Boundedness of Riesz transforms on weighted Carleson measure spaces

by

MING-YI LEE (Chung-Li)

Abstract. Let w be in the Muckenhoupt A_{∞} weight class. We show that the Riesz transforms are bounded on the weighted Carleson measure space CMO_{w}^{p} , the dual of the weighted Hardy space H_{w}^{p} , 0 .

1. Introduction. One of the principal interests of $H^p(\mathbb{R}^n)$ theory is to give a natural extension of the boundedness on L^p , 1 , for maximal $functions and singular integrals to the Hardy space <math>H^p(\mathbb{R}^n)$ for $p \leq 1$. It is well known that the Riesz transforms are bounded on $H^p(\mathbb{R}^n)$, 0 , $and BMO(<math>\mathbb{R}^n$), the dual of H^1 . For p < 1, the dual of $H^p(\mathbb{R}^n)$ can be identified with a Campanato space (see [CW], [FS], and [GR]). Moreover, it was proved that Campanato spaces are equivalent to Lipschitz spaces (see [FS, Theorem 5.39]). Lemarié [L, Theorem A] proved that Calderón–Zygmund singular integral operators satisfying certain conditions are bounded on Lipschitz spaces (cf. [MC, Chapter 10, §4]). Therefore, these results imply that the Riesz transforms are bounded on the dual of $H^p(\mathbb{R}^n)$.

For the weighted case, Lee et al. [LLY] showed that the Riesz transforms are bounded on weighted Hardy spaces H_w^p , $0 for <math>w \in A_1$. Recently, Ding et al. [DHLW] extend the H_w^p -boundedness of the Riesz transforms to $w \in A_\infty$. A natural question arises: Are the Riesz transforms bounded on the dual of the weighted Hardy space H_w^p for $0 and <math>w \in A_\infty$? The purpose of this paper is to give an affirmative answer. In 2001, García-Cuerva and Martell [GM] gave a wavelet characterization of weighted Hardy spaces $H_w^p(\mathbb{R}^n)$. In [LLL], Lee et al. introduced the weighted Carleson measure space $\mathrm{CMO}_w^p(\mathbb{R})$ and showed that $\mathrm{CMO}_w^p(\mathbb{R})$ is the dual of the weighted Hardy space $H_w^p(\mathbb{R})$. To state the duality result of [LLL], we first recall the definition of the weighted Carleson measure spaces CMO_w^p . Let $\psi \in \mathcal{S}(\mathbb{R}^n)$ satisfy

²⁰¹⁰ Mathematics Subject Classification: Primary 42B20.

Key words and phrases: weighted Carleson measure spaces, duality, weighted Hardy spaces, Riesz transforms.

(1.1)
$$\operatorname{supp} \widehat{\psi} \subset \{\xi \in \mathbb{R}^n : 1/2 \le |\xi| \le 2\}$$

and

(1.2)
$$\sum_{j\in\mathbb{Z}} |\widehat{\psi}(2^{-j}\xi)|^2 = 1 \quad \text{for all } \xi \in \mathbb{R}^n \setminus \{0\}.$$

Set $\psi_j(x) = 2^{jn}\psi(2^jx)$. Denote by $\mathcal{S}_{\infty}(\mathbb{R}^n)$ the functions $f \in \mathcal{S}(\mathbb{R}^n)$ satisfying $\int_{\mathbb{R}^n} f(x)x^{\alpha} dx = 0$ for $|\alpha| \ge 0$. We define $\mathrm{CMO}_w^p(\mathbb{R}^n)$ as follows.

DEFINITION 1.1. Let $0 and <math>w \in A_{\infty}$. We say that $f \in CMO_w^p(\mathbb{R}^n)$ if $f \in (\mathcal{S}_{\infty})'(\mathbb{R}^n)$ with the finite norm defined by

$$||f||_{\mathrm{CMO}_w^p(\mathbb{R}^n)} := \sup_J \left\{ \frac{1}{w(J)^{2/p-1}} \sum_{j \in \mathbb{Z}} \sum_{I \subset J} |(\psi_j * f)(x_I)|^2 \frac{|I|^2}{w(I)} \right\}^{1/2}$$

where J is a dyadic cube in \mathbb{R}^n and I is a dyadic cube in \mathbb{R}^n with edgelength 2^{-j} and lower-left corner x_I . Note that $x_I = 2^{-j}\mathbf{k}$, where $j \in \mathbb{Z}$, $\mathbf{k} = (k_1, \ldots, k_n) \in \mathbb{Z}^n$ and $I = \{(x_1, \ldots, x_n) \in \mathbb{R}^n : k_i \leq 2^j x_i < k_i + 1, i = 1, \ldots, n\}$. This convention will be used throughout the paper.

