and [DGM].

In this paper we continue the research begun in [FGJ, JH] on general-
ized non-quasianalytic classes, that is, classes of ultradifferentiable functions
with respect to the iterates of a partial differential operator. Our aim is to
establish a Paley–Wiener type theorem for such classes.

Classes of C∞-functions defined in terms of the successive iterates of
a partial differential operator appeared in 1960, when Komatsu [K], using
tools introduced by Hörmander [H1], characterized when a smooth func-
tion f ∈ C∞(Ω) in an open subset Ω ⊂ RN is real analytic in terms of
the successive iterates of an elliptic partial differential operator P (D). Ko-
take and Narasimhan extended this result to elliptic operators with analytic
coefficients. See [KN, Theorem 1].

In 1973, Newberger and Zielezny [NZ] treated this problem in the setting
of Gevrey classes. Research in this direction has been continued intensively
by several authors, including Bolley, Camus, Rodino [BC, BCR], Langen-
bruch [L1–L4] and Zanghirati [Z1–Z4]. We also mention the recent contribu-
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tions by Bouzar and Chaili [BC1], Calvo and Hakobyan [CH] and Calvo and
Rodino [CR]. Microlocal versions of this topic have been considered by Bol-
ley, Camus and Mattera [BCM], Zanghirati [Z4], Bouzar and Chaili [BC3]
and others.

All this research is related to the problem of iterates which consists in
characterizing the functions in a given class of functions in terms of the
behavior of the iterates of a fixed differential operator. See [BC1], [M], [K],
[NZ] and also [BC2], [CR], [KN] and [Z3]. The author [JH] has studied the
problem of iterates in the more general setting of classes of ultradifferentiable
functions in the sense of Braun, Meise and Taylor.

The precise definition of the spaces of ultradifferentiable functions with
respect to the iterates of P will be given in Section 2. In Section 3, we prove
a Paley–Wiener type theorem for such classes. In Section 4 we prove that the
spaces EP,(ω)(Ω) and EP,{ω}(Ω) and the corresponding test spaces DP,(ω)(Ω)
and DP,{ω}(Ω) are nuclear whenever the polynomial P is hypoelliptic. The
results in Sections 3 and 4 are new, even for the Gevrey case.

2. Generalized non-quasianalytic classes: EP,ω(Ω). We follow the
point of view of Braun–Meise–Taylor (see [BMT]). A non-quasianalytic
weight function is an increasing continuous function ω : [0,∞[ → [0,∞[
with the following properties:

(α) There exists L ≥ 0 with ω(2t) ≤ L(ω(t) + 1) for all t ≥ 0.
(β)

	∞
1 (ω(t)/t2) dt <∞.

(γ) ln t = o(ω(t)) as t tends to ∞, that is, limt→∞ (ln t)/ω(t) = 0.
(δ) ϕ : t 7→ ω(et) is convex.

We may assume that ω|[0,1] ≡ 0. The Young conjugate of ϕ is given by
ϕ∗(s) := sup{st− ϕ(t) : t ≥ 0}. We refer the reader to [BMT] and [JH] for
examples of weight functions and the definition of the spaces of ultradiffer-
entiable functions and ultradistributions.

In what follows, Ω denotes an arbitrary open subset of RN , and K ⊂⊂ Ω
means that K is a compact subset in Ω.

Following [JH], we consider smooth functions on an open set Ω such that
there exists C > 0 such that for each j ∈ N0,

‖P j(D)f‖2,K ≤ C exp(λϕ∗(j/λ)),

where K is a compact subset in Ω, ‖ · ‖2,K denotes the L2-norm on K and
P j(D) is the jth iterate of the partial differential operator P (D), i.e.,

P j(D) = P (D) ◦ · · · ◦︸ ︷︷ ︸
j

P (D).

If j = 0, then
P 0(D)f = f.



A Paley–Wiener type theorem 33

Given a polynomial P ∈ C[z1, . . . , zN ] of degree m,

P (z) =
∑
|α|≤m

aαz
α,

the partial differential operator P (D) is

P (D) =
∑
|α|≤m

aαD
α, where Dα =

1
i
∂α.

The spaces of ultradifferentiable functions with respect to the successive
iterates of P are defined as follows.

