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Borel parts of the spectrum of an operator
and of the operator algebra of a separable Hilbert space

by

Piotr Niemiec (Kraków)

Abstract. For a linear operator T in a Banach space let σp(T ) denote the point spec-
trum of T , let σp,n(T ) for finite n > 0 be the set of all λ∈σp(T ) such that dimker(T − λ)
= n and let σp,∞(T ) be the set of all λ ∈ σp(T ) for which ker(T−λ) is infinite-dimensional.
It is shown that σp(T ) is Fσ, σp,∞(T ) is Fσδ and for each finite n the set σp,n(T ) is the
intersection of an Fσ set and a Gδ set provided T is closable and the domain of T is sepa-
rable and weakly σ-compact. For closed densely defined operators in a separable Hilbert
space H a more detailed decomposition of the spectra is obtained and the algebra of all
bounded linear operators on H is decomposed into Borel parts. In particular, it is shown
that the set of all closed range operators on H is Borel.

1. Introduction. Dixmier and Foiaş [3] and (independently) Nikol’skaya
[13] showed that the point spectrum of a bounded operator acting on a sep-
arable reflexive Banach space is Fσ. In both the papers the authors showed
that any bounded Fσ subset of the complex plane coincides with the point
spectrum of a certain bounded operator acting on a separable Hilbert space.
Later Kaufman [8, 9] proved that a necessary and sufficient condition for a
subset of a complex plane to be the point spectrum of a bounded operator
in some separable complex Banach space is that it be analytic (in the sense
of Suslin) and bounded. All these results were extended by Smolyanov and
Shkarin who studied another part of the spectrum of a closed operator in a
Hilbert space [15] as well as in an arbitrary topological vector space [16]. In
particular, they showed that if the graph of an operator T in a Hausdorff
TVS X is the union of a countable family of metrizable compact sets, then
the point spectrum of T and the sets

⋃∞
k=n σp,k(T ) for natural n (see Ab-

stract) are all Fσ. In the present paper we propose another result in this
fashion: if X is a Banach space, then in the above theorem the assumption
about the graph of T may be replaced by the domain of T being separable
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and weakly σ-compact (see the proof of 3.2 below). Although our method
is quite similar to that of Smolyanov and Shkarin, it seems that the two
theorems are ‘incomparable’ (i.e. none of them implies the other for Banach
spaces). As is shown in 2.7, our result applies not only to closed operators.
In the case of Hilbert space operators, we introduce a more detailed Borel
decomposition of the spectra (than in [15]) as well as of the whole algebra of
bounded operators (see 4.7 and 4.5, respectively), related to the closedness
of ranges.

Since the celebrated paper by Cowen and Douglas [2], the point spectra of
bounded linear operators have been widely investigated and those operators
which have these spectra rich have attracted a growing interest: see e.g. [11],
[20], [6] or [7] and references there.

Notation. In this paper Banach spaces are real or complex and they
need not be separable, and K is the field of real or complex numbers. By
an operator in a Banach space X we mean any linear function from a linear
subspace of X into X, and such an operator is on X if its domain is the
whole space. For an operator T in X, we let D(T ), N(T ), R(T ) and R(T )
denote the domain, the kernel, the range and the closure of the range of T ,
respectively. For a scalar λ ∈ K, T − λ stands for the operator given by
D(T − λ) = D(T ) and (T − λ)(x) = Tx − λx (x ∈ D(T )). The point
spectrum σp(T ) of T is the set of all eigenvalues of T ; that is, σp(T ) consists
of all scalars λ ∈ K such that N(T − λ) is nonzero. The operator T is closed
iff its graph Γ (T ) := {(x, Tx) : x ∈ D(T )} is a closed subset of X × X.
We call T closable iff the norm closure of Γ (T ) in X × X is the graph
of some operator in X. Whenever E and F are Banach spaces, B(E,F )
stands for the space of all bounded operators from the whole space E to F .
A subset of a topological space is said to be σ-compact if it is the union
of a countable family of compact subsets of the space. A weakly σ-compact
subset of a Banach space is a set which is σ-compact with respect to the weak
topology of the space. A Borel subset of a topological space is a member of
the σ-algebra generated by all open sets in the space. Adapting the notation
proposed by A. H. Stone [17], we call a subset of a topological space (of type)
F ∩ G if it is the intersection of an open and a closed set. Similarly, any set
which is the intersection of a Gδ set and an Fσ set will be said to be Fσ ∩Gδ.

