Semiconjugacy to a map of a constant slope

by
Jozef Bobok (Praha)

Abstract

It is well known that any continuous piecewise monotone interval map f with positive topological entropy $h_{\text {top }}(f)$ is semiconjugate to some piecewise affine map with constant slope $e^{h_{\mathrm{top}}(f)}$. We prove this result for a class of Markov countably piecewise monotone continuous interval maps.

1. Introduction. Let us consider continuous maps $f: X \rightarrow X$ and $g: Y \rightarrow Y$, where X, Y are compact Hausdorff spaces and $\varphi: X \rightarrow Y$ is continuous such that the diagram

commutes, i.e., $\varphi \circ f=g \circ \varphi$. When φ is surjective, we say that f is semiconjugate to g via the map φ and in that case the topological entropy $h_{\text {top }}(\cdot)$ satisfies $h_{\text {top }}(f) \geq h_{\text {top }}(g)$ [1].

Let $X=Y=[0,1]$. A continuous map $f:[0,1] \rightarrow[0,1]$ is said to be piecewise monotone if there are $k \in \mathbb{N}$ and points $0=c_{0}<c_{1}<\cdots<c_{k}=1$ such that f is monotone on each $\left[c_{i}, c_{i+1}\right], i=0, \ldots, k-1$. We shall say that a piecewise monotone map g has a constant slope s if on each of its pieces of monotonicity it is affine with slope of absolute value s.

In one-dimensional dynamical systems the following interesting result has been proved.

Theorem 1.1 ([6], [9]). If f is piecewise monotone and $h_{\text {top }}(f)>0$ then f is semiconjugate via a nondecreasing map to some map g of constant slope $e^{h_{\text {top }}(f)}$.

It is known that if g has constant slope s then $h_{\text {top }}(g)=\max (0, \log s)$ [8]. Thus, the slope of g from Theorem 1.1 is maximal possible, i.e., when a

[^0]nondecreasing semiconjugacy φ collapses intervals to points we do not lose any information measurable by the entropy. In this paper we focus on the class of Markov countably piecewise monotone continuous interval maps and find a large subclass of it in which the conclusion of Theorem 1.1 remains true.

Some of the notions used are recalled in the Appendix.
2. General observations. An admissible set P is a finite or countably infinite closed subset of $[0,1]$ containing the points 0,1 . An interval $[a, b] \subset$ $[0,1]$ is P-basic if $a, b \in P$ and $(a, b) \cap P=\emptyset$. The set of all P-basic intervals will be denoted by $B(P)$.

A continuous map $f:[0,1] \rightarrow[0,1]$ is in the class $\mathcal{C P} \mathcal{M}$ if there is an admissible set P such that $f(P) \subset P$ and f is monotone (perhaps constant) on each P-basic interval. A map $f \in \mathcal{C P} \mathcal{M}$ which is not piecewise monotone will be called countably piecewise monotone.

For P admissible, we denote by \mathcal{M}_{P} the set of all (possibly generalized, multi-infinite) matrices indexed by P-basic intervals and with entries from $[0, \infty]$. Also we denote by ℓ_{P}^{1} the Banach space of all real absolutely convergent (again possibly multi-infinite) sequences indexed by P-basic intervals, i.e.,

$$
\begin{equation*}
\ell_{P}^{1}=\left\{u=\left(u_{I}\right)_{I \in B(P)}: \sum_{I \in B(P)}\left|u_{I}\right|<\infty\right\} \tag{2.1}
\end{equation*}
$$

The cone of all nonnegative sequences from ℓ_{P}^{1} is denoted by \mathcal{K}_{P}^{+}.
Remark 2.1. For an admissible set P, a matrix $M \in \mathcal{M}_{P}$ can be modeled as a table $(P \times[0,1]) \cup([0,1] \times(1-P))$; an entry of M is a number from $[0, \infty]$ in one window $I \times J$, where $I \in B(1-P)$ and $J \in B(P)$. Let us denote by P^{\prime} the set of all limit points of P. In accordance with the above model, a matrix $M \in \mathcal{M}_{P}$ will be infinite in the usual sense if $P^{\prime}=\{1\}$. We call it multi-infinite when card $P^{\prime}>1$. For example, for the choice $P=\{0\} \cup\left\{\frac{1}{2^{m}}+\frac{1}{2^{n}}\right\}_{m, n \geq 1}$ we get card $P^{\prime}=\infty$.

Proposition 2.2. Let $M=\left(m_{I J}\right) \in \mathcal{M}_{P}$. Then
(i) M represents a bounded linear operator \mathbb{M} on ℓ_{P}^{1} defined as

$$
\begin{equation*}
(\mathbb{M} u)_{I}:=\sum_{J \in B(P)} m_{I J} u_{J}, \quad u \in \ell_{P}^{1} \tag{2.2}
\end{equation*}
$$

if and only if $(\|\mathbb{M}\|=) \sup _{J \in B(P)} \sum_{I \in B(P)}\left|m_{I J}\right|<\infty$. In that case the operator \mathbb{M} is \mathcal{K}_{P}^{+}-positive.
(ii) The operator \mathbb{M} is compact if and only if its representing matrix M satisfies

$$
\forall \varepsilon>0 \exists \delta \forall J \in B(P): \quad \sum_{|I|<\delta}\left|m_{I J}\right|<\varepsilon
$$

Proof. Recall that the entries of M are from [0, ∞]. The result is well known if the set of limit points of the admissible set P equals $\{1\}[10$, Sec. $4.51,5.5]$. In the general case the arguments are completely analogous.

Definition 2.3. For $f \in \mathcal{C} \mathcal{P} \mathcal{M}$ we define its matrix $M(f) \in \mathcal{M}_{P}$: the $m_{I J}$ entry of $M(f)$ is 1 if $f(I) \supset J$, and 0 otherwise.

