Isometries between groups of invertible elements in C^{*}-algebras

by
Osamu Hatori and Keifchi Watanabe (Niigata)

Abstract

We describe all surjective isometries between open subgroups of the groups of invertible elements in unital C^{*}-algebras. As a consequence the two C^{*}-algebras are Jordan *-isomorphic if and only if the groups of invertible elements in those C^{*}-algebras are isometric as metric spaces.

1. Introduction. This paper arises from a desire to study isometries between groups of invertible elements in unital Banach algebras (cf. [4]-7]). As is proved in [5] a surjective isometry between open subgroups of the groups of all invertible elements in unital semisimple Banach algebras extends to a surjective real-linear isometry between the underlying Banach algebras. In particular, if the given Banach algebras are commutative, then the extended map is a real isomorphism followed by multiplication by some element. We might conjecture that the Jordan structure is essentially preserved in general. In this paper we give a complete description for the case of unital C^{*}-algebras.

Throughout the paper the group of all invertible elements in a unital C^{*}-algebra A is denoted by A^{-1}, and the identity in A is denoted by I_{A}.
2. The results. The description of real-linear isometries between C^{*} algebras, given below, might be already known (cf. [2, Corollary 3.3]). Unfortunately we could not find it in the literature and we present it with a sketch of proof for the convenience of the readers.

Proposition 2.1. Let A and B be unital C^{*}-algebras. Suppose that ϕ is a surjective isometry from A onto B with $\phi(0)=0$. Then ϕ is real-linear and there exist a central projection P in B and a complex-linear Jordan *-isomorphism J from A onto B such that

$$
\begin{equation*}
\phi(a)=\phi\left(I_{A}\right) P J(a)+\phi\left(I_{A}\right)\left(I_{B}-P\right) J(a)^{*}, \quad a \in A \tag{2.1}
\end{equation*}
$$

2010 Mathematics Subject Classification: Primary 46L05; Secondary 46B04.
Key words and phrases: C^{*}-algebras, isometries, groups of invertible elements.

Conversely every operator of this form is a real-linear isometry from A onto B.

Proof. First applying the celebrated theorem of Mazur and Ulam [8] (cf. 9]) we see at once that ϕ is a real-linear map. A C^{*}-algebra is a real C^{*}-algebra in the sense of [1], hence by [1, Theorem 6.4] the equality

$$
\begin{equation*}
\phi\left(a b^{*} c+c b^{*} a\right)=\phi(a) \phi(b)^{*} \phi(c)+\phi(c) \phi(b)^{*} \phi(a) \tag{2.2}
\end{equation*}
$$

holds for every triple $a, b, c \in A$. Choose $b \in A$ so that $\phi\left(b^{*}\right)$ is invertible. Letting $a=c=I_{A}$ in (2.2) we find that $\phi\left(I_{A}\right)$ is invertible. Furthermore substituting $b=I_{A}$ we see that $\phi\left(I_{A}\right)$ is unitary. Denoting $\phi_{0}(\cdot)=\left(\phi\left(I_{A}\right)\right)^{-1} \phi(\cdot)$, an elementary calculation shows that ϕ_{0} is a surjective real-linear isometry from A onto B such that $\phi_{0}\left(I_{A}\right)=I_{B}$, and

$$
\begin{equation*}
\phi_{0}\left(a b^{*} c+c b^{*} a\right)=\phi_{0}(a) \phi_{0}(b)^{*} \phi_{0}(c)+\phi_{0}(c) \phi_{0}(b)^{*} \phi_{0}(a) \tag{2.3}
\end{equation*}
$$

for every triple $a, b, c \in A$. By (2.3) we obtain the equalities $\phi_{0}\left(b^{*}\right)=\phi_{0}(b)^{*}$ for every $b \in A\left(\phi_{0}\right.$ is $*$-preserving) and $\phi_{0}\left(a^{2}\right)=\left(\phi_{0}(a)\right)^{2}$ for every $a \in A$ (ϕ_{0} is square-preserving).