By the same argument of [LLL], the dual space of $H^p_w(\mathbb{R}^n)$, $0 , can be identified with <math>\mathrm{CMO}^p_w(\mathbb{R}^n)$ as follows.

THEOREM A. Let $0 and <math>w \in A_{\infty}$. The dual of H^p_w is CMO^p_w in the following sense:

- (a) For each $g \in \text{CMO}_w^p$, there is a linear functional ℓ_g , initially defined on $H_w^p \cap L^2$, which has a continuous extension onto H_w^p and $\|\ell_g\| \leq C \|g\|_{\text{CMO}_w^p}$.
- (b) Conversely, every continuous linear functional ℓ on H^p_w can be realized as $\ell = \ell_g$ with $g \in CMO^p_w$ and $\|g\|_{CMO^p_w} \leq C\|\ell\|$.

In particular for p = 1, $CMO_w^1(\mathbb{R}^n) = BMO_w(\mathbb{R}^n)$.

Since CMO_w^p is the dual of H_w^p , the definition of CMO_w^p is independent of the choice of the function ψ . However, we would like to show this independence by using the following inequality for CMO_w^p , which will also be used for the proof of the main result in this paper.

THEOREM 1.2. Let $0 , <math>w \in A_{\infty}$ and ψ , ϕ satisfy (1.1)–(1.2). Then, for all $f \in (\mathcal{S}_{\infty})'$,

$$\sup_{J} \left\{ \frac{1}{w(J)^{2/p-1}} \sum_{j \in \mathbb{Z}} \sum_{I \subset J} |(\psi_j * f)(x_I)|^2 \frac{|I|^2}{w(I)} \right\}^{1/2} \\ \approx \sup_{J} \left\{ \frac{1}{w(J)^{2/p-1}} \sum_{j \in \mathbb{Z}} \sum_{I \subset J} |(\phi_j * f)(x_I)|^2 \frac{|I|^2}{w(I)} \right\}^{1/2}.$$

Let R_j , j = 1, ..., n, denote the *Riesz transforms* in \mathbb{R}^n defined by

$$R_j f(x) = \text{p.v.} (K_j * f)(x), \text{ where } K_j(x) = \pi^{-(n+1)/2} \Gamma\left(\frac{n+1}{2}\right) \frac{x_j}{|x|^{n+1}}.$$

For n = 1, the Riesz transform reduces to the Hilbert transform

$$Hf(x) = \lim_{\varepsilon \to 0} \frac{1}{\pi} \int_{|y| \ge \varepsilon} \frac{f(x-y)}{y} dy.$$

Note that by Definition 1.1, $\operatorname{CMO}_w^p \subset (\mathcal{S}_\infty)'$. In general, R_j may not be well defined on CMO_w^p . Accordingly, to obtain the boundedness of an operator R_j on CMO_w^p , we need first to define $R_j f$ for $f \in \operatorname{CMO}_w^p$. Indeed, the same problem appeared even in the study of the boundedness of singular integral operators on the classical Hardy spaces H^p . The key method used in the classical case was to consider the dense subspace $L^2 \cap H^p$ of H^p . Thus, to show the H^p boundedness of singular integral operators, by the density argument, it suffices to prove the boundedness of operators on $L^2 \cap H^p$. However, this method does not work in our case because $L^2 \cap \operatorname{CMO}_w^p$ is not dense in CMO_w^p . But we will prove in Proposition 4.1 below that $L^2 \cap \operatorname{CMO}_w^p$ is dense in CMO_w^p in the weak topology $(H_w^p, \operatorname{CMO}_w^p)$. Hence, for $f \in \operatorname{CMO}_w^p$, $\langle R_j f, g \rangle$ is well defined for $g \in \mathcal{S}_\infty$. This means that for $f \in \operatorname{CMO}_w^p$, $R_j f$ is well defined as a distribution in $(\mathcal{S}_\infty)'$. The main result of this paper is the following

THEOREM 1.3. Let $w \in A_{\infty}$. Then there exists a constant C such that $\|R_j f\|_{CMO_w^p} \leq C \|f\|_{CMO_w^p}$ for $0 and <math>j = 1, \ldots, n$.

REMARK. Theorem 1.3 cannot be directly obtained by duality from the H^p_w -boundedness of Riesz transforms since we do not have $||f||_{\mathrm{CMO}^p_w} \approx \sup_{||g||_{H^p_w} \leq 1} |\langle f, g \rangle|$.

Throughout the article the letter C will denote a positive constant that may vary from line to line but remains independent of the main variables. We use $j \wedge k$ to denote the minimum of j and k and use $a \approx b$ to denote the equivalence of a and b, that is, there exist two positive constants C_1, C_2 independent of a, b such that $C_1 a \leq b \leq C_2 a$.