It can be easily seen with the help of Proposition 2.2 that for some f from $\mathcal{C P} \mathcal{M}$ (in fact for many of them) the matrix $M(f)$ does not represent a (bounded) operator on ℓ_{P}^{1}.

Using the formal equality $0 \cdot \infty=0$ we can consider the product of nonnegative matrices from \mathcal{M}_{P} : given such $L, M \in \mathcal{M}_{P}$ we put

$$
\begin{equation*}
L M=N \in \mathcal{M}_{P}, \quad n_{I K}=\sum_{J \in B(P)} l_{I J} m_{J K} \tag{2.3}
\end{equation*}
$$

Proposition 2.4. Let $M(f)=\left(m_{I J}\right) \in \mathcal{M}_{P}$ be the matrix of $f \in$ $\mathcal{C P M}$. Then
(i) for each $k \in \mathbb{N}$ and $I, J \in B(P)$, the entry $m_{I J}^{k}$ of $M^{k}(f)$ is finite,
(ii) the entry $m_{I J}^{k}$ of $M^{k}(f)$ equals m if and only if there are closed subintervals J_{1}, \ldots, J_{m} of I with pairwise disjoint interiors such that $f^{k}\left(J_{i}\right) \supset J$.

Proof. (i) From the continuity of f it follows that $\sum_{I \in B(P)} m_{I J}$ is finite for each $J \in B(P)$, which directly implies (i). We prove (ii) by induction. For $k=1$ this is Definition 2.3 of $M(f)$. The induction step follows immediately from the definition of the product of the nonnegative matrices $M(f)$ and $M(f)^{k-1}$ from \mathcal{M}_{P}.

Despite the fact that not every matrix $M(f)$ with $f \in \mathcal{C P} \mathcal{M}$ represents a (bounded) operator on ℓ_{P}^{1}, we can prove the following general result that can justify further research.

Denote the class of all maps from $\mathcal{C P} \mathcal{M}$ of constant slope λ by $\mathcal{C} \mathcal{P} \mathcal{M}_{\lambda}$, i.e., $f \in \mathcal{C P} \mathcal{M}_{\lambda}$ if $\left|f^{\prime}(x)\right|=\lambda$ for all $x \in[0,1]$, possibly except at the points of P. For a continuous nondecreasing map $\psi:[0,1] \rightarrow[0,1]$ its support $\operatorname{supp}(\psi)$ is defined as
$\operatorname{supp}(\psi)=\{x \in[0,1]: \psi(x-\varepsilon, x+\varepsilon)$ is nondegenerate for each $\varepsilon>0\}$.
Theorem 2.5. Let $f \in \mathcal{C P} \mathcal{M}$ with $M(f)=\left(m_{I J}\right) \in \mathcal{M}_{P}$. Then f is semiconjugate via a continuous nondecreasing map ψ to some map
$g \in \mathcal{C P} \mathcal{M}_{\lambda}, \lambda>1$, if and only if there is a nonzero vector $v=\left(v_{I}\right)_{I \in B(P)}$ from \mathcal{K}_{P}^{+}such that

$$
\begin{equation*}
\forall I \in B(P): \quad \sum_{J \in B(P)} m_{I J} v_{J}=\lambda v_{I} \tag{2.4}
\end{equation*}
$$

Proof. To simplify the technicalities as much as possible we will assume that f is countably piecewise monotone.

In order to show that the condition $(\sqrt{2.4})$ is necessary, assume that for some nondecreasing map ψ and $g \in \mathcal{C} \mathcal{P} \mathcal{M}_{\lambda}$,

$$
\begin{equation*}
\psi \circ f=g \circ \psi \tag{2.5}
\end{equation*}
$$

Using the notation $\psi[a, b]:=\psi(b)-\psi(a)$ define $v=\left(v_{I}\right)_{I \in B(P)} \in \mathcal{K}_{P}^{+}$by $v_{I}=\psi[I]$. Assuming $\psi[I] \neq 0$ for $I \in B(P)$, with the help of 2.5) and the definition of $M(f)$ we can write

$$
\begin{equation*}
\sum_{J \in B(P)} m_{I J} v_{J}=\sum_{J \subset f(I)} \psi[J]=\psi[f(I)]=\lambda \psi[I]=\lambda v_{I} \tag{2.6}
\end{equation*}
$$

since if I is a P-basic interval for f then $\psi(I)$ is a $\psi(P)$-basic interval for g. Clearly the equalities (2.6) hold true also when $\psi[I]=v_{I}=0$.

Let us prove that the condition (2.4) is sufficient. Our proof is a modified version of the one for piecewise monotone maps in [1, Lemma 4.6.5].

We may assume that f is not constant on any P-basic interval. If f is constant on some P-basic intervals, we can replace f by a map h constructed as follows.