Put

$$
P=\frac{-i \phi_{0}\left(i I_{A}\right)+I_{B}}{2}
$$

Define a real-linear operator $J: A \rightarrow B$ by

$$
\begin{equation*}
J(a)=P \phi_{0}(a)+\left(I_{B}-P\right) \phi_{0}(a)^{*} \tag{2.4}
\end{equation*}
$$

for every $a \in A$. As ϕ_{0} is $*$-preserving and square-preserving, the equalities $\left(-i \phi_{0}\left(i I_{A}\right)\right)^{2}=I_{B}$ and $\left(-i \phi_{0}\left(i I_{A}\right)\right)^{*}=-i \phi_{0}\left(i I_{A}\right)$ follow. We also see that $\phi_{0}(i a)=\phi_{0}(a) \phi_{0}\left(i I_{A}\right)=\phi_{0}\left(i I_{A}\right) \phi_{0}(a)$ for every $a \in A$. Applying these equalities we observe that these P and J are just as desired. Note that J is surjective. To prove this let $b \in B$. Then there exists $a \in A$ with $\phi_{0}(a)=P b+\left(I_{B}-P\right) b^{*}$ as ϕ_{0} is surjective. By a simple calculation $J(a)=b$ as desired.

Conversely, suppose that U is unitary in B, P is a central projection in B, and J is a complex-linear Jordan $*$-isomorphism from A onto B such that

$$
\phi(a)=U P J(a)+U\left(I_{B}-P\right) J(a)^{*}
$$

for every $a \in A$. A calculation shows that ϕ is surjective. We now prove that ϕ is an isometry between A and B. Since P is a central projection we see that

$$
\begin{equation*}
\left\|P b+\left(I_{B}-P\right) c\right\|=\max \left\{\|P b\|,\left\|\left(I_{B}-P\right) c\right\|\right\} \tag{2.5}
\end{equation*}
$$

for all b and c in B. Applying (2.5) for $b=J(a)$ and $c=J(a)^{*}$ or $J(a)$ we
can easily check that

$$
\begin{aligned}
\left\|P J(a)+\left(I_{B}-P\right) J(a)^{*}\right\| & =\max \left\{\|P J(a)\|,\left\|\left(I_{B}-P\right) J(a)^{*}\right\|\right\} \\
& =\max \left\{\|P J(a)\|,\left\|\left(I_{B}-P\right) J(a)\right\|\right\}=\|J(a)\|
\end{aligned}
$$

for every $a \in A$ as $I_{B}-P$ is central. Since J is an isometry (cf. [3, Theorem 6.2.5]) and U is unitary, the real-linear map ϕ is an isometry. -

Theorem 2.2. Let A and B be unital C^{*}-algebras and \mathcal{A} and \mathcal{B} open subgroups of A^{-1} and B^{-1} respectively. Suppose that T is a bijection from \mathcal{A} onto \mathcal{B}. Then T is an isometry if and only if $T\left(I_{A}\right)$ is unitary in B and there are a central projection P in B, and a complex-linear Jordan *-isomorphism J from A onto B such that

$$
\begin{equation*}
T(a)=T\left(I_{A}\right) P J(a)+T\left(I_{A}\right)\left(I_{B}-P\right) J(a)^{*}, \quad a \in \mathcal{A} \tag{2.6}
\end{equation*}
$$

Furthermore the operator $T\left(I_{A}\right) P J(\cdot)+T\left(I_{A}\right)\left(I_{B}-P\right) J(\cdot)^{*}$ defines a surjective real-linear isometry from A onto B.

Proof. Suppose that $T: \mathcal{A} \rightarrow \mathcal{B}$ is a surjective isometry. By [5, Theorem 3.2], T extends to a real-linear isometry \tilde{T} from A onto B since the radical $\operatorname{rad}(B)$ of B is $\{0\}$ as B is a C^{*}-algebra. Applying Proposition 2.1 we see that (2.6) holds.

Conversely suppose that T is given by (2.6). Then by Proposition 2.1 we see that $T\left(I_{A}\right) P J(\cdot)+T\left(I_{A}\right)\left(I_{B}-P\right) J(\cdot)^{*}$ defines a surjective real-linear isometry from A onto B.