Let ω be a weight function. Given a polynomial P , an open set Ω in RN ,
a compact subset K ⊂⊂ Ω and λ > 0, we define the seminorm

‖f‖K,λ := sup
j∈N0

‖P j(D)f‖2,K exp(−λϕ∗(j/λ))

and set
EλP,ω(K) = {f ∈ C∞(K) : ‖f‖K,λ <∞}.

EλP,ω(K) is a Banach space when endowed with the ‖ · ‖K,λ-norm.
The space of ultradifferentiable functions of Beurling type with respect to

the iterates of P is

EP,(ω)(Ω) = {f ∈ C∞(Ω) : ‖f‖K,λ <∞ for each K ⊂⊂ Ω and λ > 0}.
It is endowed with the topology given by

EP,(ω)(Ω) := proj
K⊂⊂Ω

proj
λ>0
EλP,ω(K).

If {Kn}n∈N is a compact exhaustion of Ω, this metrizable locally convex
topology is defined by the fundamental system {‖ · ‖Kn,n}n∈N of seminorms.

The space of ultradifferentiable functions of Roumieu type with respect
to the iterates of P is defined by

EP,{ω}(Ω) = {f ∈ C∞(Ω) : ∀K ⊂⊂ Ω ∃λ > 0 such that ‖f‖K,λ <∞}.
Its topology is defined by

EP,{ω}(Ω) := proj
K⊂⊂Ω

ind
λ>0
EλP,ω(K).

We write EP,ω(Ω) when a statement holds in the Beurling and the Rou-
mieu case. As in the Gevrey case, we call these classes generalized non-
quasianalytic classes. The author has proved that the space EP,ω(Ω) is com-
plete if and only if P is hypoelliptic (see [JH, Theorem 3.3]). See [FGJ] and
[JH] for more information and details.

3. A Paley–Wiener type theorem for EP,ω(Ω). Let ω be a weight
function and m ≥ 1. It is easy to prove that σ(t) := ω(t1/m) is also a weight
function. Moreover, ϕ∗σ(x) = ϕ∗ω(mx).
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Suppose P is a hypoelliptic polynomial of orderm. Our aim is to establish
a Paley–Wiener type theorem for the generalized non-quasianalytic class
EP,ω(t1/m)(Ω). In order to guarantee the existence of compactly supported
functions in this space we recall that the class of ultradifferentiable functions
Eω(Ω) is always contained in EP,ω(t1/m)(Ω) where m is the degree of P (see
[JH, Theorem 4.1]). As a consequence, Dω(Ω) is a subset of EP,ω(t1/m)(Ω).

Let K be a convex compact subset of RN . The supporting function of K
is the function HK : RN → R given by HK(x) := supy∈K x · y.

Lemma 3.1. Let ω a weight function, P a polynomial and f ∈ C∞(RN ).
The following statements hold:

(1) If there is λ > 0 satisfying

C :=
( �

RN
|f̂(ξ)|2 exp(λω(|P (ξ)|)) dξ

)1/2
<∞,

then

(∗) sup
j∈N0

‖P j(D)f‖2,RN exp
(
−λ

2
ϕ∗
(

2j
λ

))
≤ C

(2π)N/2
.

(2) Let K be a compact convex subset of RN and denote by m(K) its
Lebesgue measure. There is a constant D > 0 (depending on λ and ω)
such that if (∗) holds and f has compact support contained in K, then
for all z ∈ CN ,

|f̂(z)| ≤ m(K)1/2
CD

(2π)N/2
exp
(
HK(Im z)− λ

4
ω(|P (z)|)

)
.

Proof. (1) By Plancherel’s Theorem,

‖P j(D)f‖2,RN =
1

(2π)N/2
‖P (ξ)j f̂(ξ)‖2,RN

≤ C

(2π)N/2
sup
|P (ξ)|6=0

exp
(
j ln |P (ξ)|− λ

2
ω(|P (ξ)|)

)
≤ C

(2π)N/2
exp
(
λ

2
ϕ∗
(
j

λ/2

))
.

(2) By the Hölder inequality,

|P̂ j(D)f(z)| ≤
�

K

|P j(D)f(t) exp(−itz)| dt(3.1)

≤ m(K)1/2 exp(HK(Im z))
C

(2π)N/2
exp
(
λ

2
ϕ∗
(

j

λ/2

))
.