2. Operators with weakly σ-compact domains. For an operator T
in X, a subset K of X and a nonnegative real constant M , let

ΛT (K,M) = {w ∈ K : N(T − w) ∩K 6= ∅ and |w| ≤M}.
Notice that ΛT (K,M) consists of all w ∈ K with |w| ≤ M provided 0 ∈ K.
The main tool of this section is the following
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Lemma 2.1. If T is a closable operator in X and K is a weakly compact
subset of D(T ), then the set ΛT (K,M) is compact for every M ≥ 0.

Proof. We may and do assume that 0 /∈ K. LetW be the set of all x ∈ K
for which there is a (unique) λ(x) ∈ K such that Tx = λ(x)x and |λ(x)| ≤M .
Thus we have obtained a function λ : W → K. Since λ(W ) = ΛT (K,M), it
suffices to show that W is weakly compact and λ is continuous when W is
equipped with the weak topology.

Let X = (xσ)σ∈Σ be a net in W which is weakly convergent to some
x ∈ K. We need to show that x ∈ W and limσ∈Σ λ(xσ) = λ(x). If (xτ )τ∈Σ′
is a subnet of X such that limτ∈Σ′ λ(xτ ) = w ∈ K, then (xτ , Txτ )τ∈Σ′ is
weakly convergent to (x,wx). Since the norm closure of Γ (T ) is weakly
closed (and is the graph of some operator), we infer that Tx = wx and thus
x ∈W and λ(x) = w. Since λ(W ) is bounded and any convergent subnet of
(λ(xσ))σ∈Σ has the same limit, the net converges to λ(x) and we are done.

With the use of the foregoing result we now easily prove

Proposition 2.2. If T is a closable operator in X such that D(T ) \ {0}
is weakly σ-compact, then σp(T ) is Fσ.

Proof. Write D(T )\{0} =
⋃∞
n=1Kn with each Kn weakly compact, note

that λ ∈ σp(T ) iff λ ∈ ΛT (Kn,m) for some natural n and m and apply
Lemma 2.1.

For applications of the above result, we need the next well known fact.
For the reader’s convenience, we give its short proof.

Lemma 2.3. Every weakly compact subset of X which is separable in the
norm topology is weakly metrizable.

Proof. Let K be a separable weakly compact subset of X. Then
(K − K) \ {0} is separable as well and thus there is a sequence of linear
functionals fn : X → K of norm 1 such that for every nonzero z ∈ K −K
there is n with fn(z) 6= 0. Observe that then the family {fn}n∈N sepa-
rates the points of K. Finally, since K is weakly compact, the formula
K 3 x 7→ (fn(x))n∈N ∈ ∆N with ∆ = {w ∈ K : |w| ≤ 1} defines a topolog-
ical embedding of K (equipped with the weak topology) into the compact
metrizable space ∆N.

Now we have

Proposition 2.4. If D is a linear subspace of X, then D\{0} is weakly
σ-compact iff D is separable and weakly σ-compact as well.

Proof. First assume that D is separable and D =
⋃∞
n=1Kn with each Kn

weakly compact. By 2.3, Kn is weakly metrizable and thus Ln := Kn \{0} is
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an Fσ subset ofKn with respect to the weak topology. So, D\{0} =
⋃∞
n=1 Ln

and each Ln is weakly σ-compact.
Conversely, if D \ {0} is weakly σ-compact, so is D, and {0} is weakly

Gδ in D. Thus, by the definition of the weak topology, there are sequences
(fn)∞n=1 and (εn)∞n=1 of continuous linear functionals on X and of positive
real numbers (respectively) such that {0} = D ∩ {x ∈ X : |fn(x)| < εn, n =
1, 2, . . .}. In particular,

⋂∞
n=1 N(fn) ∩ D = {0} and therefore the function

ψ : D 3 x 7→ (fn(x))∞n=1 ∈ KN is one-to-one. What is more, ψ is continuous
with respect to the weak topology on D and the product topology on KN. So,
ψ restricted to any weakly compact subsetK of D is a topological embedding
and therefore every such K is weakly separable. We conclude that D itself
is weakly separable, being weakly σ-compact. Finally, if A is a countable
weakly dense subset of D and E is the norm closure of the linear span of A,
then E is separable and weakly closed. This implies that D ⊂ E and we are
done.

It follows from 2.4 that 2.2 is equivalent to

Theorem 2.5. If T is a closable operator in X whose domain is sepa-
rable and weakly σ-compact, then σp(T ) is Fσ.

By Baire’s theorem, a Banach space is weakly σ-compact iff it is reflexive.
Thus 2.5 applies mainly to reflexive spaces. For example:

Corollary 2.6. If T is a closable operator in X whose domain is sepa-
rable and is the image of a reflexive Banach space under a bounded operator,
then σp(T ) is Fσ.