Let f correspond to an admissible set P and call a P-basic interval I f-vanishing if $v_{I}=0$ (for example, this is true when f is constant on I). More generally, for $u, v \in P, u<v$, a block

$$
[u, v]_{B(P)}=\{I \in B(P): I \subset[u, v]\}
$$

is f-vanishing if it consists of f-vanishing P-basic intervals. Let H denote the union of the interiors of all f-vanishing P-basic intervals. The characteristic function $\chi_{[0,1] \backslash H}$ is defined as usual by

$$
\chi_{[0,1] \backslash H}(x)= \begin{cases}1, & x \notin H \\ 0, & x \in H\end{cases}
$$

The map $\psi_{1}:[0,1] \rightarrow[0,1]$ given by

$$
\psi_{1}(x)=\int_{0}^{x} \chi_{[0,1] \backslash H}(t) d t
$$

is continuous, nondecreasing and $\operatorname{supp}\left(\psi_{1}\right)=[0,1] \backslash H$. In particular, ψ_{1} is increasing if and only if $H=\emptyset$. We have assumed that $v \in \mathcal{K}_{P}^{+}$, is nonzero, which implies that $\psi_{1}([0,1])$ is not degenerate. Notice that by (2.4) if $v_{I}=0$
and $m_{I J}=1$ then $v_{J}=0$, i.e., if $I \in B(P)$ is f-vanishing and $f(I)$ contains a P-basic interval J then J is also f-vanishing. More generally, if a block $[u, v]_{B(P)}$ is f-vanishing then so is the block $f([u, v])_{B(P)}$. This property together with the continuity of ψ_{1} and the countability of P implies that if $\psi_{1} \mid C$ is constant, so is $\psi_{1} \mid f(C)$. Thus, the map $h:\left[0, \psi_{1}(1)\right] \rightarrow\left[0, \psi_{1}(1)\right]$ satisfying

$$
\psi_{1} \circ f=h \circ \psi_{1} \quad \text { on }[0,1]
$$

is (uniquely) well defined; it is also continuous by Proposition 4.4 (see Appendix). We can assume that $h:[0,1] \rightarrow[0,1]$ by rescaling (by an affine conjugacy). Obviously $h \in \mathcal{C P} \mathcal{M}$ and its matrix $M(h) \in \mathcal{M}_{\psi_{1}(P)}$ arises from $M(f)$ by omitting the rows and columns corresponding to all f-vanishing P-basic intervals. If we denote by $u=\left(u_{I}\right)_{I \in B\left(\psi_{1}(P)\right)}$ the vector from $\mathcal{K}_{\psi_{1}(P)}^{+} \subset \ell_{\psi_{1}(P)}^{1}$ obtained from $v=\left(v_{I}\right)_{I \in B(P)}$ by omitting the coordinates corresponding to the f-vanishing P-basic intervals, we clearly obtain

$$
\forall I \in B\left(\psi_{1}(P)\right): \quad \sum_{J \in B\left(\psi_{1}(P)\right)} m_{I J} u_{J}=\lambda u_{I}
$$

It can be easily seen that h is not constant on any $\psi_{1}(P)$-basic interval (we do not claim that h is strictly monotone on basic intervals).

We will need a genealogical tree $\left(P_{n}\right)_{n=0}^{\infty}$ of P with respect to f (see [1, p. 64]). It is defined inductively as follows.

We set $P_{0}=P$. By the above, f is not constant on any P_{0}-basic interval.
Suppose that P_{n} is already defined and f is not constant on any P_{n}-basic intervals. Since f is countably piecewise monotone, $f^{-1}\left(P_{n}\right) \cap[0,1]$ is a union of (at most) countably many closed intervals (perhaps degenerate). Since f was not constant on any P_{n}-basic interval, no component of $f^{-1}\left(P_{n}\right) \cap[0,1]$ contains more than one element of P_{n}. From each of these components we choose one point, if possible an element of P_{n}, and we define P_{n+1} to be the set of those chosen points. Thus $P_{n} \subset P_{n+1}$ and P_{n+1} is invariant since $f\left(P_{n+1}\right) \subset P_{n}$. By construction, P_{n+1} is a countable set and f is not constant on any P_{n+1}-basic interval.

Denote by \mathcal{J}_{n} the set of all P_{n}-basic intervals. In particular, $\mathcal{J}_{0}=B(P)$. Let $v=\left(v_{I}\right)_{I \in B(P)} \in \mathcal{K}_{P}^{+}$be a normalized vector satisfying 2.4.

In order to define the map $\psi: Q=\bigcup_{n=0}^{\infty} P_{n} \rightarrow[0,1]$ we put $\psi(0)=0$ and for $x \in P_{n} \cap(0,1]$,

$$
\begin{equation*}
\psi(x)=\lambda^{-n} \sum_{J \in \mathcal{J}_{n}, J \leq x} v_{f^{n}(J)} \tag{2.7}
\end{equation*}
$$

Since for any fixed $K \in \mathcal{J}_{n}, f^{n} \mid K$ is monotone and $f^{n}(K) \in \mathcal{B}(P)$, using (2.4) one gets

$$
\begin{align*}
\lambda^{-n-1} & \sum_{J \in \mathcal{J}_{n+1}, J \subset K} v_{f^{n+1}(J)}=\lambda^{-n-1} \sum_{J \in \mathcal{J}_{1}, J \subset f^{n}(K)} v_{f(J)} \tag{2.8}\\
= & \lambda^{-n-1} \sum_{J \in B(P)} m_{f^{n}(K) J} v_{J}=\lambda^{-n-1} \lambda v_{f^{n}(K)}=\lambda^{-n} v_{f^{n}(K)},
\end{align*}
$$

hence also

$$
\begin{aligned}
\sum_{J \in \mathcal{J}_{n}} v_{f^{n}(J)} & =\lambda \sum_{J \in \mathcal{J}_{n-1}} v_{f^{n-1}(J)}=\lambda^{2} \sum_{J \in \mathcal{J}_{n-2}} v_{f^{n-2}(J)} \\
& =\cdots=\lambda^{n} \sum_{J \in \mathcal{J}_{0}} v_{J}=\lambda^{n} .
\end{aligned}
$$

This shows that the map ψ is well defined, nondecreasing and $\psi(1)=1$. From the fact that v is normalized and 2.7 we get

$$
\begin{equation*}
\sup _{[x, y] \in \mathcal{J}_{n}}|\psi(x)-\psi(y)| \leq \lambda^{-n} . \tag{2.9}
\end{equation*}
$$

