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Spectral analysis of unbounded Jacobi operators
with oscillating entries
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Abstract. We describe the spectra of Jacobi operators J with some irregular entries.
We divide R into three “spectral regions” for J and using the subordinacy method and
asymptotic methods based on some particular discrete versions of Levinson’s theorem we
prove the absolute continuity in the first region and the pure pointness in the second. In the
third region no information is given by the above methods, and we call it the “uncertainty
region”. As an illustration, we introduce and analyse the O&P family of Jacobi operators
with weight and diagonal sequences {wn}, {qn}, where wn = nα+rn, 0 < α < 1 and {rn},
{qn} are given by “essentially oscillating” weighted Stolz D2 sequences, mixed with some
periodic sequences. In particular, the limit point set of {rn} is typically infinite then. For
this family we also get extra information that some subsets of the uncertainty region are
contained in the essential spectrum, and that some subsets of the pure point region are
contained in the discrete spectrum.

0. Introduction. In this work we are concerned with spectral proper-
ties of a new family of unbounded self-adjoint Jacobi operators acting in
`2(N). Most papers dealing with unbounded Jacobi operators are restricted
to “regular” sequences of weights and diagonals. However, recently, several
works concerning the “irregular” case have appeared: see e.g. [10], [7], [11],
[5], [4], [18]. The irregular sequences in those works were mostly given as pe-
riodic perturbations (modulations) of regular ones, but also more irregular
behaviour of the entries has been studied lately in [2], [3], [12] and [15].

The main goal of studying various kinds of deformations of regular un-
bounded entries is to illustrate and understand the somewhat delicate influ-
ence of such deformations on spectral properties of the operator. This general
idea of deformations allowed several examples with new spectral properties
to be constructed. In particular, in [2] concrete classes of weights defining
Jacobi operators having a few gaps in the essential spectrum were found.
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One can also mention here a dramatic difference between the cases of peri-
odic perturbations of even and odd periods [7]. Recently, in [12], for a class
of Jacobi operators many important spectral details on some intervals of R
were observed, e.g., the appearance of dense point spectrum.

The family of Jacobi operators we study in the present work is defined
in terms of the weighted Stolz class D2(µ), a generalisation of the so-called
Stolz class of slowly oscillating sequences (see [19]). The class D2(µ) was
introduced in [8] to formulate special new versions of discrete Levinson type
theorems [8, Ths. 5.1 and 5.3] on asymptotics of solutions of difference equa-
tions. These theorems are the tools in the proof of our main result, Theo-
rem 2.2. As we shall see, the family studied here exhibits spectral pictures
which do not seem to have been observed before.

After introducing in Section 1 the necessary notation and the main ab-
stract conditions for Theorem 2.2, in Section 2 we divide the real line into
three “spectral regions” relative to a Jacobi operator J . This partition of R
is determined mainly by the assumptions of the Levinson theorems we use.
Theorem 2.3 states that the first region Σ− is a subset of the a.c. spectrum
of J , and that J is pure point in the second region Σ+ (under the extra
assumption that the diagonal sequence of J has only a finite or countable
number of limit points). The third is the “uncertainty region” Σun, where
the theorem gives no information.

Section 3 is devoted to the proof of Theorem 2.2, conducted in several
steps, and based on subordinacy methods [13] and asymptotic methods (the
Levinson type theorems mentioned above). We also use the H-class method
for the transfer matrix sequence (see e.g. [14, 15]).

In Section 4 we study concrete families of Jacobi operators satisfying
the general assumptions of Theorem 2.2. We compute the spectral regions
for them, and we find additional spectral information concerning the essen-
tial and discrete spectrum. In particular, we obtain the discreteness of J in
certain parts of pure point regions, and we prove that some subsets of the un-
certainty region are included in the essential spectrum. The proofs are based
on the Weyl sequences method of [15] and, following [4], on simple but tricky
estimates of the quadratic form induced by J . Studying the wide class of J
given by deformations which mix oscillations and periodicity (O&P family)
turned out to be a fruitful idea (see notation in Section 1 and the definition
of O&P in Section 4). The spectral results for this family are collected in
Theorem 4.8. Some more general results are formulated in Theorem 4.4 and
Proposition 4.5.

These more or less general studies are illustrated by several concrete
examples. In particular, we study special cases with the main oscillatory
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term having the form
sin(nγ + θ).

The same term was related to various interesting spectral phenomena in
several papers (e.g. [12, 19]). The typical spectral information which can be
obtained by the general methods described in our paper is as follows (see
Example 4.10(2b)).

Example 0.1. Consider the Jacobi operator J with weights wn and di-
agonals qn given by

wn = nα + bn + cn sin(nγ + θ), n ∈ N,
where

0 < α < 1, 0 < γ <
1− α

2
,

and with {qn}n≥1, {bn}n≥1, {cn}n≥1 being real 2-periodic sequences defined
by: q1 = 1/2, q2 = −1/2, b1 = 2, b2 = 0, c1 = 1, c2 = 0. Then J is
absolutely continuous in Σ− = (−∞;−

√
37/2) ∪ (

√
37/2; +∞) ⊂ σac(J)

and pure point in Σ+ = (−
√

5/2;
√

5/2). Thus Σun = [−
√

37/2;−
√

5/2] ∪
[
√

5/2;
√

37/2], however R \ (−
√

17/2;
√

17/2) ⊂ σess(J). Moreover J is dis-
crete in (−1/2; 1/2).

As one can see, even in such a particular case, much work remains to
be done to get the full spectral picture. Hence, we finish Section 4 by some
open problems and a conjecture. Several technical proofs and lemmas are
collected in the Appendix.

1. Notation and some abstract conditions. Let us consider the Ja-
cobi matrix 

q1 w1

w1 q2 w2

w2 q3 w3

w3 q4
. . .

. . . . . .


determined by some given real sequences {wn}n≥1 and {qn}n≥1. The object
of our studies is the Jacobi operator J , the maximal operator defined by
the above matrix in the Hilbert space `2(N) of square-summable complex
sequences on N. So, J is the restriction of the formal Jacobi operator J to

D(J) := {u ∈ `2(N) : J u ∈ `2(N)},
where J acts in the vector space `(N) of all complex sequences on N by

(1.1) (J u)(n) := wn−1u(n− 1) + qnu(n) + wnu(n+ 1), n ∈ N,
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for any complex sequence u = {u(n)}n≥1, with the convention that wk =
0 = u(k) if k < 1. The J ’s studied here will, in fact, always be self-adjoint
by appropriate assumptions (i.e., equivalently, the minimal Jacobi operator
will be essentially self-adjoint). Note that we use both kinds of sequence
notation: with subscript—like wn—mainly to denote some “coefficients”, and
functional—like u(n)—mainly for u being “vectors”. In this paper we shall
usually assume that

(1.2) wn 6= 0, n ∈ N; wn → +∞.
We shall use the weighted Dk classes introduced in [8] (a generalisation

of Stolz’s Dk classes, see [19]). Let us recall the relevant notions for the
convenience of the reader. Let µ := {µn}n≥1 be a sequence of “weights”,
consisting of positive numbers, and let n0 ≥ 1. For 1 ≤ p < ∞ and a
sequence x := {x(n)}n≥n0 of elements of a normed space we write x ∈ `p(µ)
iff
∑+∞

n=n0
‖x(n)‖pµn < +∞. In the case of µ constant equal to 1 we also

write `p instead of `p(µ), and as usual, `∞ is the set of bounded sequences.
The same notation `p(µ) is valid for any normed space and any starting
index n0, but recall that for p = 2 the similar symbol `2(N) denotes our
basic Hilbert space (and n0 = 1 then). The discrete right derivative of x is
denoted by ∆x, i.e. (∆x)(n) = x(n+1)−x(n), and ∆k is the kth power of ∆
for k = 1, 2, . . . . We denote by Dk(µ) the weighted Dk class with weight µ:

x ∈ Dk(µ) iff x ∈ `∞ and ∆jx ∈ `k/j(µ), j = 1, . . . k.