Suppose |P (z)| > 1; then

|f̂(z)| ≤ m(K)1/2
C

(2π)N/2
exp(HK(Im z)) exp

(
λ

2
ϕ∗
(

j

λ/2

))
1

|P (z)|j
.
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Now, we use ϕ∗∗ = ϕ and condition (γ) of the definition of weight functions
to find t0 such that

ln t ≤ λ

4
ω(t) + ln t0 ∀t > 0.

Then

sup
j∈N0

(
j ln |P (z)| − λ

2
ϕ∗
(

j

λ/2

))
=
λ

2
sup
j∈N0

(
j + 1
λ/2

ln |P (z)| − ϕ∗
(

j

λ/2

))
− ln |P (z)|

≥ λ

2
sup
x≥0

(x ln |P (z)| − ϕ∗(x))− ln |P (z)| = λ

2
(ϕ∗∗(ln |P (z)|)− ln |P (z)|

=
λ

2
ω(|P (z)|)− ln |P (z)| ≥ λ

4
ω(|P (z)|)− ln t0.

Taking the infimum we obtain

|f̂(z)| ≤ m(K)1/2
C

(2π)N/2
exp(HK(Im z))t0 exp

(
−λ

4
ω(|P (z)|)

)
.

In case |P (z)| ≤ 1, the previous inequality is also true. To see this, recall
that ω(|P (z)|) = 0 and ϕ∗(0) = 0 and take j = 0 in (3.1).

We now introduce the following notation:

DλP,ω(K) = {f ∈ C∞(RN ) : supp f ⊂ K and ‖f‖K,λ <∞},
DP,(ω)(K) = proj

λ>0
DλP,ω(K) and DP,{ω}(K) = ind

λ>0
DλP,ω(K).

Let Ω be an open subset of RN and let ω be a weight function. We define
the test spaces of ultradifferentiable functions with respect to the iterates of
the operator P as

DP,(ω)(Ω) = ind
K⊂⊂Ω

proj
λ>0
DλP,ω(K) and DP,{ω}(Ω) = ind

K⊂⊂Ω
ind
λ>0
DλP,ω(K).

Given λ > 0, consider the seminorm

tλ(f) :=
( �

RN
|f̂(ξ)|2 exp(λω(|P (ξ)|)) dξ

)1/2
.

Proposition 3.2. Suppose P is hypoelliptic. Then the fundamental sys-
tems {‖·‖K,λ}λ>0 and {tλ(·)}λ>0 of seminorms on DP,(ω)(K) are equivalent.

Proof. From Lemma 3.1(1) it is clear that

‖f‖K,λ ≤
1

(2π)N/2
t2λ(f) ∀λ > 0, ∀f ∈ DP,(ω)(K).
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In order to see the other inequality, we take z = ξ ∈ RN and C/(2π)N/2 =
‖f‖K,λ/2 in Lemma 3.1(2) to obtain

|f̂(ξ)| ≤ m(K)1/2D‖f‖K,λ/2 exp
(
−λ

4
ω(|P (ξ)|)

)
.

Then

|f̂(ξ)|2 exp
(
λ

4
ω(|P (ξ)|)

)
≤ m(K)D2‖f‖2K,λ/2 exp

(
−λ

4
ω(|P (ξ)|)

)
.

Therefore,

tλ/4(f) ≤ m(K)1/2D‖f‖K,λ/2
( �

RN
exp
(
−λ

4
ω(|P (ξ)|)

)
dξ

)1/2

.

Now, we only have to check that exp(−(λ/4)ω(|P (ξ)|)) is integrable. Con-
dition IIb of [H2, Theorem 11.1.3] asserts that there exist D, d > 0 such
that

|P (ξ)| ≥ D|ξ|d if |ξ| is large enough.

This inequality and condition (γ) of the definition of weight functions allow
one to prove that

λ

4
ω(|P (ξ)|) ≥ ln(1 + |ξ|2)N

if |ξ| is large enough, and the conclusion follows.

Denote BA := {x ∈ RN : |z| ≤ A}.