Moreover, if $x \in P_{n}$ is a left limit point of P_{n} then

$$
\lim _{\varepsilon \rightarrow 0_{+}} \lambda^{-n} \sum_{J \in \mathcal{J}_{n} \cap(x-\varepsilon, x)} v_{f^{n}(J)}=0
$$

and similarly for x being a right limit point of P_{n}. Let $x \in(0,1) \backslash Q$. Then for each n there is an interval $J=J(n)$ such that $x \in J \in \mathcal{J}_{n}$. From the above properties of ψ we obtain

$$
\lim _{x \rightarrow 0_{+}, x \in Q} \psi(x)=0, \quad \lim _{x \rightarrow 1-, x \in Q} \psi(x)=1,
$$

and for each $x \in(0,1)$,

$$
\sup _{y<x, y \in Q} \psi(y)=\inf _{y>x, y \in Q} \psi(y) .
$$

Thus ψ can be continuously extended from Q to the whole interval $[0,1]$, constant on the components of $[0,1] \backslash Q$.

Claim 2.6. For any $x, y \in[0,1]$ such that f is monotone on $[x, y]$,

$$
\begin{equation*}
|\psi(f(y))-\psi(f(x))|=\lambda|\psi(y)-\psi(x)| . \tag{2.10}
\end{equation*}
$$

Proof. Let $[x, y] \in \mathcal{J}_{n}$. Then as in (2.8),

$$
\begin{aligned}
|\psi(f(y))-\psi(f(x))| & =\sum_{J \in \mathcal{J}_{1}, J \subset f^{n}([x, y])} v_{f(J)} \\
& =\lambda v_{\left.f^{n}([x, y])\right)}=\lambda|\psi(y)-\psi(x)| .
\end{aligned}
$$

By taking sums and limits, we obtain (2.10) for every $x, y \in \bar{Q}$ such that f is monotone on $[x, y]$. If $z<w$ and $Q \cap(z, w)=\emptyset$ then f is monotone on $[z, w]$ and by the construction of the genealogical tree of P and Q also $Q \cap f((z, w))=\emptyset$. The map ψ is constant on each component of $[0,1] \backslash Q$.

Hence $\psi(z)=\psi(w)$ and $\psi(f(z))=\psi(f(w))$. This proves that 2.10 holds for all $x, y \in[0,1]$ with f monotone on $[x, y]$.

Let us define g. If $z \in[0,1]$ then $\psi^{-1}(z)$ is a closed interval. It contains countably many subintervals J_{k} satisfying

- f is monotone on each J_{k},
- $f\left(\psi^{-1}(z)\right) \backslash \bigcup_{k} f\left(J_{k}\right)$ is countable.

By 2.10 , the map ψ is constant on each image $f\left(J_{k}\right)$, so by the second property, ψ is constant on the whole $f\left(\psi^{-1}(z)\right)$. This means that $f\left(\psi^{-1}(z)\right)$ $\subset \psi^{-1}(w)$ for some $w \in[0,1]$. We then set $g(z)=w$. For every $v \in \psi^{-1}(z)$ we have $\psi(f(v))=g(\psi(v))=w$. This shows that with our definition of g we get $\psi \circ f=g \circ \psi$ on $[0,1]$, hence Proposition 4.4 and (2.10) imply $g \in \mathcal{C P} \mathcal{M}_{\lambda}$.

Remark 2.7. In Theorem 2.5, if f is transitive then ψ is increasing, i.e., f is conjugate to g (see [1, Proposition 4.6.9]).

Example 2.8. In order to illustrate Theorem 2.5 put $P=\{1\} \cup\left\{x_{n}=\right.$ $\left.1-1 / n\}_{n \geq 1}\right\}$ with P-basic interval $I(n)=\left[x_{n}, x_{n+1}\right]$ and consider a map f from $\mathcal{C P M}$ such that $f\left(x_{2}\right)=x_{1}=0$ and

$$
f\left(x_{n}\right)= \begin{cases}1, & n \geq 1 \text { odd } \\ x_{n-2}, & n \geq 4 \text { even }\end{cases}
$$

Then

Put $v=\left(v_{I(n)}\right)_{I(n) \in B(P)}$ with

$$
v_{I(2 k+1)}=v_{I(2 k+2)}=\frac{k+1}{\lambda}\left(\frac{\lambda-1}{2 \lambda}\right)^{k}, \quad k \geq 0
$$

and $\lambda=3+\sqrt{8}$. The reader can directly verify that $v \in \mathcal{K}_{P}^{+}$, v is normalized and the condition (2.4) is fulfilled. Thus, by Theorem 2.5 our map f is semiconjugate via a nondecreasing map ψ to some map $g \in \mathcal{C} \mathcal{P} \mathcal{M}_{3+\sqrt{8}}$ (in fact one can show that $\left.h_{\text {top }}(f)=\log (3+\sqrt{8})\right)$.

From Proposition 2.2 it follows that the matrix $M(f)$ does not represent a bounded linear operator on ℓ_{P}^{1}.

Fig. 1. A transitive map $f \in \mathcal{C} \mathcal{P M}$ from Example 2.8
3. Case of bounded operators. In order to use Theorem 2.5 effectively we restrict our attention to a (still sufficiently rich) subclass of maps from $\mathcal{C P} \mathcal{M}$.