By D2(nα) we denote the class D2(µ) with µ = {nα}n≥1.
The set of all limit points of a real sequence x := {xn}n≥n0 will be

denoted by LIM(x), i.e., LIM(x) is the set of all g ∈ R ∪ {+∞,−∞} for
which there exists a sequence {kn}n≥1 of integers such that kn → +∞ and
xkn → g.

We shall also use the class 0α, introduced in [16], which consists of all
real sequences x such that (∆x)n = o(n−α) as n→∞, and 0 ∈ LIM(x).

For a sequence x = {xn}n≥1 and j = 0, 1 denote by x(j) the sequence
given by

x(j)n := x2n+j , n ∈ N.
As usual, for a self-adjoint operator A in a Hilbert space, we denote by

σac(A), σpp(A), σess(A), σd(A) its absolutely continuous, pure point, essen-
tial and discrete spectrum, respectively. To avoid confusion, let us explain
the notions of absolute continuity, pure pointness and discreteness, used in
this paper, as several other names are also used in similar situations in the
literature. Denote by Hac(A), Hpp(A) the space of absolute continuity of A,
and the pure point space of A (i.e. the closure of the space spanned by all
the eigenvectors of A), respectively. For any Borel subset G of R denote
by HG(A) the range of the spectral projection EG(A) of A corresponding
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to G. Recall that A is absolutely continuous (respectively, pure point) in G
iff HG(A) ⊂ Hac(A) (respectively, HG(A) ⊂ Hpp(A)). Note that in the lit-
erature, when A is absolutely continuous in G, it is sometimes said that
“A has purely absolutely continuous spectrum in G”. When G is open and
σess(A) ∩G = ∅, then we say that A is discrete in G. Note that (under the
above definitions) if σ(A)∩G = ∅, then A is both absolutely continuous and
pure point in G, and if moreover G is open, then A is also discrete in G. So,
our terminology differs from some of the others.

Our main results will be formulated for operators J which satisfy several
abstract conditions. To write them in compact form, we define

(1.3) ln := w2n−1 − w2n−2, rn := w2n − w2n−1, n ∈ N

(left and right difference of w at 2n− 1). We also choose the weight µ:

(1.4) µn := |w2n−1|, n ∈ N.

Surely, this gives µn = w2n−1 for n large enough, by (1.2).
The above choice of weight for the weighted Dk class obeys for the most

part of our abstract considerations. In this paper we use Dk(µ) classes for
k = 2 only.

We combine some of our assumptions into two groups:
conditions (W):

+∞∑
n=1

((∆µ)n)2

µn
< +∞,(1.5)

+∞∑
n=1

1

µn
= +∞,(1.6)

and conditions (D2):

{ln}n≥1, {rn}n≥1 ∈ D2(µ),(1.7) {
1

w2n

}
∈ D2(µ),(1.8)

q(0), q(1) ∈ D2(µ).(1.9)

Observe that if (1.4) and (1.6) hold then J is self-adjoint, because the
Carleman condition

∑+∞
n=1 1/|wn| = +∞ is satisfied.

Note that conditions (W) already appeared in our paper [8]. The reason
for assuming conditions (D2) will become more clear later; now one can
just remark that they are related to grouping the transfer matrices in pairs
(see (3.3), (3.4)), which can be convenient when the sequences defining the
operator J contain some 2-periodic terms. The analogous assumptions for
the more general, T -periodic case would be much more complicated.
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2. Spectral regions and abstract results. Here we define and analyse
some “spectral regions” of R for J , and we formulate our main results on
spectral properties of J in these regions.

Define a sequence {γn}n≥1 of quadratic polynomials on R by

(2.1) γn(λ) := (rn − ln)2 − 4(λ− q2n−1)(λ− q2n), n ∈ N, λ ∈ R.
The key role of γn for our further investigations is explained in Proposition
3.1(ii). The functions γ↑, γ↓ on R are given by

γ↑(λ) := lim sup
n→+∞

γn(λ), γ↓(λ) := lim inf
n→+∞

γn(λ), λ ∈ R.

Note that γ↑, γ↓ : R→ R provided that

(2.2) {qn}n≥1 and {ln − rn}n≥1 are bounded.

In particular, the above condition holds if we assume (D2).
Let us define the following spectral regions:

Σ− := {λ ∈ R : γ↑(λ) < 0},
Σ+ := {λ ∈ R : γ↓(λ) > 0},
Σ̃+ := {λ ∈ Σ+ : λ is not a limit point of {qn}n≥1}.

Below we list some of their properties. Here, the notion of interval in-
cludes also the empty set and unbounded intervals.

Proposition 2.1. If (2.2) holds, then the functions γ↓, γ↑ are contin-
uous, γ↓ is concave, Σ+ is a bounded open interval, Σ̃+ and Σ− are open
sets, and R \ (−R;R) ⊂ Σ− for some R > 0.

Proof. Each γn is concave, since it is a quadratic polynomial with a
negative leading coefficient. Concavity is preserved under taking the infi-
mum of a set of functions, and also under taking a pointwise limit, provided
that a finite infimum or finite limit exists at each point. Hence, by (2.2),
in our case the lower limit also preserves concavity, since lim infn→+∞ an =
limn→+∞(infk≥n ak) for any {an}. Thus γ↓ is concave. This shows that Σ+

is an interval, and it must be an open set, since γ↓ is also continuous, as a
concave function defined on R. The set Σ̃+ is open, because the limit point
set of any sequence is closed.

To see the continuity of γ↑ observe first that

γ↑(λ) = −4λ2 + ϕ(λ), ϕ(λ) := lim sup
n→+∞

(αnλ+ βn)

for some bounded sequences {αn}n≥1, {βn}n≥1, independent of λ. But any
affine function is convex, so the argument above yields the continuity of ϕ,
and thus of γ↑, and Σ− is open.

By (2.2), there exists R > 0 such that γn(λ) ≤ −1 for any n ∈ N and
|λ| ≥ R. Hence if |λ| ≥ R, then λ ∈ Σ− and λ 6∈ Σ+.
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Let

(2.3) Ln =
n∑
k=1

lk + rk
µk

, Mn =
n∑
k=1

1

µk
, n ∈ N.

Denote

(2.4) ΣP :=

{
λ ∈ Σ̃+ : ∃

0<t<
√
γ↓(λ)

{
exp

(
−1

2
(Ln + tMn)

)}
∈ `2

}
.

We are now ready to formulate our main result.

Theorem 2.2. Assume that (1.2), (1.4), (W) and (D2) hold. Then
Σ− ⊂ σac(J), J is absolutely continuous in Σ−, and J is pure point in ΣP .

The proof is given in the next section.
The definition of ΣP is rather complicated, so it would be convenient to

formulate conditions guaranteeing that ΣP is the whole Σ̃+. Denote by (P)
the combination of the two additional conditions

{Ln}n≥1 is bounded from below or lim inf
n→+∞

(ln + rn) ≥ 0,(2.5)

for any ε > 0, {exp(−εMn)}n≥1 ∈ `2.(2.6)

Assume (P) and let λ ∈ Σ̃+. We have γ↓(λ) > 0, so choose an arbitrary t
satisfying 0 < t <

√
γ↓(λ). If {Ln}n≥1 is bounded from below, then by (2.6),{

exp
(
−1

2(Ln+tMn)
)}
∈ `2. If lim infn→+∞(ln+rn) ≥ 0, then ln+rn ≥ −t/2

for t as above and n large enough. Thus for some C ∈ R,

Ln ≥
−t
2
Mn + C, n ≥ 1.