Theorem 3.3. Let P be a hypoelliptic polynomial and ω a weight func-
tion. An entire function F ∈ H(CN ) is the Fourier–Laplace transform of a
function f ∈ DP,(ω)(BA) if, and only if,

|F (z)| ≤ CeA|z| ∀z ∈ CN

for some constants C,A > 0 and moreover, for every λ > 0,( �

RN
|F (x)|2 exp(λω(|P (x)|)) dx

)1/2
<∞.

Proof. Let f ∈ DP,(ω)(RN ) with supp f ⊂ BA. By the classical Paley–
Wiener theorem [H2, I, Theorem 7.3.1] there is a constant C > 0 such that
|f̂(z)| ≤ CeA|z| for all z ∈ CN . Proposition 3.2 shows that for each λ > 0,( �

RN
|f̂(x)|2 exp(λω(|P (x)|)) dx

)1/2
<∞.

Conversely, suppose that F is an entire function in CN satisfying the
two conditions of the theorem. In particular

	
RN |F (x)|2 dx < ∞. Thus,
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[S, Theorem 4.9] gives a function f ∈ L2(BA) with supp f ⊂ BA such that
F (z) =

	
BA

f(x)e−ixz dx. Note that for each λ > 0,( �

RN
|f̂(x)|2 exp(λω(|P (x)|)) dx

)1/2
<∞.

By Proposition 3.2, in order to show that f ∈ DP,(ω)(RN ) it suffices to check
that we can take f in C∞(RN ).

Proceeding as in Proposition 3.2, we find that the function e−
λ
2
ω(|P (x)|) is

in L2, therefore Hölder’s inequality and the previous estimate imply f̂ ∈ L1

and by the inversion formula (see [R, Theorem 9.14])

f(x) =
1

(2π)N
�

RN
f̂(ξ)eixξ dξ a.e.

In order to see that the function

g(x) =
�

RN
f̂(ξ)eixξ dξ

is C∞ it is enough to show that for each α ∈ NN
0 , the function ξαf̂(ξ)eixξ is

integrable. Observe that

|ξ(α)| |f̂(ξ)| ≤
√
N
|α|
eln |ξ|

|α| |f̂(ξ)|.
If |ξ| is large enough, condition IIb of [H2, II, Theorem 11.1.3] and con-

dition (γ) of the definition of weight function imply

|ξ(α)| |f̂(ξ)| ≤
√
N
|α|
e
λ
4
ω(|P (ξ)|)|f̂(ξ)| =

√
N
|α|
|f̂(ξ)|e

λ
2
ω(|P (ξ)|)e−

λ
4
ω(|P (ξ)|),

which is integrable by the Hölder inequality. Thus, the derivative

g(α)(x) =
�

RN
ξαf̂(ξ)eixξ dξ

exists.

Analogously, one can prove the Roumieu case.

Theorem 3.4. Let P be a hypoelliptic polynomial and ω a weight func-
tion. An entire function F ∈ H(CN ) is the Fourier–Laplace transform of a
function f ∈ DP,{ω}(BA) if, and only if,

|F (z)| ≤ CeA|z| ∀z ∈ CN

for some constants C,A > 0, and for some λ > 0,( �

RN
|F (x)|2 exp(λω(|P (x)|)) dx

)1/2
<∞.

Using the classical Paley–Wiener theorem and Proposition 3.2 we obtain
the following corollary.
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Corollary 3.5. P be a hypoelliptic polynomial and ω a weight function.
Let K be a convex compact subset and f ∈ DP,(ω)(K). Then the Fourier–
Laplace transform of f is an entire function and for every N there is a
constant CN such that

|f̂(z)| ≤ CN (1 + |z|)−NeHK(Im z) ∀z ∈ CN ,

and moreover, for every λ > 0,( �

RN
|f̂(x)|2 exp(λω(|P (x)|)) dx

)1/2
<∞.

Conversely, every entire function F satisfying the last two inequalities is the
Fourier–Laplace transform of a function in DP,(ω)(K).

Analogously, one can handle the Roumieu case.