For a complex Hilbert space H the algebra of all bounded linear operators on H is denoted by $B(H)$. We describe the structure of all surjective isometries between open subgroups of $B(H)^{-1}$. We need the following notation. Beside the adjoint operation on the algebra $B(H)$ we shall also need the operation of transposition. It is defined by choosing a complete orthonormal system in H and for any operator a considering the operator a^{T} whose matrix in the given basis is the transpose of the corresponding matrix of a. It can be seen that the map $a \mapsto a^{T}$ is a well-defined linear *-antiautomorphism of $B(H)$. Then the conjugate \bar{a} of $a \in B(H)$ is defined by the formula $\bar{a}=\left(a^{*}\right)^{T}$. Our result reads as follows.

Corollary 2.3. Let H_{1} and H_{2} be complex Hilbert spaces. Suppose that T is a surjective isometry from \mathcal{A} onto \mathcal{B}, where \mathcal{A} and \mathcal{B} are open subgroups of $B\left(H_{1}\right)^{-1}$ and $B\left(H_{2}\right)^{-1}$ respectively. Then $T\left(I_{B\left(H_{1}\right)}\right)$ is a unitary operator and there is a unitary operator w (complex-linear isometry) from H_{1} onto H_{2} such that T is of one of the following forms:
(1) $T(a)=T\left(I_{B\left(H_{1}\right)}\right)$ waw* \quad for all $a \in \mathcal{A}$,
(2) $T(a)=T\left(I_{B\left(H_{1}\right)}\right) w a^{*} w^{*} \quad$ for all $a \in \mathcal{A}$,
(3) $T(a)=T\left(I_{B\left(H_{1}\right)}\right) w a^{T} w^{*} \quad$ for all $a \in \mathcal{A}$,
(4) $T(a)=T\left(I_{B\left(H_{1}\right)}\right) w \bar{a} w^{*} \quad$ for all $a \in \mathcal{A}$.

Proof. The center of $B\left(H_{2}\right)$ consists of the scalar operators, hence P is a trivial projection (the zero operator or $I_{B\left(H_{2}\right)}$). Then Theorem 2.2 asserts that there is a Jordan $*$-isomorphism J such that $T(a)=T\left(I_{B\left(H_{1}\right)}\right) J(a)$ for all $a \in \mathcal{A}$ or $T(a)=T\left(I_{B\left(H_{1}\right)}\right) J(a)^{*}$ for all $a \in \mathcal{A}$. A Jordan $*$-isomorphism from $B\left(H_{1}\right)$ onto $B\left(H_{2}\right)$ is an algebra isomorphism or an algebra antiisomorphism, hence there is a unitary operator w from H_{1} onto H_{2} such that $J(b)=w b w^{*}$ for every $b \in B\left(H_{2}\right)$ or $J(b)=w b^{T} w^{*}$ for every $b \in B\left(H_{2}\right)$. Thus we have the conclusion.

Acknowledgements. The authors were partly supported by the Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

References

[1] C.-H. Chu, T. Dang, B. Russo and B. Ventura, Surjective isometries of real C^{*} algebras, J. London Math. Soc. 47 (1993), 97-118.
[2] T. Dang, Real isometries between JB*-triples, Proc. Amer. Math. Soc. 114 (1992), 971-980.
[3] R. J. Fleming and J. E. Jamison, Isometries on Banach Spaces: Function Spaces, Monogr. Surveys Pure Appl. Math. 129, Chapman \& Hall/CRC, 2003.
[4] O. Hatori, Isometries between groups of invertible elements in Banach algebras, Studia Math. 194 (2009), 293-304.
[5] O. Hatori, Algebraic properties of isometries between groups of invertible elements in Banach algebras, J. Math. Anal. Appl. 376 (2011), 84-93.
[6] O. Hatori, New criteria for equivalence of locally compact abelian groups, J. Group Theory 15 (2012), 271-277.
[7] O. Hatori and L. Molnár, Isometries of the unitary group, Proc. Amer. Math. Soc. 140 (2012), 2141-2154.
[8] S. Mazur et S. Ulam, Sur les transformationes isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946-948.
[9] J. Väisälä, A proof of the Mazur-Ulam theorem, Amer. Math. Monthly 110 (2003), 633-635.

Osamu Hatori, Keiichi Watanabe
Department of Mathematics
Faculty of Science
Niigata University
950-2181 Niigata, Japan
E-mail: hatori@math.sc.niigata-u.ac.jp
wtnbk@math.sc.niigata-u.ac.jp

Received May 10, 2011
Revised version March 26, 2012