Hence exp
(
−1

2(Ln + tMn)
)
≤ exp

(
− t

4Mn

)
· exp(−C/2) for all n. Thus in

both cases of (2.5) we have ΣP = Σ̃+, which allows us to formulate the
following consequence of Theorem 2.2.

Theorem 2.3. Assume that (1.2), (1.4), (W), (D2) and (P) hold. Then
Σ− ⊂ σac(J), J is absolutely continuous in Σ−, and J is pure point in Σ̃+.

We also immediately obtain the following (see e.g. [15, Prop. 5.15(ii)]):

Corollary 2.4. Under the assumptions of Theorem 2.3, if the set
LIM({qn}n≥1) is at most countable, then Σ− ⊂ σac(J), J is absolutely con-
tinuous in Σ−, and J is pure point in Σ+.

Observe, however, that in our case the countability assumption is equiv-
alent to the condition “q(0), q(1) are both convergent”. This is a direct conse-
quence of (1.9), [8, Lemma 5.2] and Lemma 5.1(2). Without this condition
the limit point set is the union of two closed intervals (the limit point sets
of q(0) and q(1)), at least one of them non-trivial. So our “pure point” infor-
mation can be essentially weaker.
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Note that Theorem 2.3 says nothing about spectral properties of J in the
set Σun := R \ (Σ− ∪Σ+). This is why we call it the uncertainty region.

3. Transfer matrices and generalised eigenvectors in the spectral
regions. For a fixed λ ∈ C we consider generalised eigenvectors of J for λ,
i.e., u = {u(n)}n≥1 ∈ `(N) such that
(3.1) ((J − λ)u)(n) = 0, n ≥ 2.
If wn 6= 0 for all n ≥ 1, then the above condition can be equivalently written
as

(3.2)
(

u(n)

u(n+ 1)

)
= Bn(λ)

(
u(n− 1)

u(n)

)
, n ≥ 2,

where Bn(λ) is the transfer matrix for J and λ, given for n ≥ 2 by

(3.3) Bn(λ) =

 0 1

−wn−1
wn

λ− qn
wn

 .

The assumptions of Theorem 2.2 (see, e.g., (1.3)) are closely related to
some regularity of the products

(3.4) An(λ) = B2n(λ)B2n−1(λ), n ≥ 2.

One can easily compute that

(3.5) An(λ) = −
(
I +

1

µn
Vn(λ)

)
,

where µn is given by (1.4) and for n ≥ 2,

(3.6) Vn(λ) = −

 ln λ− q2n−1
(q2n − λ)w2n−2

w2n

rnw2n−1
w2n

+
(λ− q2n)(λ− q2n−1)

w2n

 .

We denote by discrC the discriminant of the characteristic polynomial
of the 2× 2 matrix C, i.e.,

(3.7) discrC = (trC)2 − 4 detC = (C11 − C22)
2 + 4C12C21.

In particular, the formula for discrVn(λ) is somewhat related to the formula
(2.1) for γn(λ):

discrVn(λ)=

[
(rn − ln)+

(
rn

(
1−w2n−1

w2n

)
− (λ−q2n)(λ−q2n−1)

w2n

)]2
(3.8)

− 4(λ− q2n−1)(λ− q2n)
w2n−2
w2n

.

The following technical result will help us to study some properties of transfer
matrices and generalised eigenvectors for λ in the spectral regions, and will
be used in the proof of Theorem 2.2.
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Proposition 3.1. Let λ ∈ R. Suppose that (1.2), (1.4), (W) and (D2)
hold. Then

(i) {Vn(λ)}n≥2 ∈ D2(µ);
(ii) εn(λ) := discrVn(λ)−γn(λ)→ 0, ε̃n(λ) := trVn(λ)+(ln+rn)→ 0;
(iii) λ ∈ Σ− (∈ Σ+) iff lim supn→+∞ discrVn(λ) < 0 (> 0);
(iv) if λ ∈ Σ̃+, then

lim inf
n→+∞

|νn,±(λ)− (Vn(λ))11| > 0,

where for n with discrVn(λ) > 0 we denote

(3.9) νn,±(λ) :=
trVn(λ)±

√
discrVn(λ)

2
.

Proof. To prove (i) we should check that the sequences of matrix coeffi-
cients of {Vn(λ)}n≥2 are in D2(µ). We have

(3.10)
w2n−1
w2n

= 1− rn
w2n

,
w2n−2
w2n

= 1− ln + rn
w2n

.

Hence, it suffices to use (D2) and the fact that the set of scalar D2(µ)
sequences is an algebra for the weight µ satisfying (W)—see [8, Section 2.1]
(in particular the “shiftability” of µ follows from (1.5) and from the fact that
limn→+∞ µn = +∞, because µn+1/µn → 1 in this case).

Observe that the boundedness of D2(µ) sequences, (1.2) and (3.10) give

(3.11)
w2n−1
w2n

→ 1,
w2n−2
w2n

→ 1,

and by (2.1), (3.6), (3.8) this also gives (ii). From (ii) we immediately get (iii).
Now, let λ ∈ Σ̃+. By (iii) we have discrVn(λ) > 0 for n ≥ n0 with n0

large enough and then, using the boundedness of {Vn(λ)}n≥2 (e.g., by (i)
and (3.7)), we get

|νn,±(λ)− (Vn(λ))11| =
1

2

∣∣±√discrVn(λ)− [(Vn(λ))11 − (Vn(λ))22]
∣∣

≥ δ|discrVn(λ)− [(Vn(λ))11 − (Vn(λ))22]
2| = 4δ|(Vn(λ))12(Vn(λ))21|

= 4δ|q2n−1 − λ| |q2n − λ|
∣∣∣∣w2n−2
w2n

∣∣∣∣
for some n-independent δ > 0. Using now (3.11) and the fact that λ is not a
limit point of {qn}n≥1, we get the assertion of (iv).

We shall use the notion of the H class for sequences of complex 2 × 2
matrices (see, e.g., [14, 15]). Recall that {Cn}n≥n0 ∈ H iff there existsM > 0
such that

‖Cn · · ·Cn0‖2 ≤M
n∏

k=n0

|detCk|, n ≥ n0.

This class is a convenient tool in studying the absolutely continuous part
of some Jacobi operators, because of nonexistence of subordinate solutions
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for a fixed spectral parameter λ, following from {Bn(λ)}n≥2 ∈ H. For this
reason, several sufficient conditions for a matrix sequence to be in H have
been proved in [14, 15]. We formulate here one more result of this kind.
Its proof, presented in the Appendix, is based on a discrete version of the
Levinson theorem, namely Theorem 5.1 of [8] (see e.g. [1, 7] for other discrete
versions of the Levinson theorem). Note that below we do not assume (1.4),
but we consider a more general case.

Criterion 3.2. Suppose that Cn are invertible complex 2 × 2 matrices
for n ≥ n0, and that

Cn = I +
1

µn
Vn +Rn, n ≥ n0,

where the positive scalar sequence {µn}n≥n0 satisfies

µn → +∞,
+∞∑
n=n0

((∆µ)n)2

µn
< +∞,

+∞∑
n=n0

1

µn
= +∞,

the real matrix sequence {Vn}n≥n0 is in D2(µ),

lim sup
n→+∞

discrVn < 0,

and the complex matrix sequence {Rn}n≥n0 is in `1. Then {Cn}n≥n0 ∈ H.

The following result gives our main argument for the proof of the abso-
lutely continuous part of Theorem 2.2.

Proposition 3.3. Suppose (1.2), (1.4), (W) and (D2) hold. If λ ∈ Σ−,
then {Bn(λ)}n≥2 ∈ H.

Proof. By (3.5) and Proposition 3.1(i), (iii), Criterion 3.2 implies that
{−An(λ)}n≥2 ∈ H, thus also {An(λ)}n≥2 ∈ H. Observe {(∆w)n}n≥1 ∈ `∞,
by (1.7). Hence, by (1.2) and (1.9), we have

wn−1
wn

→ 1 and
{
λ− qn
wn

}
n≥2
∈ `∞.