Corollary 3.6. Let P be a hypoelliptic polynomial and ω a weight
function. Let K be a convex compact subset and f ∈ DP,{ω}(K). Then the
Fourier–Laplace transform of f is an entire function and for every N there
is a constant CN such that

|f̂(z)| ≤ CN (1 + |z|)−NeHK(Im z) ∀z ∈ CN ,

and moreover, for some λ > 0,( �

RN
|f̂(x)|2 exp(λω(|P (x)|)) dx

)1/2
<∞.

Conversely, every entire function F satisfying the last two inequalities is the
Fourier–Laplace transform of a function in DP,(ω)(K).

4. The nuclearity of EP,ω(Ω) and DP,ω(Ω). Let P be a hypoelliptic
polynomial. Given λ > 0, we introduce the seminorm

sλ(f) =
�

RN
|f̂(ξ)| exp(λω(|P (ξ)|)) dξ.

Given a compact subset K of Ω we define

D1,P,(ω)(K) = {f ∈ C∞(RN ) : supp f ⊂ K and ∀λ > 0, sλ(f) <∞}.

Since f ∈ L1, its Fourier transform is bounded. Then

tλ(f) ≤ ‖f̂‖1/2∞ (sλ(f))1/2.

Thus, D1,P,(ω)(K) is a subset of DP,(ω)(K). On the other hand, we write

f̂(ξ) exp(λω(|P (ξ)|)) = f̂(ξ) exp(2λω(|P (ξ)|)) exp(−λω(|P (ξ)|)).
The Hölder inequality and the fact that exp(−λω(|P (ξ)|)) is in L2 imply
the continuous inclusion

DP,(ω)(K) ↪→ D1,P,(ω)(K).
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The inequality above shows that the identity

D1,P,(ω)(K) = DP,(ω)(K)

holds algebraically.
Now, we denote by τt the topology induced by the seminorms tλ, and by

τs the topology induced by the seminorms sλ.

Proposition 4.1. Let P be a hypoelliptic polynomial. The identity map

(DP,(ω)(K), τt)→ (DP,(ω)(K), τs)

is a homeomorphism.

Proof. We use the closed graph theorem. Since the metrizable space(
DP,(ω)(K), τt

)
is a closed subspace of the Fréchet space EP,(ω)(RN ) we only

need to prove that the space
(
DP,(ω)(K), τs

)
is also complete. From the proof

of Theorem 3.3, we infer that for each f ∈ DP,(ω)(K) its derivatives can be
written as

f (α)(x) =
1

(2π)N
�

RN
ξαf̂(ξ)eixξ dξ for all α ∈ NN

0

and we get positive constants C, d > 0 such that

|f (α)(x)| ≤ 1
(2π)N

sup
ξ 6=0

exp(−λω(|P (ξ)|) + |α| ln |ξ|)
�

RN
|f̂(ξ)|eλω(|P (ξ)|) dξ

≤ C

(2π)N
exp
(
λϕ∗

(
|α|
dλ

))
sλ(f).

As a consequence, the inclusion

(DP,(ω)(K), τs) ↪→ D(K)

is continuous. The completeness of (DP,(ω)(K), τs) easily follows.

We can get a similar result for the space EP,(ω)(Ω). Let P be a polynomial
and let Ω be an open subset of RN . Consider the space

LP (Ω) = {f ∈ L1
loc(Ω) : ∀j ∈ N0, P

j(D)f ∈ L1
loc(Ω)}.

Denote |||f |||L,j := sup0≤k≤j ‖P k(D)f‖1,L where ‖ · ‖1,L denotes the L1-norm
on the compact subset L, and endow LP (Ω) with the fundamental system
of seminorms {||| · |||L,j}L⊂⊂Ω, j∈N0 . Then LP (Ω) is a Fréchet space.

In the proof of our next lemma we use tools based on Hörmander’s well
known Bp,k spaces. We follow Chapters X and XI of [H2, II].

Lemma 4.2. If P is hypoelliptic, then LP (Ω) = C∞(Ω) as Fréchet spaces.
As a consequence, for each m ∈ N0 and for each compact subset K in Ω
there are a constant C > 0, a natural number j ∈ N0 and a compact subset
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L of Ω such that for all f ∈ C∞(Ω),

(4.1) sup
|α|≤m

sup
x∈K
|f (α)(x)| ≤ C sup

0≤k≤j
‖P k(D)f‖1,L.