Example 2.7. The inclusion of L∞[0, 1] into L2[0, 1], being the dual
operator of the inclusion of L2[0, 1] into L1[0, 1], is continuous with respect
to the weak∗ topology of the domain and the weak topology in L2[0, 1].
This implies that L∞[0, 1], considered as a subspace of L2[0, 1], is weakly
σ-compact. However, there is no closed operator in L2[0, 1] whose domain is
L∞[0, 1] (compare with the Remarks on page 257 in [5]). This example shows
that 2.5 can have quite natural applications also for nonclosed operators and
that it is more general than 2.6 which does not apply here, since there is no
bounded operator on a reflexive Banach space into L2[0, 1] whose image is
L∞[0, 1] (again by the Remarks on page 257 in [5]).

3. Decomposition of the point spectrum. Let T be an operator
inX. For n ≥ 1 let σp,n(T ) be the set of all λ ∈ K such that dim N(T−λ) = n
and let σp,∞(T ) = σp(T ) \

⋃∞
n=1 σp,n(T ). Our aim is to show that all sets

defined above are Borel provided T is closable and has separable and weakly
σ-compact domain. To do this, we need the following well-known result (cf.
e.g. the proof of Proposition 1 in [16, §2]).
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Lemma 3.1. If V is a T2 topological vector space, then for each n ≥ 2 the
set F [n] of all (x1, . . . , xn) ∈ V n such that x1, . . . , xn are linearly dependent
is closed in the product topology of V n.

The main result of this section is the following result which may be seen
as a counterpart of Proposition 2 in [16, §2].

Theorem 3.2. If T is a closable operator in X whose domain is separable
and weakly σ-compact, then σp,n(T ) is Fσ∩Gδ for finite n and σp,∞(T ) is Fσδ.

Proof. First fix a finite N > 0. Let F [1] = {0} ⊂ X and F [N ] be as in
the statement of 3.1 for N > 1. By 3.1, F [N ] is weakly closed in XN . Write
D(T ) =

⋃∞
n=1Kn with each Kn weakly compact. By 2.3, all Kn’s are weakly

metrizable and hence (
∏N
j=1Knj )\F [N ] is Fσ in

∏N
j=1Knj for any n1, . . . , nN

when each Kn is equipped with the weak topology. So, D(T )N \ F [N ] may
be written in the form

(3.1) D(T )N \ F [N ] =
∞⋃
n=1

Ln

where each Ln is a weakly compact subset of XN . Put

S : D(T )N 3 (x1, . . . , xN ) 7→ (Tx1, . . . , TxN ) ∈ XN

and observe that S is a closable operator in XN . Thanks to 2.1, the set
ΛS(Ln,m) is compact for all natural n and m. So, GN :=

⋃
n,m ΛS(Ln,m)

is Fσ. But GN is the set of all λ ∈ σp(T ) such that N(T − λ) is at least
N -dimensional, by (3.1).

Now observe that for finite n, σp,n(T ) = Gn \ Gn+1 and thus σp,n(T ) is
Fσ ∩ Gδ. Finally, since σp,∞(T ) =

⋂∞
n=1Gn, σp,∞(T ) is Fσδ.

4. Decomposition of the spectrum: Hilbert space. From now on,
H is a complex separable infinite-dimensional Hilbert space and B(H) =
B(H,H). Every subset of B(H) which is Borel with respect to, respectively,
the weak operator, the strong operator or the norm topology is called, respec-
tively, WOT-Borel, SOT-Borel and briefly Borel. Similarly, if f : S → B(H)
with S ⊂ B(H) is such that S and the inverse image of any WOT-Borel
(respectively SOT-Borel; Borel) set is WOT-Borel (SOT-Borel; Borel), then
f is said to be WOT-Borel (SOT-Borel ; Borel). A fundamental result in this
area says that every WOT-Borel set is SOT-Borel and conversely (see e.g.
[4]). Thus the same property holds for WOT-Borel and SOT-Borel functions.
Therefore we shall only speak of WOT-Borel and Borel sets and functions.
Whenever the classes Fσ, Gδ, F ∩ G, etc., appear, they are understood with
respect to the norm topology.