To this end denote by \mathcal{P} the set of all pairs (P, φ) such that
(A1) P is admissible,
(A2) $\varphi: P \rightarrow P$ is continuous,
(A3) the continuous 'connect-the-dots' map $\varphi_{P}:[0,1] \rightarrow[0,1]$ defined by $\left.\varphi_{P}\right|_{P}=\varphi,\left.\varphi_{P}\right|_{J}$ affine for any interval $J \subset \operatorname{conv}(P)$ such that $J \cap P=\emptyset$, satisfies

$$
\exists L=L(P, \varphi)>0 \forall I \in B(P) \forall y \in I^{\circ}: \quad \operatorname{card} \varphi_{P}^{-1}(y)<L
$$

In this section we will deal with restrictively countably piecewise mono-

if it corresponds to some pair $(P, \varphi) \in \mathcal{P}$, i.e., $f \mid P=\varphi$ and f is monotone on each P-basic interval.

Below, for each $f \in \mathcal{R C P} \mathcal{M}$ we consider the matrix $M(f)$ of Definition 2.3 .

Proposition 3.1. Let $f \in \mathcal{R C P} \mathcal{M}$. Then $M(f)$ represents a bounded \mathcal{K}_{P}^{+}-positive linear operator on ℓ_{P}^{1}.

Proof. Let $M(f)=\left(m_{I J}\right)$, and let $L=L(P, \varphi)$ be as in (A3). Then each column $\left(m_{I J}\right)_{I \in B(P)}$ contains at most L units, hence by Proposition 2.2 (i), $M(f)$ represents an operator \mathbb{M} satisfying $\|\mathbb{M}\| \leq L$.

Proposition 3.2. Let $f \in \mathcal{R C P} \mathcal{M}$. Then for each $k \in \mathbb{N}$ and $I, J \in$ $B(P)$ the entry $m_{I J}^{k}$ of $M^{k}(f)$ is less than or equal to L^{k-1}, where $L=$ $L(P, \varphi)$ is the constant given by (A3).

Proof. We leave the proof to the reader.
Using Theorem 4.6 below for the operator \mathbb{M} represented by a matrix $M(f)$ associated to $f \in \mathcal{R C P} \mathcal{M}$, we find that $r(\mathbb{M}) \in \sigma(\mathbb{M})$. Up to now we have no information on the relationship of the entropy of $f \in$ $\mathcal{R C P} \mathcal{M}$ and its spectral radius $r(\mathbb{M})$. This is provided by the following theorem.

Theorem 3.3. Let $f \in \mathcal{R C P} \mathcal{M}$, denote by \mathbb{M} the operator on ℓ_{P}^{1} represented by $M(f)$, and assume that $h_{\mathrm{top}}(f)>0$. Then $r(\mathbb{M}) \geq e^{h_{\mathrm{top}}(f)}$.

Proof. This is a consequence of Theorem 4.3. In what follows we repeatedly use the following: if some continuous map g satisfies $g([a, b]) \supset$ $[c, d]$ with $[a, b],[c, d]$ compact intervals, then $[a, b]$ is g-optimal for $[c, d]$ if $g((a, b))=(c, d)$. Then either $g(a)=c$ and $g(b)=d$ (increasing type) or $g(a)=d$ and $g(b)=c$ (decreasing type).

So let closed intervals $J_{1} \leq \cdots \leq J_{s_{n}}$ with pairwise disjoint interiors create an s_{n}-horseshoe of $f^{k_{n}}$, i.e.,

$$
\begin{equation*}
f^{k_{n}}\left(J_{i}\right) \supset \bigcup_{i=1}^{s_{n}} J_{i} \quad \text { for each } i \in\left\{1, \ldots, s_{n}\right\} \tag{3.1}
\end{equation*}
$$

We can assume that each J_{i} is $f^{k_{n}}$-optimal for the interval $\left[\min J_{1}, \max J_{s_{n}}\right]$. Since each J_{i} has its monotonicity type and the map $f^{k_{n}}$ has its local extrema in $f^{k_{n}}$-preimages of P, each J_{i} can be enlarged (if necessary) to satisfy

- (3.1),
- $\min \bigcup J_{i}, \max \bigcup J_{i} \in P$,
- $J_{1} \leq \cdots \leq J_{s_{n}}$,
- J_{i} is optimal for $\left[\min \bigcup J_{i}, \max \bigcup J_{i}\right]$.

Clearly this means that there is a P-basic interval K such that $f^{k_{n}}\left(J_{i}\right) \supset K$ for each i and it enables us to consider for each i a $P_{k_{n}}$-basic interval $L_{i} \subset J_{i}$ such that L_{i} is $f^{k_{n}}$-optimal for K. Notice that

- each L_{i} lies in some P-basic interval,
- two neighbors L_{i}, L_{i+1} can/need not lie in the same P-basic interval,
- $L_{1} \leq \cdots \leq L_{s_{n}}$,

In any case, using Proposition 2.4 (ii) we obtain

$$
\begin{equation*}
\sum_{I \in B(P)} m_{I K}^{k_{n}} \geq s_{n} \tag{3.2}
\end{equation*}
$$

From (3.2) and Proposition 2.2 (i) we get

$$
\left\|\mathbb{M}^{k_{n}}\right\| \geq s_{n}
$$

hence Gelfand's formula gives

$$
r(\mathbb{M})=\lim _{n \rightarrow \infty}\left\|\mathbb{M}^{k_{n}}\right\|^{1 / k_{n}} \geq \lim _{n \rightarrow \infty} s_{n}^{1 / k_{n}}=e^{h_{\text {top }}(f)}
$$

In Appendix we introduce the Radon-Nikol'skiĭ operators. For that class of operators we can say even more.

Theorem 3.4. Let $f \in \mathcal{R C P \mathcal { M }}$, denote by \mathbb{M} the operator on ℓ_{P}^{1} represented by $M(f)$ and assume that $h_{\text {top }}(f)>0$. If $\tau(\mathbb{M})$ is a Radon-Nikol'skiu operator on ℓ_{P}^{1} for some τ holomorphic in the neighborhood of the spectrum $\sigma(\mathbb{M})$ then $r(\mathbb{M})=e^{h_{\text {top }}(f)}$.