Proof. Let f ∈ LP (Ω) and fix j ∈ N0. Since the Fourier transform
of a function in L1 is bounded, we have P j(D)f ∈ L1

loc(Ω) ⊂ Bloc
∞,1(Ω)

and in view of [H2, Theorem 11.1.8] we have f ∈ Bloc
∞, eP j (Ω). Hence, f ∈⋂

j∈N0
Bloc
∞, eP j (Ω) = C∞(Ω). The closed graph theorem implies that the in-

clusion LP (Ω) ↪→ C∞(Ω) is continuous.

Corollary 4.3. Let P be a hypoelliptic polynomial. On EP,ω(Ω) we can
replace the seminorms

‖f‖K,λ = sup
j∈N0

‖P j(D)f‖2,K exp(−λϕ∗(j/λ))

by the seminorms

‖f‖pK,λ = sup
j∈N0

‖P j(D)f‖p,K exp(−λϕ∗(j/λ)), p ≥ 1,

and also by the seminorms

‖f‖∞K,λ = sup
j∈N0

sup
x∈K
|P j(D)f(x)| exp(−λϕ∗(j/λ)).

Proof. Fix 1 ≤ p < ∞. For each compact subset K in Ω we will prove
that the fundamental system of seminorms given by ‖ · ‖pK,λ is equivalent to
the system of seminorms given by ‖ · ‖∞K,λ.

In view of the previous lemma, for each compact subset K in Ω there
are a constant C > 0, a natural number j ∈ N0 and a compact subset L in
Ω such that for all f ∈ C∞(Ω),

sup
x∈K
|f(x)| ≤ C sup

0≤k≤j
‖P k(D)f‖1,L.

Fix l ∈ N0. Applying this inequality to the function P l(D)f we have

sup
x∈K
|P l(D)f(x)| ≤ C sup

0≤k≤j
‖P k+l(D)f‖1,L

for all l ∈ N0 and for all f ∈ C∞(Ω). Now, proceeding as in [JH, Lemma
2.3] we conclude that for each compact subset K in Ω and λ > 0 there is
a compact subset L and positive constants C ′ > 0 and µ > 0 depending
on K and λ such that ‖f‖∞K,λ ≤ C ′‖f‖1L,µ. Moreover, Hölder’s inequality
guarantees that ‖f‖1K,λ ≤ C ′′‖f‖

p
K,λ for some positive constant C ′′ > 0.

Obviously, ‖f‖pK,λ ≤ C
′′′‖f‖∞K,λ for some positive constant C ′′′ > 0.

Assume that P is hypoelliptic. Inspired by Proposition 4.1, Lemma
4.2 and Corollary 4.3 we study the nuclearity of the spaces EP,(ω)(Ω) and
EP,{ω}(Ω) and the corresponding test spaces.
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Recall that a projective limit of nuclear spaces is nuclear and that nu-
clearity is inherited by countable inductive limits. In order to see that an
inductive limit indnXn is nuclear it suffices to prove that for all n there
exists m > n such that the inclusion Xn ↪→ Xm is absolutely summing. See
Chapter 28 of [MV] and the books [J] and [Ko, II] for more details.

Theorem 4.4. If P is hypoelliptic, then the spaces EP,(ω)(Ω) and
EP,{ω}(Ω) are nuclear.

Proof. Beurling case. First, observe that [BMT, Lemma 1.4] allows us
to describe the topology of EP,(ω)(Ω) by the seminorms∑

j∈N0

�

K

|P j(D)f(x)| dx exp(−λϕ∗(j/λ)).

Fix λ > 0 and a compact subset K. By the same lemma we have∑
j∈N0

�

K

|P j(D)f(x)| dx exp(−λϕ∗(j/λ))

≤ C
∑
j∈N0

�

K

|P j(D)f(x)| dx exp
(
−Lλϕ∗

(
j

Lλ

))
exp(−j)

for some positive constant C > 0. Define

∆j : K → (EP,(ω)(Ω)′, σ(EP,(ω)(Ω)′, EP,(ω)(Ω)))

by

∆j(x)[f ] := P j(D)f(x) exp
(
−Lλϕ∗

(
j

Lλ

))
.

Then
|∆j(x)[f ]| ≤ ‖f‖∞K,Lλ.