2. Preliminaries. The class A_p was used by Muckenhoupt [M], Hunt– Muckenhoupt–Wheeden [HMW], and Coifman–Fefferman [CF] to investigate the weighted L^p boundedness of Hardy–Littlewood maximal functions, the Hilbert transform and Calderón–Zygmund singular integral operators, respectively. In this article a weight means an A_p weight. More precisely, let w be a nonnegative function defined on \mathbb{R}^n . We say that $w \in A_p, 1 ,$ if

$$\left(\int_{I} w(x) \, dx\right) \left(\int_{I} w(x)^{-1/(p-1)} \, dx\right)^{p-1} \le C|I|^p \quad \text{for every cube } I \subseteq \mathbb{R}^n,$$

where C is a positive constant independent of I and $0 \cdot \infty$ is taken to be 0. A function w satisfies the condition A_{∞} if given $\varepsilon > 0$ there exists $\delta > 0$ such that if I is a cube and $E \subseteq I$ with $|E| < \delta |I|$, then

$$\int_E w(x) \, dx < \varepsilon \int_I w(x) \, dx$$

For the case $p = 1, w \in A_1$ if

$$\frac{1}{|I|} \int_{I} w(x) \, dx \le C \operatorname{ess\,inf}_{x \in I} w(x) \quad \text{for every cube } I \subseteq \mathbb{R}^n.$$

It is well known that a locally integrable function satisfies the condition A_{∞} if and only if it satisfies the condition A_p for some p > 1. Also, if $w \in A_p$ with $1 , then <math>w \in A_r$ for all r > p and $w \in A_q$ for some 1 < q < p. We thus use $q_w \equiv \inf\{q > 1 : w \in A_q\}$ to denote the *critical index* of w and define the weighted measure of a set $E \subseteq I$ by $w(E) = \int_E w(x) dx$.

For any cube I and $\lambda > 0$, we shall denote by λI the cube concentric with I each of whose edges is λ times as long as the edges of I. It is known that for $w \in A_p$, $p \ge 1, w$ satisfies the *doubling condition*, that is, there exists an absolute constant C such that $w(2I) \le Cw(I)$.

Closely related to A_p is the reverse Hölder condition. If there exist r > 1 and a fixed constant C > 0 such that

$$\left(\frac{1}{|I|} \int_{I} w(x)^r \, dx\right)^{1/r} \le C \left(\frac{1}{|I|} \int_{I} w(x) \, dx\right) \quad \text{for every cube } I \subseteq \mathbb{R}^n,$$

we say that w satisfies the reverse Hölder condition of order r and write $w \in RH_r$. It follows from Hölder's inequality that $w \in RH_r$ implies $w \in RH_s$ for all s < r. It is known that $w \in A_\infty$ if and only if $w \in RH_r$ for some r > 1. Moreover, if $w \in RH_r$, r > 1, then $w \in RH_{r+\varepsilon}$ for some $\varepsilon > 0$. We thus write $r_w \equiv \sup\{r > 1 : w \in RH_r\}$ to denote the critical index of w for the reverse Hölder condition.

For the comparison between the Lebesgue measure of a set E and its weighted measure w(E), we have the following

THEOREM B ([GR, GW]). Let $w \in A_p \cap RH_r$ with $p \ge 1$ and r > 1. Then there exist constants $C_1, C_2 > 0$ such that

$$C_1\left(\frac{|E|}{|I|}\right)^p \le \frac{w(E)}{w(I)} \le C_2\left(\frac{|E|}{|I|}\right)^{(r-1)/r}$$

for any measurable subset E of a cube I.

For the integral with respect to the measure w(x)dx, we have the following estimate which can be found in [GR, p. 412].

LEMMA C. Let $w \in A_q$, q > 1. Then, for all r > 0, there exists a constant C independent of r such that

$$\int_{|x|\ge r} \frac{w(x)}{|x|^{nq}} \, dx \le Cr^{-nq} w(I_r),$$

where I_r is the cube centered at 0 with edge-length 2r.