Proof. Fix $\varepsilon>0$. Let \mathbb{M}_{δ} be the operator represented by the matrix $M_{\delta}=\left(m_{I J}(\delta)\right) \in \mathcal{M}_{P}$ from Theorem 4.9, By that theorem for some sufficiently small $\delta>0$,

$$
\begin{equation*}
r\left(\mathbb{M}_{\delta}\right)>r(\mathbb{M})-\varepsilon \tag{3.3}
\end{equation*}
$$

Since by (4.1) the matrix M_{δ} contains only finitely many nonzero elements, just as for every finite matrix [1, Lemma 4.4.2] we get

$$
\begin{equation*}
r\left(\mathbb{M}_{\delta}\right)=\lim _{k \rightarrow \infty} \sqrt[k]{\sum_{I \in B(P)} m_{I I}^{k}(\delta)}=\lim _{k \rightarrow \infty} \sqrt[k]{\sum_{n=1}^{\ell} m_{I_{n} I_{n}}^{k}(\delta)} \tag{3.4}
\end{equation*}
$$

where the matrix $M_{\delta}^{k}=\left(m_{I J}^{k}(\delta)\right) \in \mathcal{M}_{P}$ represents the k th power \mathbb{M}_{δ}^{k} of the operator \mathbb{M}_{δ} and the P-basic intervals I_{1}, \ldots, I_{ℓ} do not depend on k. From (3.4), (3.3) for some $j \in\{1, \ldots, \ell\}$ and a sufficiently large k we obtain $\ell<(1+\varepsilon)^{k}$ and

$$
\begin{equation*}
\sqrt[k]{\ell \cdot m_{I_{j} I_{j}}^{k}(\delta)} \geq \sqrt[k]{\sum_{n=1}^{\ell} m_{I_{n} I_{n}}^{k}(\delta)}>r(\mathbb{M})-\varepsilon \tag{3.5}
\end{equation*}
$$

hence

$$
\begin{aligned}
m & =m_{I_{j} I_{j}}^{k}(\delta) \geq\left(\frac{1}{1+\varepsilon} \sqrt[k]{\sum_{n=1}^{\ell} m_{I_{n} I_{n}}^{k}(\delta)}\right)^{k} \\
& >\left(\frac{r(\mathbb{M})-\varepsilon}{1+\varepsilon}\right)^{k}
\end{aligned}
$$

Using Proposition 3.2 (ii) one can see that there are closed subintervals J_{1}, \ldots, J_{m} of I_{j} with pairwise disjoint interiors such that $f^{k}\left(J_{i}\right) \supset I_{j}$, i.e., the map f^{k} has an m-horseshoe; hence by Proposition 4.2,

$$
e^{h_{\mathrm{top}}(f)} \geq \sqrt[k]{m}>\frac{r(\mathbb{M})-\varepsilon}{1+\varepsilon}
$$

Since ε was arbitrary, we have

$$
e^{h_{\mathrm{top}}(f)} \geq r(\mathbb{M})
$$

The opposite inequality follows from Theorem 3.3 .
The previous results lead to the following theorem.
Theorem 3.5. Let $f \in \mathcal{R C P} \mathcal{M}$, denote by \mathbb{M} the operator on ℓ_{P}^{1} represented by $M(f)$, and assume that $h_{\mathrm{top}}(f)=\log \beta>0$. If $\tau(\mathbb{M})$ is a RadonNikol'skǐ̌ operator on ℓ_{P}^{1} for a suitable τ holomorphic in the neighborhood of the spectrum $\sigma(\mathbb{M})$ then f is semiconjugate via a nondecreasing map ψ to some map $g \in \mathcal{R C P} \mathcal{M}_{\beta}$. In particular this is so when \mathbb{M} itself is a Radon-Nikol'skǐ operator.

Proof. By our assumptions Theorem 4.8 can be applied to the operator \mathbb{M}, the real Banach space ℓ_{P}^{1} and the cone \mathcal{K}_{P}^{+}. By that theorem $r(\mathbb{M}) \in$ $P_{\sigma}(\mathbb{M})$ with corresponding eigenvector in \mathcal{K}_{P}^{+}. Since from Theorem 3.4 we get $r(\mathbb{M})=e^{h_{\mathrm{top}}(f)}=\beta>1$, our conclusion follows from Theorem 2.5 with $\lambda=\beta$.

Definition 3.6. For an integer $m>1$, we say that a pair $(P, \varphi) \in \mathcal{P}$ is m-ruled if there are P-basic intervals I_{1}, \ldots, I_{m} such that

- $\varphi_{P}:[0,1] \rightarrow[0,1]$ has an m-horseshoe created by the intervals I_{1}, \ldots, I_{m} (see Definition 4.1),
- $\forall I \in B(P) \forall y \in I^{\circ}: \operatorname{card}\left[\varphi_{P}^{-1}(y) \cap\left([0,1] \backslash \bigcup_{i=1}^{m} I_{i}\right)\right]<m$.

Theorem 3.7. Let $f \in \mathcal{R C} \mathcal{P} \mathcal{M}$ correspond to an m-ruled pair $(P, \varphi) \in \mathcal{P}$. Then f is semiconjugate via a nondecreasing map ψ to some map $g \in$ $\mathcal{R C P} \mathcal{M}_{\beta}$ with $\beta=e^{h_{\mathrm{top}}(f)}$.