Hence, ∆j(x) ∈ EP,(ω)(Ω)′ and ∆j is a well defined and continuous map.
Moreover ∆j(K) ⊆ V ◦ where V is the absolutely convex zero neighborhood
defined by

V := {f ∈ EP,(ω)(Ω) : ‖f‖∞K,Lλ ≤ 1}.

Now, consider the map

µj : C(V ◦)→ R, µj(g) := C
�

K

g(∆j(x)) exp(−j) dx.

If g : V ◦ → R is a continuous function on V ◦, it is clear that

|µj(g)| ≤ C exp(−j)m(K) sup
f∈V ◦

|g(f)|.

This fact implies that µj is a continuous linear map which is positive, i.e.,
µj(g) ≥ 0 whenever g ≥ 0. So, µj defines a measure on (V ◦, σ∗). We now
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consider
µ :=

∑
j∈N0

µj ,

which is a measure on (V ◦, σ∗). Then∑
j∈N0

�

K

|P j(D)f(x)| dx exp(−λϕ∗(j/λ))

≤ C
∑
j∈N0

�

K

|∆j(x)[f ]| dx exp(−j) =
�

V ◦

|y(f)| dµ(y).

and the nuclearity in the Beurling case follows.

Roumieu case. To see that

EP,{ω}(Ω) := proj
K⊂⊂Ω

ind
λ>0
EλP,ω(K)

is nuclear it is enough to see that

E1/n
P,ω (K) ↪→ E1/nL

P,ω (K)

is absolutely summing. E1/nL
P,ω (K) and E1/n

P,ω (K) are Banach spaces endowed
with the norms ‖ · ‖∞K,1/Ln and ‖ · ‖∞K,1/n, respectively. Again, [BMT, Lemma
1.4] gives constants C,L > 0 such that

‖f‖∞K,1/Ln ≤
∑
j∈N0

‖P j(D)f‖p,K exp
(
− 1
Ln

ϕ∗(Lnj)
)

≤ C exp
(

1
n

) ∑
j∈N0

‖P j(D)f‖p,K exp
(
− 1
n
ϕ∗(nj)

)
exp(−j).

Define
∆j : K → (E1/n

P,ω (K)′, σ(E1/n
P,ω (K)′, E1/n

P,ω (K)))

by

∆j(x)[f ] := P j(D)f(x) exp
(
− 1
n
ϕ∗(nj)

)
.

Denote by U the unit ball of E1/n
P,ω (K). Proceeding as in the Beurling case

we can define a measure µ on U◦ such that

‖f‖∞K,1/Ln ≤
�

U◦

|y(f)| dµ(y).

Corollary 4.5. Let Ω be an open subset of RN . If P is a hypoelliptic
polynomial, then the spaces DP,(ω)(Ω) and DP,{ω}(Ω) are nuclear.

Proof. By Proposition 3.2, DP,(ω)(K) is a topological subspace of
EP,(ω)(Ω) and hence nuclear. Then the spaceDP,(ω)(Ω)=indK⊂⊂Ω DP,(ω)(K)
is also nuclear.
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In the Roumieu case we consider DP,{ω}(Ω) endowed with the seminorms
sλ and we prove that the inclusion

D2λ
P,ω(K) ↪→ DλP,ω(K)

is absolutely summing. Let U be the unit ball of D2λ
P,ω(K) and define

∆ : RN → (D2λ
P,ω(K)′, σ(D2λ

P,ω(K)′,D2λ
P,ω(K)))

by
∆(ξ)[f ] := Cf̂(ξ) exp(2λω(|P (ξ)|)),

where the constant C is chosen in such a way that ∆(RN ) ⊆ U◦. Now, we
consider the map

µ : C(U◦)→ R, µ(g) :=
�

RN
g(∆(ξ)) exp(−λω(|P (ξ)|)) dξ.

If g : U◦ → R is a continuous function, it is clear that

|µ(g)| ≤
( �

RN
exp(−λω(|P (ξ)|)) dξ

)
sup
f∈U◦

|g(f)|.