We are interested in the decomposition of B(H) into Borel sets each of
which collects operators of a similar type. For n = 0, 1, . . . let Σn(H) be
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the set of all operators A ∈ B(H) such that dim R(A) = n. Further, for
n,m = 0, 1, . . . ,∞ let Σ1

n,m(H) and Σ0
n,m(H) consist of all A ∈ B(H) such

that dim N(A) = n, dim R(A)⊥ = m, dim R(A) =∞ and, respectively, R(A)
is closed or not. Notice that all above sets of operators form a countable de-
composition of B(H), denoted by Σ(H), into nonempty and pairwise disjoint
sets. We want to show that each of them is Borel in B(H). To do this, we
need

Lemma 4.1. For each n = 0, 1, . . . ,∞, let Σn,∗(H) be the set of all op-
erators A ∈ B(H) such that dim N(A) = n. Then Σ0,∗(H) is Gδ, Σn,∗(H) is
Fσ ∩ Gδ for finite n > 0 and Σ∞,∗(H) is Fσδ in B(H).

Proof. We mimic the proof of 3.2. For fixed finite N > 0 let F [N ]
be defined as there. Write HN \ F [N ] =

⋃∞
n=1 Ln with each Ln weakly

compact in HN . For T ∈ B(H) let T×N ∈ B(HN ) denote the operator
HN 3 (x1, . . . , xN ) 7→ (Tx1, . . . , TxN ) ∈ HN . Since Ln is bounded, the
function ψ : B(H) × Ln 3 (T, x) 7→ T×Nx ∈ HN is continuous when B(H)
is considered with the norm topology and Ln and HN with the weak one.
Hence ψ−1({0}) is closed in B(H) × Ln in the product of these topologies.
Finally, since Ln is weakly compact, the set Fn := p(ψ−1({0})) is closed in
the norm topology of B(H) where p : B(H) × Ln → B(H) is the projection
onto the first factor. Thus GN :=

⋃∞
n=1 Fn is Fσ. Note that GN coincides

with the set of all A ∈ B(H) for which dim N(A) ≥ N .
Now we have Σn,∗(H) = Gn \Gn+1 for finite n > 0, Σ∞,∗(H) =

⋂∞
n=1Gn

and Σ0,∗(H) = B(H) \G1, which clearly finishes the proof.

Now let CR(H) be the set of all closed range operators of B(H). Our next
purpose is to show that CR(H) is WOT-Borel (and hence Borel as well). This
is however not so simple. Firstly, the maps B(H) 3 A 7→ A∗ ∈ B(H) and
B(H)×B(H) 3 (A,B) 7→ AB ∈ B(H) are WOT-Borel (cf. [4]), since the first
of them is WOT-continuous and the second is SOT-continuous on bounded
sets. Secondly, closed range operators may be characterized in the space
B(H) by means of Moore–Penrose inverses in the following way:

Proposition 4.2. An operator A ∈ B(H) has closed range iff there is
B ∈ B(H) such that ABA = A, BAB = B and AB and BA are selfadjoint.
What is more, the operator B is uniquely determined by these properties
and if A has closed range, then B = A† := (A|R(A∗))−1P where P is the
orthogonal projection onto the range of A.

The operator A† appearing in the statement of 4.2 is the Moore–Penrose
inverse of an operator A ∈ CR(H). For a proof of 4.2, see e.g. [14].

In the proof of the next result we use the fact that if Y and Z are
separable complete metric spaces, B is a Borel subset of Y and f : B → Z is
a continuous one-to-one function, then f(B) is a Borel subset of Z (see [10,
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Theorem XIII.1.9] or [18, Corollary A.7], or [19, Theorem A.25] for a more
general result).

Theorem 4.3. The set CR(H) is WOT-Borel.

Proof. For r > 0 let Br be the closed ball in B(H) with center at 0 and of
radius r equipped with the weak operator topology. Let ψr : B2

r 3 (T, S) 7→
(TST − T, STS − S, S∗T ∗ − TS, T ∗S∗ − ST ) ∈ B4

s where s := 2(r + 1)3.
By the remark preceding the statement of the theorem, ψr is WOT-Borel.
So, the set Cr := ψ−1

r ({(0, 0, 0, 0)}) is WOT-Borel in Br as well. By 4.2,
Cr = {(A,A†) : A ∈ CR(H), A,A† ∈ Br}. So, the projection pr of Cr onto
the first factor is one-to-one. But pr is WOT-continuous and Br and Bs
are compact metrizable spaces. We infer that Er := pr(Cr) is WOT-Borel
in Bs. Finally, the observation that Bs is WOT-Borel in B(H) and CR(H) =⋃∞
n=1En finishes the proof.

Problem 4.4. Of which additive or multiplicative class, in the hierarchy
of WOT-Borel sets in B(H), is the set CR(H)?