Now, by (3.3), {Bn(λ)}n≥2, {Bn(λ)−1}n≥2 ∈ `∞, which gives the assertion
by [15, Proposition 5.7(ii)].

The next proposition will be the base for the proof of the pure point part
of Theorem 2.2.

From now on, the jth coordinate of a vector v is denoted by [v]j , and ·>
is used for matrix or vector transposition.

Proposition 3.4. Suppose (1.2), (1.4), (W) and (D2) hold. If λ ∈ ΣP ,
then there exists a nonzero generalised eigenvector of J for λ, which belongs
to `2(N).
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Proof. Fix λ ∈ ΣP . We shall first prove that the recurrent vector equation

(xn+1)
> = An(λ)(xn)>, n ≥ 2,

has a nonzero solution {xn}n≥2 belonging to `2. Once we prove it, the asser-
tion follows, because defining

u(2n) := [xn+1]1, u(2n+ 1) := [xn+1]2, n ≥ 1,

u(1) := [(B2(λ))−1(x2)
>]1,

we check at once by (3.4) that (3.2) holds, so {u(n)}n≥1 is the nonzero
generalised eigenvector.

By (1.2) the matrices An(λ) are all invertible and multiplication by the
scalar sequence {(−1)n}n≥2 does not change the `2-norm, so it is sufficient
to find a nonzero `2 solution of the equation

(3.12) (xn+1)
> = −An(λ)(xn)>, n ≥ n0,

for some n0 ≥ 2. To do this we also use one of discrete versions of the
Levinson theorems [8, Th. 5.3]. The assumption of that theorem holds for
{−An(λ)}n≥2 by (3.5) and by Proposition 3.1(i), (iii), (iv). We find, in par-
ticular, that there exists n0 ≥ 2 and a nonzero solution {xn}n≥n0 of (3.12)
satisfying

(3.13) xn =

( n−1∏
k=n0

(
1 +

ρk
µk

))
yn, n ≥ n0 + 1,

where {yn}n≥n0 is a bounded sequence of C2 vectors, ρn ∈ R and

(3.14) ρn − νn,−(λ)→ 0

(with νn,−(λ) given by (3.9)). The proof is completed by showing that
{bn}n≥n0 ∈ `2 with bn :=

∏n
k=n0

(1 + ρk/µk). By (3.14), (3.9) and by Propo-
sition 3.1(i), (ii) we have ρn = −1

2(ln + rn) − 1
2

√
γn(λ) + δn with δn → 0.

Choose now t for λ according to the definition (2.4) of ΣP . For some N ≥ n0,

−µn < ρn ≤ −
1

2
(ln + rn + t), n ≥ N,

the left inequality following from µn → +∞ (see (1.2)) and the boundedness
of {ρn} (see (D2)). Hence there exist constants C,C ′ > 0 such that for
n ≥ N ,

|bn| ≤ C exp

( n∑
k=N

ln

(
1 +

ρk
µk

))
≤ C exp

( n∑
k=N

ρk
µk

)

≤ C exp

(
−1

2

n∑
k=N

lk + rk + t

µk

)
≤ C ′ exp

(
−1

2
(Ln + tMn)

)
,

so {bn}n≥n0 ∈ `2 by the choice of t.
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Now we have all the tools necessary to prove the main theorem with the
use of standard subordination theory techniques for Jacobi operators (see
the basic paper [13] and some conclusions formulated in [6], [9], [14], [15]).

Proof of Theorem 2.2. As already mentioned, under our assumptions J
is self-adjoint. Using [15, Theorem 5.6], by Propositions 2.1 and 3.3 we see
that Σ− ⊂ σac(J) and J is absolutely continuous in Σ−. By [15, Lemma
5.13] and Proposition 3.4 we get the pure pointness of J in ΣP .

4. Essential oscillations and the O&P family. We study here some
more concrete Jacobi operators satisfying the abstract assumptions of The-
orem 2.2. We start with a result (Theorem 4.4) which will serve for all our
examples presented here. It concerns J with wn being a perturbation of nα,
with 0 < α < 1, by a bounded sequence, and with a bounded sequence {qn},
where both sequences are given by formulae combining some 2-periodic se-
quences and weighted D2 sequences. The weights µn for this D2 class are
chosen as w2n−1 for large n. Note that

(4.1) D2(µ) = D2(nα)

in that case (however, usually we cannot replace µn by nα, checking the
assumptions (W)). The following lemma gives a convenientD2(nα) criterion
for sequences defined by some C2 functions.

Lemma 4.1. If 0 < α < 1, c ≥ 0, f : [c; +∞) → C is a bounded C2

function, and
+∞�

c

|f (j)(s)|2/jsα ds < +∞ for j = 1, 2,

then the sequence x given for n > c by xn = f(n) is a D2(nα) sequence.

The proof can be easily obtained from the integral estimate for ∆kx in
[19, p. 246].

Example 4.2. By Lemma 4.1 the scalar sequences given for large n by
the following formulae are in D2(nα) (0 < α < 1):

(1) g(nγ), where 0 < γ < (1− α)/2 and g : [1; +∞) → C is a bounded
C2 function with g′ and g′′ bounded; in particular, sin(nγ + θ) with
any phase θ;

(2) (n− r1)α − (n− r2)α for any fixed r1, r2 ∈ R.
A general example of a 0α sequence (see notation in Section 1) of the type
of (1) above is worth mentioning. The sequence given for large n by

(3) g(nγ), where 0 < γ < 1 − α and g : [1; +∞) → C is a periodic C1

function with inf g([1; +∞)) ≤ 0 ≤ sup g([1; +∞))

is in the class 0α (see [15]).
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Remark 4.3. If 0 < α < 1 and x ∈ D2(nα), then by [8, Lemma 5.2],
(∆x)n = o(n−α) as n → +∞. Thus to prove x ∈ 0α for such an x, we only
need to check the zero limit subsequence condition.

The result below, with several versions of assumptions, will be used to
construct the examples presented at the end of the section.

Theorem 4.4. Let 0<α<1, and consider the Jacobi operator J given by

(4.2) wn = nα + bn + cnhn, qn = an + yn, n ∈ N,
where {an}n≥1, {bn}n≥1, {cn}n≥1, {hn}n≥1, {yn}n≥1 are real sequences satis-
fying:

(i) {an}n≥1, {bn}n≥1, {cn}n≥1 are 2-periodic;
(ii) h(0), h(1) ∈ D2(nα);
(iii) yn → 0 and y(0), y(1) ∈ D2(nα);
(iv) nα + bn + cnhn 6= 0 for all n ∈ N.

Let

(4.3) dpp := lim inf
n→+∞

|(b1 − b2) + h̃n|, dac := lim sup
n→+∞

|(b1 − b2) + h̃n|,

with h̃n = c1h
(1)
n − c2h(0)n , and define

(4.4) a± := λ±(dac), p± := λ±(dpp), e± := λ±(b1 − b2),
where for any t ∈ R, λ−(t) ≤ λ+(t) are the solutions of the equation

(λ− a1)(λ− a2) = t2.

Then:

(A) J is absolutely continuous in R\ [a−; a+], R\ (a−; a+) ⊂ σac(J)
and J is pure point in (p−; p+);

(B) we have

(4.5) [dpp; dac] := {|(b1 − b2) + s| : lim inf
n→+∞

h̃n ≤ s ≤ lim sup
n→+∞

h̃n};

(C) if moreover h ∈ 0α and nα + bn 6= 0 for all n ∈ N, then R \
(e−; e+) ⊂ σess(J);

(D) if we assume h ∈ D2(nα) instead of (ii), then (ii) holds and

(4.6) [dpp; dac] := {|(b1 − b2) + t(c1 − c2)| : lim inf
n→+∞

hn ≤ t ≤ lim sup
n→+∞

hn};

(C+D) if we assume h ∈ D2(nα) and 0 ∈ LIM(h), then |b1 − b2| ∈
[dpp; dac] and (e−; e+) ⊂ (a−; a+); if also nα + bn 6= 0 for all
n ∈ N, then R \ (e−; e+) ⊂ σess(J).