Proof. Let $M(f)=\left(m_{I J}\right) \in \mathcal{M}_{P}$ be the matrix of $f \in \mathcal{R C P} \mathcal{M}$, and denote by \mathbb{M} the operator on ℓ_{P}^{1} represented by $M(f)$. We show that under our assumptions \mathbb{M} is a Radon-Nikol'skiı̆ operator.

For a set $K \subset[0,1]$ define a matrix $M(f, K)=\left(m_{I J}(K)\right) \in \mathcal{M}_{P}$ by

$$
m_{I J}(K)= \begin{cases}m_{I J}, & I \subset K \tag{3.6}\\ 0, & \text { otherwise } .\end{cases}
$$

Since the pair $(P, \varphi) \in \mathcal{P}$ is m-ruled, the map φ_{P} (hence also f) has an m-horseshoe created by P-basic intervals I_{1}, \ldots, I_{m}. Let

$$
C=M\left(f, \bigcup_{i=1}^{m} I_{i}\right) \quad \text { and } \quad B=M\left(f,[0,1] \backslash \bigcup_{i=1}^{m} I_{i}\right) .
$$

Then $M(f)=C+B$ and by Proposition 2.2(i) the matrices C, B represent bounded operators on ℓ_{P}^{1}; denote them \mathbb{C}, \mathbb{B}, and set $\mathbb{M}=\mathbb{C}+\mathbb{B}$. Clearly by our definition the matrix C has (finitely many) nonzero I_{i}-rows, hence by Proposition 2.2 (ii) the operator \mathbb{C} is compact. Due to Definition 4.7 it is sufficient to verify that $r(\mathbb{M})>r(\mathbb{B})$. Using Proposition 2.2 and Gelfand's formula we consequently get

$$
r(\mathbb{M}) \geq r(\mathbb{C}) \geq m>m-1 \geq\|\mathbb{B}\| \geq r(\mathbb{B}) .
$$

This shows that the operator \mathbb{M} is Radon-Nikol'skiĭ and the conclusion follows from Theorem 3.5,

Example 3.8. Let $P=\left\{a_{n}: n=0,1, \ldots, \infty\right\}$ be an admissible set with the only limit point equal to 1 . Assume that $0=a_{0}<a_{1}<\cdots<a_{\infty}=1$ and define the map $\varphi: P \rightarrow P$ by

$$
\varphi\left(a_{0}\right)=\varphi\left(a_{2}\right)=\varphi\left(a_{4}\right)=a_{\infty}, \quad \varphi\left(a_{1}\right)=\varphi\left(a_{3}\right)=\varphi\left(a_{5}\right)=a_{0}, \quad \varphi\left(a_{6}\right)=a_{6}
$$

Fig. 2. $f \in \mathcal{R C P M}$ transitive (left), $g \in \mathcal{R C P}_{\mathcal{P}}{ }_{r(\mathbb{M})}, r(\mathbb{M})=e^{h_{\text {top }}(f)} \sim 6.5616$ from Example 3.8
and for each $k \geq 0$,

$$
\varphi\left(a_{3 k+7}\right)=a_{3 k+9}, \quad \varphi\left(a_{3 k+8}\right)=a_{3 k+5}, \quad \varphi\left(a_{3 k+9}\right)=a_{3 k+9} .
$$

Then $(P, \varphi) \in \mathcal{P}$ and it is 6 -ruled, where φ_{P} has a 6 -horseshoe created by the P-basic intervals $\left[a_{0}, a_{1}\right], \ldots,\left[a_{5}, a_{6}\right]$. Let us consider a map $f \in \mathcal{R C P \mathcal { M }}$ that corresponds to (P, φ). By Theorem 3.7 the map f is semiconjugate via a nondecreasing map ψ to some map $g \in \mathcal{R C P} \mathcal{M}_{\beta}$ with $\beta=e^{h_{\text {top }}(f)}$. In particular, the maps f, g are conjugate when f is transitive - see Remark 2.7 .

The matrices $M(f), C, B$ from Example 3.8 are

$$
+\left(\begin{array}{lllllllllllllllllllllll}
0 & . & . \\
0 & . & . \\
0 & . & . \\
0 & . & . \\
0 & . & . \\
0 & . & . \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & . \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & . \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & . \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & . \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & . \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . & . \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & . & . \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & . & . \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & . & . \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & . & . \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & . & . \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & . & . \\
. & . \\
. & . \\
. & .
\end{array}\right)
$$

4. Appendix

Definition 4.1. A function $f:[a, b] \rightarrow[a, b]$ is said to have a d-horseshoe if there exist d subintervals I_{1}, \ldots, I_{d} of $[a, b]$ with disjoint interiors such that $f\left(I_{i}\right) \supset I_{j}$ for all $1 \leq i, j \leq d$.

Proposition 4.2 ([7]). If $f:[a, b] \rightarrow[a, b]$ is continuous and has a dhorseshoe then $h_{\text {top }}(f) \geq \log d$.

Theorem 4.3 ([7]). Assume that f has positive entropy. Then there exist sequences $\left\{k_{n}\right\}_{n=1}^{\infty}$ and $\left\{s_{n}\right\}_{n=1}^{\infty}$ of positive integers such that $\lim _{n \rightarrow \infty} k_{n}$ $=\infty$, for each n the map $f^{k_{n}}$ has an s_{n}-horseshoe and

$$
\lim _{n \rightarrow \infty} \frac{1}{k_{n}} \log s_{n}=h_{\mathrm{top}}(f)
$$

Proposition 4.4 ([1, Lemma 4.6.1]). Let $f:[0,1] \rightarrow[0,1]$ be continuous and $\psi:[0,1] \rightarrow[0,1]$ a nondecreasing continuous map satisfying $\psi([0,1])=$ $[0,1]$. Assume that $g:[0,1] \rightarrow[0,1]$ satisfies $\psi \circ f=g \circ \psi$ on $[0,1]$. Then g is continuous and if f is nondecreasing (respectively nonincreasing) on some interval J then g is nondecreasing (respectively nonincreasing) on $\psi(J)$.