Now we are ready to prove the following

Theorem 4.5. For each k, n,m = 0, 1, . . . ,∞ with finite k:

(a) Σk(H) is F ∩ G,
(b) Σ1

n,m(H) is F ∩ G (respectively open) provided m or n is finite (re-
spectively m = 0 or n = 0),

(c) Σ0
0,0(H) is Gδ; Σ0

n,m(H) is Fσ ∩ Gδ for finite n and m; Σ0
n,m(H) is

Fσδ if either n or m is infinite (and the other is finite),
(d) Σ1

∞,∞(H) and Σ0
∞,∞(H) are Borel.

Proof. Clearly, for each finite k the set of all finite rank operators A ∈
B(H) such that dim R(A) ≤ k is closed and thereforeΣk(H) is F∩G. Further,
for each n = 0, 1, . . . ,∞ let Σn,∗(H) be as in 4.1 and let Σ∗,n(H) = {A∗ : A ∈
Σn,∗(H)}. Observe that Σ∗,n(H) is of the same Borel class as Σn,∗(H).

Suppose that n or m is finite. With no loss of generality, we may assume
that n ≤ m. Put k = n−m ∈ Z∪{−∞}. The set F (k) of all semi-Fredholm
operators of index k is open in B(H) (see e.g. Proposition XI.2.4 and Theorem
XI.3.2 in [1]). It may also be shown that for each integer l ≥ 0 the set Fl(k)
of all A ∈ F (k) such that dim N(A) ≤ l is open in B(H) as well (see e.g.
[12, Proposition 5.3]). Now the relation Σ1

n,m(H) = Fn(k) \ Fn−1(k) (with
F−1(k) = ∅) shows (b). Further, since Σ0

n,m(H) = Σn,∗(H)∩Σ∗,m(H)\F (k),
we infer from 4.1 the assertion of (c).

Finally, Σ1
∞,∞(H) = Σ∞,∗(H) ∩ Σ∗,∞(H) ∩ CR(H) \

⋃∞
n=0Σn(H). So,

this set is Borel by 4.3. Since Σ0
∞,∞(H) is the complement in B(H) of the

union of all other members of Σ(H), it is Borel as well.
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Problem 4.6. To which additive or multiplicative class, in the hierarchy
of Borel sets in B(H), do the sets Σ1

∞,∞(H) and Σ0
∞,∞(H) belong?

Now let T be a closed densely defined operator in H. We denote by σ(T )
the spectrum of T . That is, a complex number λ does not belong to σ(T ) iff
N(T −λ) = {0}, R(T −λ) = H and (T −λ)−1 is bounded (the last condition
may be omitted by the Closed Graph Theorem). We decompose the complex
plane into parts corresponding to the members of Σ(H):

• σf (T ) is the set of all z ∈ C such that R(T − z) is finite-dimensional,
• for n,m = 0, 1, . . . ,∞ let σ1

n,m(T ) and σ0
n,m(T ) be the sets consist-

ing of all z ∈ C for which dim N(T − z) = n, dim R(T − z)⊥ = m,
dim R(T − z) =∞ and, respectively, R(T − z) is closed or not.

Notice that C \ σ(T ) = σ1
0,0(T ) is the resolvent set of T and that the sets

defined above are pairwise disjoint and cover the complex plane. The collec-
tion of all of them is denoted by Σ(T ). We say that the sets σ1

n,m(T ) and
σ0
n,m(T ) correspond to, respectively, Σ1

n,m(H) and Σ0
n,m(H).

Proposition 4.7. For every closed densely defined operator T in H,
Σ(T ) consists of Borel subsets of C. What is more, cardσf (T ) ≤ 1 and
each member of Σ(T ) different from σf (T ) is of the same Borel class as the
corresponding member of Σ(H).

Proof. First observe that if z ∈ σf (T ), then D(T ) = H and T is bounded
(since N(T −z) is closed). We conclude that indeed cardσf (T ) ≤ 1. Further,
since T is closed, there is an operator A ∈ B(H) such that N(A) = {0}
and R(A) = D(T ) (e.g. A := (|T | + 1)−1; see also [5, Theorem 1.1]). Put
C = TA ∈ B(H). Notice that for each z ∈ C, we have R(C−zA) = R(T −z)
and N(C− zA) = A−1(N(T − z)), and thus dim N(T − z) = dim N(C− zA).
This implies that z ∈ σjn,m(T ) iff C − zA ∈ Σj

n,m(H). So, the continuity of
the function C 3 z 7→ C − zA ∈ B(H) finishes the proof.
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