Proof. Let us check the assumptions of Theorem 2.3. For large n we have

(4.7) µn = (2n− 1)α + b1 + c1h
(1)
(n−1).

Obviously (1.2), (1.6), (1.9) hold by (4.1), (4.7), and by assumptions (ii)–(iv).
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To get (1.5) it is enough to prove

(4.8)
{

(∆µ)n

nα/2

}
n≥1
∈ `2.

Indeed, (∆µ)n = (2n + 1)α − (2n − 1)α + c1(∆h
(1))(n−1), thus (4.8) holds

from (ii) and from the estimate
(2n+ 1)α − (2n− 1)α

nα/2
≤ const

1

n1−α/2
.

To obtain (1.7) observe that

ln = (2n− 1)α − (2n− 2)α + b1 − b2 + c1h
(1)
(n−1) − c2h

(0)
(n−1),(4.9)

rn = (2n)α − (2n− 1)α + b2 − b1 + c2h
(0)
(n) − c1h

(1)
(n−1),(4.10)

hence (1.7) follows from (ii) and Example 4.2(2).
Now we prove (1.8). We shall use the following formulae for the discrete

derivatives of the sequence 1
x :(

∆
1

x

)
n

=
−(∆x)n
xn+1xn

,

(
∆2 1

x

)
n

=
(∆x)2n
x2n+1xn

+
(∆x)n+1(∆x)n
xn+2x2n+1

− (∆2x)n
xn+2xn+1

.

So, to obtain (1.8), it is enough to check

(a)

{
(∆w(0))n

n3α/2

}
n≥1
∈ `2, (b)

{
(∆w(0))n

nα

}
n≥1
∈ `2, (c)

{
(∆2w(0))n

nα

}
n≥1
∈ `1.

We have w(0)
n = 2αnα+b2+c2h

(0)
n , thus (b) follows from (ii), (a) follows from

(b), and to get (c) we can use (ii) and the fact that for η := {nα}n≥1 we
have {(∆2η)n/n

α}n≥1 ∈ `1. So, we have checked (W) and (D2). To check
(P) observe that by (ii),

ln + rn = (2n)α − (2n− 2)α + c2(∆h
(0))n−1 → 0,

which gives (2.5). To get (2.6) we can estimate first

µk = |w2k−1| ≤ 2kα, k ≥ k0,
for some k0 sufficiently large. Thus for n ≥ k0,

Mn ≥ C1 + βn1−α

with some constants C1 ∈ R and 0 < β < +∞, and hence (2.6) follows.
Now observe that by (ii) and by (2.1), (4.9), (4.10) there exists a sequence
z convergent to 0 such that

γn(λ) = zn + 4[(b1 − b2) + h̃n]2 − 4(λ− a1)(λ− a2).
By Lemma 5.1(1), (2) we get

γ↑(λ) = 4[d2ac − (λ− a1)(λ− a2)] and γ↓(λ) = 4[d2pp − (λ− a1)(λ− a2)],
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which gives Σ− = R \ [a−; a+] and Σ+ = (p−; p+), and thus by Corollary
2.4 we obtain assertion (A).

To get (B) we use Lemma 5.1(1) for the function F given by F (s) =
|(b1 − b2) + s|, and Lemma 5.1(2) for the sequences h̃ and F ◦ h̃.

(C) follows immediately from [16, Corollary 4.2].
To prove (D) observe that

(∆h(j))n = (∆h)2n+1+j + (∆h)2n+j ,

(∆2h(j))n = (∆2h)2n+2+j + 2(∆2h)2n+1+j + (∆2h)2n+j .

Assuming h ∈ D2(nα), from these formulae we obtain (ii). Moreover, h̃n =

(c1− c2)h(1)n + c2(∆h)2n and (∆h)n → 0, thus LIM(h̃) = LIM((c1− c2)h(1)).
Using also Lemma 5.1(3) we get LIM(h̃) = LIM((c1 − c2)h), and by Lemma
5.1(2),

• if c1 ≥ c2:

lim inf
n→+∞

h̃n = (c1 − c2) lim inf
n→+∞

h, lim sup
n→+∞

h̃n = (c1 − c2) lim sup
n→+∞

h,

• if c1 < c2:

lim inf
n→+∞

h̃n = (c1 − c2) lim sup
n→+∞

h, lim sup
n→+∞

h̃n = (c1 − c2) lim inf
n→+∞

h.

Hence, from (4.5) we obtain (4.6).
To obtain (C+D) we apply Lemma 5.1(2) to the sequence h, and by

(4.6) we get |b1 − b2| ∈ [dpp; dac]. This gives (e−; e+) ⊂ (a−; a+), by (4.4).
The last part follows from (C) and Remark 4.3.

The information from Theorem 4.4 on the pure pointness of J in (p−; p+)
is not very strong—in particular it does not say anything on discreteness or
on the existence of regions with dense point spectrum. However, for some
coefficients, the discreteness in a nonempty region can be obtained by the
following result.

Proposition 4.5. Let 0 < α < 1, and consider the Jacobi operator J
given by (4.2), where {an}n≥1, {bn}n≥1, {cn}n≥1, {hn}n≥1, {yn}n≥1 are real
sequences satisfying:

(a) {an}n≥1, {bn}n≥1, {cn}n≥1 are 2-periodic;
(b) h is bounded and (∆h(j))n = o(n−α) as n→ +∞, for j = 0, 1;
(c) yn → 0.

Let dpp be as in (4.3) and p−, p+ as in (4.4). Then J is discrete in

(4.11) D :=
⋃
λ∈Λ

(λ−
√
r(λ);λ+

√
r(λ)),
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where

Λ := {λ ∈ R : |a1 − λ| < 1, |a2 − λ| < 1, r(λ) > 0},
r(λ) := min{r12(λ); r21(λ)}

and for i, j ∈ {1, 2}, i 6= j,

rji(λ) := d2pp(1− |ai − λ|)− |aj − λ|(1− |aj − λ|).
In particular, if a1 = a2, then D = (p−; p+) = (a1 − dpp; a1 + dpp).

Proof. For any λ ∈ Λ we use Lemma 5.2 for the Jacobi operator J − λ,
and we get the discreteness of J in the set (λ−

√
r(λ);λ+

√
r(λ)). But this is

an open set, hence, summing, we obtain the discreteness in D. For the special
case a1 = a2, to get D ⊃ (a1 − dpp; a1 + dpp) it suffices to consider λ = a1,
and the opposite inclusion is easy to obtain by the symmetry r21 = r12.

The explicit formula for the discreteness set D seems to be rather so-
phisticated in the general case. Using the above statement only for λ =
(a1 + a2)/2, we can immediately formulate its simplified (but weaker—see
Example 4.10(3)) version.

Corollary 4.6. Under the assumptions of Proposition 4.5, if moreover

(4.12) |a1 − a2| < min{2; 2d2pp},
then J is discrete in the subinterval

(4.13)
(
a1 + a2

2
− s; a1 + a2

2
+ s

)
of (p−; p+), where s := 1

2

√
(2− |a1 − a2|)(2d2pp − |a1 − a2|).

Remarks 4.7. 1. Under assumptions (i)–(iv) of Theorem 4.4, assump-
tions (a)–(c) of Proposition 4.5 also hold (see Remark 4.3). Thus, if Λ 6= ∅, we
obtain the discreteness of J in D (which is also nonempty in this case)—see
e.g. Examples 4.9 and 4.10(2a), (2b), (3).