Let \mathcal{E} be a real Banach space.
Definition 4.5. A closed set $\mathcal{K} \subset \mathcal{E}$ is called a cone if it satisfies
(i) $\mathcal{K}+\mathcal{K} \subset \mathcal{K}$,
(ii) $a \mathcal{K} \subset \mathcal{K}$ for $a \in \mathbb{R}_{+}$, where $\mathbb{R}_{+}=[0, \infty)$,
(iii) $\mathcal{K} \cap(-\mathcal{K})=\{\theta\}$, where θ is the zero element from \mathcal{E}.

A cone \mathcal{K} is called
(iv) reproducing if $\mathcal{K}-\mathcal{K}=\mathcal{E}$,
(v) normal if there exists a constant $b>0$ such that $\|x\| \leq b\|y\|$ whenever $y-x \in \mathcal{K}$.

An operator T on \mathcal{E} is called \mathcal{K}-positive if $T \mathcal{K} \subset \mathcal{K}$.
For a bounded linear operator \mathbb{A} on a Banach space \mathcal{E} we will consider its spectrum $\sigma(\mathbb{A})=P_{\sigma}(\mathbb{A}) \cup R_{\sigma}(\mathbb{A}) \cup C_{\sigma}(\mathbb{A})$ partitioned into the point, residual and continuous part respectively.

Theorem 4.6 ([2], [3]). Let \mathcal{K} be a normal reproducing cone in a real Banach space \mathcal{E}. Then for every bounded \mathcal{K}-positive operator \mathbb{A} the spectral radius $r(\mathbb{A})$ of \mathbb{A} belongs to the spectrum $\sigma(\mathbb{A})$.

Following [5] we introduce the Radon-Nikol'skiĭ operators.
Definition 4.7. A bounded linear operator \mathbb{A} defined on a (complex) Banach space \mathcal{F} will be called Radon-Nikol'skii if \mathbb{A} may be represented as $\mathbb{A}=\mathbb{C}+\mathbb{B}$, where
(i) \mathbb{C} is compact,
(ii) $r(\mathbb{A})>r(\mathbb{B})$.

Theorem 4.8 (5, Theorem 3.2]). Let τ be a function holomorphic in the neighborhood of the spectrum $\sigma(\mathbb{A})$ of the operator \mathbb{A}. Assume that \mathbb{A} is \mathcal{K}-positive and $\tau(\mathbb{A})$ is a Radon-Nikol'skiŭ operator on a real Banach space \mathcal{E}. Then $r(\mathbb{A}) \in P_{\sigma}(\mathbb{A})$ with corresponding eigenvector in \mathcal{K}.

Let $\mathcal{P}, \mathcal{M}_{P}$ and ℓ_{P}^{1} be as in Section 2.
Theorem 4.9 (5). Given $P \in \mathcal{P}$ let $M=\left(m_{I J}\right) \in \mathcal{M}_{P}$ be a matrix representing an operator \mathbb{M} on ℓ_{P}^{1}. Assume that for some function τ holomorphic in the neighborhood of $\sigma(\mathbb{M})$ the operator $\tau(\mathbb{M})$ is a Radon-Nikol'skiu operator on ℓ_{P}^{1}. For $\delta>0$, denote by \mathbb{M}_{δ} the operator on ℓ_{P}^{1} represented by the matrix $M_{\delta}=\left(m_{I J}(\delta)\right) \in \mathcal{M}_{P}$ defined as

$$
m_{I J}(\delta)= \begin{cases}m_{I J}, & \min \{|I|,|J|\} \geq \delta, \tag{4.1}\\ 0, & \text { otherwise } .\end{cases}
$$

Then

$$
\lim _{\delta \rightarrow 0} r\left(\mathbb{M}_{\delta}\right)=r(\mathbb{M}) .
$$

Acknowledgements. The author was partly supported by the Grant Agency of the Czech Republic contract number 201/09/0854. He also gratefully acknowledges the support of the MYES of the Czech Republic via the contract MSM 6840770010.

References

[1] L. Alsedá, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and the Entropy in Dimension One, Adv. Ser. Nonlinear Dynam. 5, World Sci., Singapore, 1993.
[2] F. F. Bonsall, Linear operators in complete positive cones, Proc. London Math. Soc. 8 (1958), 53-75.
[3] S. Karlin, Positive operators, J. Math. Mech. 8 (1959), 907-937.
[4] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl. 54, Cambridge Univ. Press, Cambridge, 1995.
[5] I. Marek, On some spectral properties of Radon-Nicolski operations and their generalizations, Comm. Math. Univ. Carolin. 3 (1962), 20-30.
[6] J. Milnor and W. Thurston, On iterated maps of the interval, in: Dynamical Systems, Lecture Notes in Math. 1342, Springer, Berlin, 1988, 465-563.
[7] M. Misiurewicz, Horseshoes for mappings of an interval, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 167-169.
[8] M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980), 45-63.
[9] W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc. 122 (1966), 368-378.
[10] A. E. Taylor, Introduction to Functional Analysis, Wiley, New York, 1958.

Jozef Bobok
Department of Mathematics
FCE of Czech Technical University in Prague
Thákurova 7
16629 Praha 6, Czech Republic
E-mail: bobok@mat.fsv.cvut.cz

Received May 31, 2011
Revised version February 20, 2012

[^0]: 2010 Mathematics Subject Classification: Primary 37E99; Secondary 37B99.
 Key words and phrases: interval map, topological entropy, countably piecewise monotone.

