Isometries between groups of invertible elements in C^* -algebras

by

OSAMU HATORI and KEIICHI WATANABE (Niigata)

Abstract. We describe all surjective isometries between open subgroups of the groups of invertible elements in unital C^* -algebras. As a consequence the two C^* -algebras are Jordan *-isomorphic if and only if the groups of invertible elements in those C^* -algebras are isometric as metric spaces.

1. Introduction. This paper arises from a desire to study isometries between groups of invertible elements in unital Banach algebras (cf. [4–7]). As is proved in [5] a surjective isometry between open subgroups of the groups of all invertible elements in unital semisimple Banach algebras extends to a surjective real-linear isometry between the underlying Banach algebras. In particular, if the given Banach algebras are commutative, then the extended map is a real isomorphism followed by multiplication by some element. We might conjecture that the Jordan structure is essentially preserved in general. In this paper we give a complete description for the case of unital C^* -algebras.

Throughout the paper the group of all invertible elements in a unital C^* -algebra A is denoted by A^{-1} , and the identity in A is denoted by I_A .

2. The results. The description of real-linear isometries between C^* -algebras, given below, might be already known (cf. [2, Corollary 3.3]). Unfortunately we could not find it in the literature and we present it with a sketch of proof for the convenience of the readers.

PROPOSITION 2.1. Let A and B be unital C^* -algebras. Suppose that ϕ is a surjective isometry from A onto B with $\phi(0) = 0$. Then ϕ is real-linear and there exist a central projection P in B and a complex-linear Jordan *-isomorphism J from A onto B such that

(2.1)
$$\phi(a) = \phi(I_A)PJ(a) + \phi(I_A)(I_B - P)J(a)^*, \quad a \in A.$$

²⁰¹⁰ Mathematics Subject Classification: Primary 46L05; Secondary 46B04. Key words and phrases: C^{*}-algebras, isometries, groups of invertible elements.

Conversely every operator of this form is a real-linear isometry from A onto B.

Proof. First applying the celebrated theorem of Mazur and Ulam [8] (cf. [9]) we see at once that ϕ is a real-linear map. A C^* -algebra is a real C^* -algebra in the sense of [1], hence by [1, Theorem 6.4] the equality

(2.2)
$$\phi(ab^*c + cb^*a) = \phi(a)\phi(b)^*\phi(c) + \phi(c)\phi(b)^*\phi(a)$$

holds for every triple $a, b, c \in A$. Choose $b \in A$ so that $\phi(b^*)$ is invertible. Letting $a = c = I_A$ in (2.2) we find that $\phi(I_A)$ is invertible. Furthermore substituting $b = I_A$ we see that $\phi(I_A)$ is unitary. Denoting $\phi_0(\cdot) = (\phi(I_A))^{-1}\phi(\cdot)$, an elementary calculation shows that ϕ_0 is a surjective real-linear isometry from A onto B such that $\phi_0(I_A) = I_B$, and

(2.3)
$$\phi_0(ab^*c + cb^*a) = \phi_0(a)\phi_0(b)^*\phi_0(c) + \phi_0(c)\phi_0(b)^*\phi_0(a)$$

for every triple $a, b, c \in A$. By (2.3) we obtain the equalities $\phi_0(b^*) = \phi_0(b)^*$ for every $b \in A$ (ϕ_0 is *-preserving) and $\phi_0(a^2) = (\phi_0(a))^2$ for every $a \in A$ (ϕ_0 is square-preserving).

Put

$$P = \frac{-i\phi_0(iI_A) + I_B}{2}.$$

Define a real-linear operator $J: A \to B$ by

(2.4)
$$J(a) = P\phi_0(a) + (I_B - P)\phi_0(a)^*$$

for every $a \in A$. As ϕ_0 is *-preserving and square-preserving, the equalities $(-i\phi_0(iI_A))^2 = I_B$ and $(-i\phi_0(iI_A))^* = -i\phi_0(iI_A)$ follow. We also see that $\phi_0(ia) = \phi_0(a)\phi_0(iI_A) = \phi_0(iI_A)\phi_0(a)$ for every $a \in A$. Applying these equalities we observe that these P and J are just as desired. Note that J is surjective. To prove this let $b \in B$. Then there exists $a \in A$ with $\phi_0(a) = Pb + (I_B - P)b^*$ as ϕ_0 is surjective. By a simple calculation J(a) = b as desired.

Conversely, suppose that U is unitary in B, P is a central projection in B, and J is a complex-linear Jordan *-isomorphism from A onto B such that

$$\phi(a) = UPJ(a) + U(I_B - P)J(a)^*$$

for every $a \in A$. A calculation shows that ϕ is surjective. We now prove that ϕ is an isometry between A and B. Since P is a central projection we see that

(2.5)
$$||Pb + (I_B - P)c|| = \max\{||Pb||, ||(I_B - P)c||\}$$

for all b and c in B. Applying (2.5) for b = J(a) and $c = J(a)^*$ or J(a) we

can easily check that

$$||PJ(a) + (I_B - P)J(a)^*|| = \max\{||PJ(a)||, ||(I_B - P)J(a)^*||\} = \max\{||PJ(a)||, ||(I_B - P)J(a)||\} = ||J(a)||$$

for every $a \in A$ as $I_B - P$ is central. Since J is an isometry (cf. [3, Theorem 6.2.5]) and U is unitary, the real-linear map ϕ is an isometry.