2. We obviously have Λ ⊂ D, and also Λ = ∅ iff D = ∅. However, in
general, Λ 6= D (even for a1 = a2), which may seem somewhat strange. This
proves that the estimates of the quadratic form for J , the main tool in the
proof of Proposition 4.5 (see Lemma 5.2), have been far from optimal.

3. Part (A) of Theorem 4.4 guarantees that the essential spectrum is at
least R\(a−; a+). However, under all the extra assumptions of (C+D) we can
get stronger information: that the essential spectrum is at least R \ (e−; e+).
In other words, we then get some important information on the spectrum in
a subset (a−; a+) \ (e−; e+) of the uncertainty region Σun. And quite often
this subset is non-empty—see e.g. Examples 4.9 and 4.10.

From the point of view of calculations, the most useful part of Theorem
4.4 is the case with the extra assumptions of (C+D). The family of all Jacobi
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operators satisfying the assumptions of this case is called the O&P family
in this paper (“Oscillations & Periodicity”). More precisely, we say that J
is in the O&P family iff (4.2) holds, 0 < α < 1, the sequences {an}n≥1,
{bn}n≥1, {cn}n≥1, {hn}n≥1, {yn}n≥1 are real, {an}n≥1, {bn}n≥1, {cn}n≥1
are 2-periodic and

• 0 ∈ LIM(h), h ∈ D2(nα);
• yn → 0, y(0), y(1) ∈ D2(nα);
• nα + bn + cnhn 6= 0 6= nα + bn for all n ∈ N.

In that case we also say that α, {an}n≥1, {bn}n≥1, {cn}n≥1, {hn}n≥1, {yn}n≥1
describe the entries of J in the O&P family. A special case of O&P already
appeared in [12].

A useful (and direct) consequence of Theorem 4.4 and Proposition 4.5 is
the following result.

Theorem 4.8. Suppose that the Jacobi operator J is in the O&P fam-
ily and that α, {an}n≥1, {bn}n≥1, {cn}n≥1, {hn}n≥1, {yn}n≥1 describe the
entries of J . Let dpp := inf K, dac := supK, where

K := {|(b1 − b2) + t(c1 − c2)| : lim inf
n→+∞

hn ≤ t ≤ lim sup
n→+∞

hn},

and let a± := λ±(dac), p± := λ±(dpp), and e± := λ±(b1− b2), where for any
t ∈ R, λ−(t) ≤ λ+(t) are the solutions of the equation

(λ− a1)(λ− a2) = t2.

Then (p−; p+) ⊂ (e−; e+) ⊂ (a−; a+), J is absolutely continuous in R \
[a−; a+], R \ (a−; a+) ⊂ σac(J), R \ (e−; e+) ⊂ σess(J) and J is pure point
in (p−; p+). Moreover, if a1 = a2, then J is discrete in (p−; p+).

Let us now consider several examples. We start with a direct application
of Theorem 4.8, Proposition 4.5 and Example 4.2(1), (3).

Example 4.9. We consider Jacobi operators J with weights wn and
diagonals qn given by

wn = nα + bn + cng(nγ), qn = an,

where

(4.14) 0 < α < 1, 0 < γ <
1− α

2
,

{an}n≥1, {bn}n≥1, {cn}n≥1 are real 2-periodic sequences and g : [1; +∞)→ R
is a periodic C2 function with

(4.15) gmin := inf g([1; +∞)) ≤ 0 ≤ sup g([1; +∞)) =: gmax,

and assume

(4.16) nα + bn 6= 0 6= wn for any n ∈ N.
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So, the assumptions of Theorem 4.8 and also the assumptions of Proposition
4.5 are satisfied (with hn := g(nγ) and yn := 0). We have (see, e.g., [16,
Lemma 4.4])

lim inf
n→+∞

hn = gmin, lim sup
n→+∞

hn = gmax,

and hence we can write down explicit formulae for dac, dpp.

Case 1: c1 = c2. Then dpp = dac = |b1 − b2|.
Case 2: c1 6= c2. Then defining

g0 := −b1 − b2
c1 − c2

we get:

Case 2(a): gmin ≤ g0 ≤ gmax. Then

dpp = 0, dac = |c1 − c2|max{|gmin − g0|, |gmax − g0|};
Case 2(b): gmax < g0. Then

dpp = |c1 − c2| |gmax − g0|, dac = |c1 − c2| |gmin − g0|;
Case 2(c): g0 < gmin. Then

dpp = |c1 − c2| |gmin − g0|, dac = |c1 − c2| |gmax − g0|.

Hence J is absolutely continuous in Σ− = R \ [a−; a+], Σ− = R \
(a−; a+) ⊂ σac(J), J is pure point in Σ+ = (p−; p+) and R \ (e−; e+) ⊂
σess(J), where a± := λ±(dac), p± := λ±(dpp), e± := λ±(b1 − b2) and for
any t ∈ R,

(4.17) λ±(t) :=
1

2

(
±
√

(a1 − a2)2 + 4t2 + a1 + a2
)
.

Recall also that by Theorem 4.4(C+D) we always have

|b1 − b2| ∈ [dpp; dac].

Observe that the situations where |b1 − b2| is the right or left end of this
interval have special meanings. If |b1 − b2| = dpp, then e± = p±, i.e., the
whole uncertainty region is contained in σess(J). This happens always in
Case 1; in Case 2(a) iff b1 = b2; in Case 2(b) iff gmax = 0; and in Case 2(c)
iff gmin = 0. On the other hand, |b1 − b2| = dac means that e± = a±, so we
have no extra information on σess(J) from Theorem 4.4(C+D). This second
situation happens always in Case 1; in Case 2(a) iff one of gmax, gmin equals 0
(the one farther away from g0); in Case 2(b) iff gmin = 0; and in Case 2(c)
iff gmax = 0.

Moreover, J is discrete in D given by (4.11), and if (4.12) holds, then in
particular, by Corollary 4.6, J is discrete in the nonempty subinterval (4.13)
of (p−; p+).
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Example 4.10. The following families of Jacobi operators are partic-
ular cases of the above general example (we use here the notation from
Example 4.9). The common choice is here

g(x) = sin(x+ θ), c1 = 1, c2 = 0,

where θ is an arbitrary real phase and for each family we only vary the
parameters a1, a2, b1, b2. The parameters α, γ are as in (4.14) and for all the
families below we assume that the free parameters α, γ, θ are such that the
assumption (4.16) holds.

(1) b1 = b2. Then g0 = 0, dpp = 0, dac = 1.

(a) a1 = 0 = a2. We obtain a± = ±1, p± = 0 = e±, and D = ∅.
Hence Σ− = (−∞;−1)∪(1; +∞), Σ+ = ∅, the whole uncertainty
region Σun = [−1; 1] is in the essential spectrum, and the discrete
spectrum is empty.

(b) a1 = 1/2, a2 = −1/2. We obtain a± = ±
√

5/2, p± = ±1/2 = e±,
and D = ∅. Hence Σ− = (−∞;−

√
5/2) ∪ (

√
5/2; +∞), Σ+ =

(−1/2; 1/2), and the whole Σun = [−
√

5/2;−1/2]∪ [1/2;
√

5/2] is
in the essential spectrum. Compared with the previous picture,
we now know that in the nonempty interval Σ+ the operator J
is pure point (but we do not know anything about essentiality or
discreteness there).

(2) b1 = 2, b2 = 0. Then g0 = −2, dpp = 1, dac = 3.

(a) a1 = 0 = a2. We obtain a± = ±3, p± = ±1, e± = ±2, and
D = (−1; 1). Hence Σ− = (−∞;−3) ∪ (3; +∞), Σ+ = (−1; 1),
Σun = [−3;−1] ∪ [1; 3]. Now we have information on essentiality
only of the part [−3;−2] ∪ [2; 3] of the uncertainty region—the
character of the remaining (−2;−1] ∪ [1; 2) is unknown. But we
have discreteness in the whole Σ+.