This implies that µ is a continuous linear map which is positive, i.e., µ(g) ≥ 0
whenever g ≥ 0. So, µ defines a measure on (U◦, σ∗) and

sλ(f) =
�

RN
|f̂(ξ)| exp(2λω(|P (ξ)|)) exp(−λω(|P (ξ)|)) dξ

=
�

RN
|∆(ξ)[f ]| exp(−λω(|P (ξ)|)) dξ ≤

�

U◦

|y(f)| dµ(y).

To finish we give a sufficient condition for the test space DP,ω(Ω) to be
an algebra.

Proposition 4.6. Let P be a hypoelliptic polynomial and ω a weight
function such that ω(|P (x+ y)|) ≤ K +Kω(|P (x)|) +Kω(|P (y)|) for some
constant K > 0. Then DP,ω(Ω) is an algebra.

Proof. We consider the seminorms sλ(f)=
	
RN |f̂(x)| exp(λω(|P (x)|)) dx.

Note that
�

RN
|f̂g(x)| exp(λω(|P (x)|)) dx =

�

RN
|f̂ ∗ ĝ(x)| exp(λω(|P (x)|)) dx

≤
�

RN

�

RN
|f̂(y)| |ĝ(x− y)| exp(λω(|P (x)|)) dy dx.

The hypothesis gives a positive constant C > 0 such that

sλ(fg) ≤ CsKλ(f)sKλ(g).



44 J. Juan-Huguet

Example 4.7. Consider the hypoelliptic heat polynomial in two vari-
ables, P (t, x) = it + x2, and the Gevrey weights ω(t) = ta for a ∈ ]0, 1/2].
Then DP,ω(Ω) is an algebra.

Recall that Dt2a(Ω) ⊂ DP,ta(Ω), and therefore DP,ta(Ω) is non-trivial.
For ω(t) = t1/2, one can easily check

|P ((x, t) + (y, u))|1/2 ≤ K +K|P (x, t)|1/2 +K|P (y, u)|1/2.
We set X = P (x+ y, t+ u), Y = P (x, t) and Z = P (x, t). For 0 < a < 1/2,
we want to see

Xa ≤ K(1 + Y a + Za) for some K > 0.

By the inequality above, we haveX1/2≤K(1+Y 1/2+Z1/2) for allX,Y, Z≥0.
Observe that p := 1/2a > 1. Since on RN all norms are equivalent, we have
‖ · ‖p ≤ D‖ · ‖1 for some D > 0. Then

(1 + (Y a)1/2a + (Za)1/2a)2a ≤ D(1 + Y a + Za).

As a consequence,

X ≤ K2(1 + Y 1/2 + Z1/2)2 ≤ K2D(1 + Y a + Za)1/a

and then
Xa ≤ K2aDa(1 + Y a + Za).
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tions 3 (1978), 827–876.
[NZ] E. Newberger and Z. Zielezny, The growth of hypoelliptic polynomials and Gevrey

classes, Proc. Amer. Math. Soc. 39 (1973), 547–552.
[R] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1973.
[S] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces,

Princeton Univ. Press, 1971.
[Z1] L. Zanghirati, Iterates of a class of hypoelliptic operators, and generalized Gevrey

classes, Boll. Un. Mat. Ital. Suppl. 1980, 177–195.
[Z2] —, Iterates of quasielliptic operators and Gevrey classes, Boll. Un. Mat. Ital. B

18 (1981), 411–428.

http://dx.doi.org/10.1007/s000130050542
http://dx.doi.org/10.1090/S0002-9939-02-06799-0
http://dx.doi.org/10.1080/10652469.2010.541037
http://dx.doi.org/10.1112/blms/bdm026
http://dx.doi.org/10.7169/facm/1301497746
http://dx.doi.org/10.1002/cpa.3160110205
http://dx.doi.org/10.1007/s00020-010-1816-5
http://dx.doi.org/10.3792/pja/1195524081
http://dx.doi.org/10.1007/BF01420493
http://dx.doi.org/10.1007/BF01450566
http://dx.doi.org/10.1080/03605307808820078
http://dx.doi.org/10.1090/S0002-9939-1973-0318660-6


46 J. Juan-Huguet

[Z3] L. Zanghirati, Complements to the theorem of quasielliptic iterates, Boll. Un.
Mat. Ital. (A) 1 (1982), 137–143.
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