THEOREM 2.2. Let A and B be unital C^* -algebras and A and B open subgroups of A^{-1} and B^{-1} respectively. Suppose that T is a bijection from \mathcal{A} onto \mathcal{B} . Then T is an isometry if and only if $T(I_A)$ is unitary in B and there are a central projection P in B, and a complex-linear Jordan *-isomorphism J from A onto B such that

(2.6)
$$T(a) = T(I_A)PJ(a) + T(I_A)(I_B - P)J(a)^*, \quad a \in \mathcal{A}.$$

Furthermore the operator $T(I_A)PJ(\cdot) + T(I_A)(I_B - P)J(\cdot)^*$ defines a surjective real-linear isometry from A onto B.

Proof. Suppose that $T: \mathcal{A} \to \mathcal{B}$ is a surjective isometry. By [5, Theorem 3.2, T extends to a real-linear isometry T from A onto B since the radical rad(B) of B is $\{0\}$ as B is a C^{*}-algebra. Applying Proposition 2.1 we see that (2.6) holds.

Conversely suppose that T is given by (2.6). Then by Proposition 2.1 we see that $T(I_A)PJ(\cdot) + T(I_A)(I_B - P)J(\cdot)^*$ defines a surjective real-linear isometry from A onto B.

For a complex Hilbert space H the algebra of all bounded linear operators on H is denoted by B(H). We describe the structure of all surjective isometries between open subgroups of $B(H)^{-1}$. We need the following notation. Beside the adjoint operation on the algebra B(H) we shall also need the operation of transposition. It is defined by choosing a complete orthonormal system in H and for any operator a considering the operator a^{T} whose matrix in the given basis is the transpose of the corresponding matrix of a. It can be seen that the map $a \mapsto a^T$ is a well-defined linear *-antiautomorphism of B(H). Then the conjugate \overline{a} of $a \in B(H)$ is defined by the formula $\overline{a} = (a^*)^T$. Our result reads as follows.

COROLLARY 2.3. Let H_1 and H_2 be complex Hilbert spaces. Suppose that T is a surjective isometry from \mathcal{A} onto \mathcal{B} , where \mathcal{A} and \mathcal{B} are open subgroups of $B(H_1)^{-1}$ and $B(H_2)^{-1}$ respectively. Then $T(I_{B(H_1)})$ is a unitary operator and there is a unitary operator w (complex-linear isometry) from H_1 onto H_2 such that T is of one of the following forms:

- (1) $T(a) = T(I_{B(H_1)})waw^*$ for all $a \in \mathcal{A}$,

- $\begin{array}{ll} (1) & T(a) & T(I_{B(H_1)}) \otimes a^* & \text{for all } a \in \mathcal{A}, \\ (2) & T(a) & = T(I_{B(H_1)}) \otimes a^* w^* & \text{for all } a \in \mathcal{A}, \\ (3) & T(a) & = T(I_{B(H_1)}) \otimes a^T w^* & \text{for all } a \in \mathcal{A}, \\ (4) & T(a) & = T(I_{B(H_1)}) \otimes \overline{a} w^* & \text{for all } a \in \mathcal{A}. \end{array}$

Proof. The center of $B(H_2)$ consists of the scalar operators, hence P is a trivial projection (the zero operator or $I_{B(H_2)}$). Then Theorem 2.2 asserts that there is a Jordan *-isomorphism J such that $T(a) = T(I_{B(H_1)})J(a)$ for all $a \in \mathcal{A}$ or $T(a) = T(I_{B(H_1)})J(a)^*$ for all $a \in \mathcal{A}$. A Jordan *-isomorphism from $B(H_1)$ onto $B(H_2)$ is an algebra isomorphism or an algebra antiisomorphism, hence there is a unitary operator w from H_1 onto H_2 such that $J(b) = wbw^*$ for every $b \in B(H_2)$ or $J(b) = wb^T w^*$ for every $b \in B(H_2)$. Thus we have the conclusion.

Acknowledgements. The authors were partly supported by the Grantsin-Aid for Scientific Research, Japan Society for the Promotion of Science.

References

- C.-H. Chu, T. Dang, B. Russo and B. Ventura, Surjective isometries of real C^{*}algebras, J. London Math. Soc. 47 (1993), 97–118.
- T. Dang, Real isometries between JB*-triples, Proc. Amer. Math. Soc. 114 (1992), 971–980.
- [3] R. J. Fleming and J. E. Jamison, Isometries on Banach Spaces: Function Spaces, Monogr. Surveys Pure Appl. Math. 129, Chapman & Hall/CRC, 2003.
- [4] O. Hatori, Isometries between groups of invertible elements in Banach algebras, Studia Math. 194 (2009), 293–304.
- [5] O. Hatori, Algebraic properties of isometries between groups of invertible elements in Banach algebras, J. Math. Anal. Appl. 376 (2011), 84–93.
- [6] O. Hatori, New criteria for equivalence of locally compact abelian groups, J. Group Theory 15 (2012), 271–277.
- [7] O. Hatori and L. Molnár, Isometries of the unitary group, Proc. Amer. Math. Soc. 140 (2012), 2141–2154.
- [8] S. Mazur et S. Ulam, Sur les transformationes isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946–948.
- J. Väisälä, A proof of the Mazur–Ulam theorem, Amer. Math. Monthly 110 (2003), 633–635.

Osamu Hatori, Keiichi Watanabe Department of Mathematics Faculty of Science Niigata University 950-2181 Niigata, Japan E-mail: hatori@math.sc.niigata-u.ac.jp wtnbk@math.sc.niigata-u.ac.jp

> Received May 10, 2011 Revised version March 26, 2012 (7185)