(b) a1 = 1/2, a2 = −1/2. We obtain a± = ±
√

37/2, p± = ±
√

5/2,
e± = ±

√
17/2, andD = (−1/2; 1/2). ThusΣ− = (−∞;−

√
37/2)

∪ (
√

37/2; +∞), Σ+ = (−
√

5/2;
√

5/2), Σun = [−
√

37/2;−
√

5/2]
∪ [
√

5/2;
√

37/2]. The picture is similar to the previous one, ex-
cluding the Σ+ region—we have information on discreteness only
on its part (−1/2; 1/2).

(3) b1 = 0, b2 = 3/2, a1 = −u, a2 = u, where u = 1/4 + ε with a
small ε > 0. In this case g0 = 3/2, dpp = 1/2, dac = 5/2, so we
obtain: a± = ±

√
u2 + 25/4 ' ±

√
26/2, p± = ±

√
u2 + 1/4 ' ±1/2,

e± = ±
√
u2 + 9/4 ' ±

√
10/2. But unlike the previous cases, when

the set D given by (4.11) was ∅ or the interval (4.13), now, as one can
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easily check, D 6= ∅ for ε small enough, while the condition (4.12),
necessary to define (4.13), does not even hold.

The last example of the paper was presented in [8, Example 6.2] and it
is also a specific instance of the general case of Theorem 4.4, but the extra
assumptions of parts (C), (D), (C+D), h ∈ 0α and h ∈ D2(nα), do not
hold here. However, the assumptions of Proposition 4.5 do.

Example 4.11. Consider Jacobi operators J with weights

wn = nα + cnhn

and with zero diagonals, where

h2n = 1, h2n+1 = sin(nγ),

under condition (4.14), and with {cn}n≥1 being a real 2-periodic sequence
such that wn 6= 0 for any n ∈ N.

Using (4.5) and an argument similar to that from Example 4.9, we com-
pute

dpp =

{
|c2| − |c1| for |c2| > |c1|,
0 for |c2| ≤ |c1|,

dac = |c1|+ |c2|.

We also have a± = ±dpp, p± = ±dac and D = (−dpp; dpp). Hence Σ− =
(−∞;−dac) ∪ (dac; +∞), Σ+ = (−dpp; dpp), Σun = [−dac;−dpp] ∪ [dpp; dac],
and by Theorem 4.4, J is absolutely continuous in R \ [−dac; dac] and in
R \ (−dac; dac) ⊂ σac(J). Moreover, by Proposition 4.5, J is discrete in
(−dpp; dpp) (which is stronger information than that on pure pointness from
[8, Example 6.2]).

Let us finish with some questions and suppositions related to the results
presented here.

Open problems and conjectures

• The main questions concern spectral problems only partially solved, at
least for the various cases of Examples 4.9–4.11:

1. What is the detailed spectral character of the region Σun? How to
check there the existence and how to localise the discrete, dense
point, singular continuous and absolutely continuous spectrum?

2. What is the detailed spectral character of the region Σ+? How to
check there the existence, and how to localise the dense point spec-
trum?

• We have the following conjecture concerning the last question:

J is discrete in Σ+.
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Note that one of the motivations for the above questions is [12, Theorem
6.1], which gives a partial answer for some special cases of O&P.

5. Appendix. Here we have collected several more technical proofs and
lemmas.

Proof of Criterion 3.2. We use [8, Th. 5.1] to study the recurrent C2

vector equation
(xn+1)

> = Cn(xn)>

for large n. Thus we can choose n′0 ≥ n0, δ > 0 such that

(5.1) discrVn−1 < −δ, n ≥ n′0,
and the above equation considered for n ≥ n′0 has two linearly independent
solutions {x1n}n≥n′

0
, {x2n}n≥n′

0
of the form xmn = ϕmn y

m
n , with ϕmn ∈C, ymn ∈C2,

such that the scalar terms satisfy

(5.2) ϕ2
n = ϕ1

n 6= 0,

and the vector terms satisfy

(5.3) (ymn )> = Sn(βmn )>, m = 1, 2,

where Sn is the diagonalising matrix for Vn−1 described in [8, Section 2.3.1],
and βmn → em, with e1 = (1, 0), e2 = (0, 1). By (3.7) we have

(Vn−1)12(Vn−1)21 ≤
1

4
discrVn−1,

hence, using the boundedness of {Vn}n≥n0 and (5.1), we see that there exists
δ′ > 0 such that |(Vn−1)12| > δ′ for n ≥ n′0. Consequently, again by the
boundedness of {Vn}n≥n0 and by [8, Section 2.3.1], we get

sup
n≥n′

0

‖Sn‖ < +∞,(5.4)

inf
n≥n′

0

|detSn| > 0.(5.5)

By (5.2) and (5.3) we have |ϕ1
n/ϕ

2
n| = 1, and

((y1n)>, (y2n)>) = SnEn, En := ((β1n)>, (β2n)>)→ I.

Thus, employing (5.4) and (5.5), we can use [15, Lemma 5.9] to get {Cn}n≥n′
0

∈ H. This finishes the proof by [15, Proposition 5.7(i)].

We formulate here the following lemma which is used, e.g., in the proof
of Theorem 4.4.

Lemma 5.1. Let x := {xn}n≥n0 be a bounded real sequence.

(1) If K is a compact subset of R containing all the terms of x and
f : K → R is continuous, then LIM({f(xn)}n≥n0) = f(LIM(x)).
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(2) If (∆x)n → 0, then

LIM(x) = [lim inf
n→+∞

xn; lim sup
n→+∞

xn].

(3) If (∆x)n → 0 and l = {ln}n≥1 is a sequence of integers (≥n0)
such that ln → +∞ and ∆l is bounded from above, then LIM(x) =
LIM({xln}n≥1).

Proof. Parts (1) and (2) are rather well-known, and their proofs are stan-
dard, so we only prove (3). The inclusion “⊃” is obvious. Let A be the set of
all terms of {ln}n≥1 and let d := max{C, (minA)− n0}, where C is a fixed
upper bound of ∆(l). From ln → +∞, we can easily get

(5.6) A ∩ [k; k + d] 6= ∅ for any integer k ≥ n0.

Assume g ∈ LIM(x), and choose a sequence {kn}n≥1 of integers ≥ n0 such
that kn → +∞ and xkn → g. For any n ∈ N define

an := min{a ∈ A : a ≥ kn}, mn = min{m ∈ N : lm = an}.

In particular lmn = an ≥ kn for any n ∈ N. We have [kn; an − 1] ∩ A = ∅,
hence by (5.6), an − 1− kn < d, which gives

(5.7) kn ≤ lmn ≤ kn + d.

We also have mn → +∞, since otherwise mn = p for some integer p and
for infinitely many n, which by the definition of mn leads to lp ≥ kn for
infinitely many n, contrary to kn → +∞. Moreover, by (5.7) we get

|xlmn − xkn | ≤ max
j=0,...,d

|xkn+j − xkn |,

which gives xlmn − xkn → 0, because for any j ∈ N,

|xkn+j − xkn | ≤
j−1∑
s=0

|xkn+s+1 − xkn+s| =
j−1∑
s=0

|(∆x)kn+s| → 0.

Thus, finally, xlmn → g, and g ∈ LIM({xln}n≥1).

Below we prove a lemma which is a basic tool in the proof of Proposition
4.5. The way of estimating the quadratic form in the proof of the lemma is
inspired by the paper of Dombrowski [4].

Lemma 5.2. Let 0 < α < 1, and consider the Jacobi operator J given by
(4.2), where {an}n≥1, {bn}n≥1, {cn}n≥1, {hn}n≥1, {yn}n≥1 are real sequences
satisfying:

(a) {an}n≥1, {bn}n≥1, {cn}n≥1 are 2-periodic;
(b) h is bounded and (∆h(j))n = o(n−α) as n→ +∞, for j = 0, 1;
(c) yn → 0.
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Let dpp be as in (4.3) and p−, p+ as in (4.4). If |a1|, |a2| < 1 and

(5.8) r := min{d2pp(1−|a1|)−|a2|(1−|a2|); d2pp(1−|a2|)−|a1|(1−|a1|)} > 0,

then J is discrete in (−
√
r;
√
r). In particular, if a1 = a2 = 0, then J is

discrete in the whole (p−; p+) = (−dpp; dpp).

Proof. By the Weyl theorem on the invariance of the essential spectrum
under compact perturbations, we can assume that {yn}n≥1 is a zero sequence.
By the min-max principle (see e.g. [17, Vol. IV]) for the operator J2, it suffices
to check that for any r′ < r there exists N ∈ N such that for any f ∈ D(J2)
with

(5.9) f1 = · · · = f2N−1 = 0

we have

(5.10) (J2f, f) ≥ r′‖f‖2.

By Lemma 5.3 below it is enough to consider f ∈ `fin(N), the set of sequences
with only finitely many nonzero terms, instead of all the vectors from D(J2),
since `fin(N) is a domain of essential self-adjointness for J (because α< 1),
it is contained in the domain of J2 and it contains all the standard basis
vectors en.

Fix r′ < r and let f ∈ `fin(N) satisfy (5.9) for some N .
Denote by J0 and Z the operators given by the off-diagonal and the

diagonal part of the Jacobi matrix for J , respectively. Denote also by `2e(N),
`2o(N) the subspaces of `2(N) which are the closures of the linear spans of all
the en’s with n even and odd, respectively, and for any g ∈ `2(N) let ge, go be
the orthogonal projections of g onto these subspaces. We have J0fo ∈ `2e(N),
J0fe ∈ `2o(N), Zfo ∈ `2o(N), Zfe ∈ `2e(N), hence

(J2f, f) = (J2
0f, f) + 2 Re(J0f, Zf) + (Z2f, f)(5.11)

= ‖J0fe‖2 + ‖J0fo‖2 + 2a1 Re(J0fe, fo) + 2a2 Re(J0fo, fe)

+ a21‖fo‖2 + a22‖fe‖2.

We have

(5.12) 2a1 Re(J0fe, fo) + 2a2 Re(J0fo, fe)

≥ −2(|a1| ‖J0fe‖ ‖fo‖+ |a2| ‖J0fo‖ ‖fe‖)
≥ −|a1|(‖J0fe‖2 + ‖fo‖2)− |a2|(‖J0fo‖2 + ‖fe‖2).

By (5.11) and (5.12) we get

(J2f, f) ≥ (1− |a1|)‖J0fe‖2 + (1− |a2|)‖J0fo‖2(5.13)
+ (a21 − |a1|)‖fo‖2 + (a22 − |a2|)‖fe‖2.
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Denote

Ak := w2k−1 = (2k − 1)α + b1 + c1h2k−1,

Bk := (2k − 2)α + b1 + c1h2k−1,

Ck := w2k−2 −Bk = −((b1 − b2) + h̃k−1)

(see (4.3) for the definition of h̃). Let 0 < ε < dpp. Using (5.9), (4.3) and the
inequality 2 Rexy ≥ −(|x|2 + |y|2) we see that choosing N large enough we
also have

(5.14) ‖J0fe‖2 =

+∞∑
k=N

|w2k−2f(2k − 2) + w2k−1f(2k)|2

=
+∞∑
k=N

|(Akf(2k) +Bkf(2k − 2)) + Ckf(2k − 2)|2

=
+∞∑
k=N

|Akf(2k) +Bkf(2k − 2)|2 +
+∞∑
k=N

C2
k |f(2k − 2)|2

+

+∞∑
k=N

2 Re
[
(Akf(2k) +Bkf(2k − 2))Ckf(2k − 2)

]
≥ (dpp − ε/2)2‖fe‖2

+
+∞∑
k=N

[(AkCk)2 Re f(2k)f(2k − 2) + (2BkCk)|f(2k − 2)|2)].

The last sum is

≥
+∞∑
k=N

[(2Bk −Ak)Ck|f(2k − 2)|2 −AkCk|f(2k)|2]

=
+∞∑
k=N

(2Bk −Ak)Ck|f(2k − 2)|2 −
+∞∑
k=N

Ak−1Ck−1|f(2k − 2)|2

=

+∞∑
k=N

Fk|f(2k − 2)|2,

where

Fk = (2Bk −Ak −Ak−1)Ck +Ak−1(Ck − Ck−1)
= [(2(2k − 2)α − (2k − 1)α − (2k − 3)α) + c1(h2k−1 − h2k−3)]Ck

+ ((2k − 3)α + b1 + c1h2k−3)[h̃k−2 − h̃k−1]
= [(2(2k − 2)α − (2k − 1)α − (2k − 3)α) + c1(∆h

(1))k−2]Ck

+ ((2k − 3)α + b1 + c1h2k−3)[c2(∆h
(0))k−2 − c1(∆h(1))k−2].
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Hence, by (5.14),

‖J0fe‖2 ≥ (dpp − ε/2)‖f‖2 +

+∞∑
k=N

Fk|f(2k − 2)|2

≥
[
lim inf
n→+∞

Fn + (dpp − ε)2
]
‖fe‖2.

By (a) and (b) we have lim infn→+∞ Fn = 0, so

‖J0fe‖2 ≥ (dpp − ε)2‖fe‖2.
An analogous argument yields

‖J0fo‖2 ≥ (dpp − ε)2‖fo‖2,
and by (5.13), choosing ε small enough, we finally get (5.10).

Lemma 5.3. Let A be a self-adjoint operator in a Hilbert space H. Sup-
pose that X is a closed linear subspace and D̃ a linear subspace of H such
that X ⊂ D̃ ⊂ D(A2) and D̃ is a core space for A. Denote

M := {ϕ ∈ D(A2) : ϕ ⊥ X, ‖ϕ‖ = 1}, M̃ := M ∩ D̃.
Then

(5.15) inf
ϕ∈M

(A2ϕ,ϕ) = inf
ϕ∈M̃

(A2ϕ,ϕ).

Proof. We have LHS ≤ RHS in (5.15); if M = ∅, then both sides are
+∞. To get the assertion it suffices to prove that for any ϕ ∈M there exists
a sequence {ϕn} in M̃ with

(5.16) (A2ϕn, ϕn)→ (A2ϕ,ϕ).

Since ϕ ∈ D(A) and D̃ is a core space for A, we can first choose {ψn} in D̃
satisfying ψn → ϕ and Aψn → Aϕ. Let P be the orthogonal projection onto
X⊥, Q the orthogonal projection onto X, and let ηn := Pψn. Using ϕ ∈ X⊥
and X ⊂ D̃ we obtain

ηn → Pϕ = ϕ, ηn = ψn −Qψn ∈ D̃, ηn ⊥ X.
Moreover AQ is bounded on H, since A is closed, Q is bounded on H, and
RanQ = X ⊂ D(A). Thus AQηn → AQϕ, and hence, using again ϕ ∈ X⊥,
we get

Aηn = APψn = Aψn −AQψn → Aϕ−AQϕ = Aϕ.

We also have ‖ηn‖ → ‖ϕ‖ = 1, so ‖ηn‖ 6= 0 for n large enough, and we can
define ϕn := ‖ηn‖−1ηn. Then

ϕn ∈ M̃, ϕn → ϕ, Aϕn → Aϕ.

Therefore, using D̃ ⊂ D(A2), we obtain

(A2ϕn, ϕn) = ‖Aϕn‖2 → ‖Aϕ‖2 = (A2ϕ,ϕ).
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