For $f \in (\mathcal{S}_{\infty})'$, we define the discrete Littlewood–Paley square function $\mathcal{G}(f)$ by

$$\mathcal{G}(f)(x) = \left(\sum_{j \in \mathbb{Z}} \sum_{I} |(\psi_j * f)(x_I)|^2 \chi_I(x)\right)^{1/2}.$$

It is known that \mathcal{G} is bounded on L_w^q , $1 < q < \infty$, provided $w \in A_q$. The following discrete Calderón identity on \mathbb{R}^n was proved in [FJ]:

THEOREM D. Suppose that ψ satisfies (1.1) and (1.2). Then, for $f \in L^2(\mathbb{R}^n)$, $\mathcal{S}_{\infty}(\mathbb{R}^n)$, or $(\mathcal{S}_{\infty})'(\mathbb{R}^n)$,

$$f(x) = \sum_{j \in \mathbb{Z}} \sum_{I} 2^{-jn} (\psi_j * f)(x_I) \psi_j(x - x_I),$$

where the series converges in $L^2(\mathbb{R}^n)$, $\mathcal{S}_{\infty}(\mathbb{R}^n)$, or $(\mathcal{S}_{\infty})'(\mathbb{R}^n)$, respectively.

3. The proof of Theorem 1.2. For $f \in (\mathcal{S}_{\infty})'$, we use Theorem D to get

$$(\psi_j * f)(z) = \sum_{j' \in \mathbb{Z}} \sum_{I'} 2^{-j'n} (\phi_{I'} * f)(x_{I'}) (\psi_j * \phi_{I'})(z - x_{I'}),$$

where $\phi_{I'} := \phi_{j'}$ if $\ell(I') = 2^{-j'}$. Note that ϕ_{I_1} and ϕ_{I_2} represent the same operator if I_1 and I_2 have the same edge-length. For L, M > 0, the almost orthogonality (cf. [HS, Lemma 4.3]) gives

(3.1)
$$|(\psi_j * \phi_{j'})(z - x_{I'})| \le C 2^{-|j-j'|L} \frac{2^{-(j\wedge j')M}}{(2^{-(j\wedge j')} + |z - x_{I'}|)^{n+M}}.$$

Hence,

$$\begin{aligned} |(\psi_j * f)(z)| \\ &\leq C \sum_{j'} \sum_{I'} |I'| \, 2^{-|j-j'|L} \frac{2^{-(j\wedge j')M}}{(2^{-(j\wedge j')} + |z - x_{I'}|)^{n+M}} |(\phi_{I'} * f)(x_{I'})| \\ &\leq C \sum_{j'} \sum_{I'} |I'| \, 2^{-|j-j'|L} \frac{2^{-(j\wedge j')M}}{(2^{-(j\wedge j')} + |x_I^c - x_{I'}^c|)^{n+M}} |(\phi_{I'} * f)(x_{I'})|, \quad z \in I, \end{aligned}$$

M.-Y. Lee

where $x_{I}^{c}, x_{I'}^{c}$ denote the centers of I, I', respectively. Taking the supremum over $z \in I$, we get

$$\sup_{z \in I} |(\psi_j * f)(z)| \le C \sum_{j'} \sum_{I'} |I'| 2^{-|j-j'|L} \frac{2^{-(j \wedge j')M}}{(2^{-(j \wedge j')} + |x_I^c - x_{I'}^c|)^{n+M}} |(\phi_{I'} * f)(x_{I'})|.$$

Schwarz's inequality gives

$$\begin{split} \left(\sup_{z \in I} |(\psi_j * f)(z)| \right)^2 \\ &\leq C \bigg(\sum_{j'} 2^{-|j-j'|L} \bigg\{ \sum_{I'} |I'| \frac{2^{-(j \wedge j')M}}{(2^{-(j \wedge j')} + |x_I^c - x_{I'}^c|)^{n+M}} \bigg\}^{1/2} \\ &\quad \times \bigg\{ \sum_{I'} |I'| \frac{2^{-(j \wedge j')M}}{(2^{-(j \wedge j')} + |x_I^c - x_{I'}^c|)^{n+M}} |(\phi_{I'} * f)(x_{I'})|^2 \bigg\}^{1/2} \bigg)^2. \end{split}$$

A direct computation yields

(3.2)
$$\sum_{I'} |I'| \frac{2^{-(j \wedge j')M}}{(2^{-(j \wedge j')} + |x_I^c - x_{I'}^c|)^{n+M}} \le C.$$

By Schwarz's inequality again,

$$\begin{split} \left(\sup_{z \in I} |(\psi_j * f)(z)|\right)^2 \\ &\leq C \left(\sum_{j'} 2^{-|j-j'|L}\right) \left(\sum_{j'} 2^{-|j-j'|L} \\ &\times \sum_{I'} |I'| \frac{2^{-(j \wedge j')M}}{(2^{-(j \wedge j')} + |x_I^c - x_{I'}^c|)^{n+M}} |(\phi_{I'} * f)(x_{I'})|^2 \right) \\ &\leq C \sum_{j'} \sum_{I'} 2^{-|j-j'|L} |I'| \frac{2^{-(j \wedge j')M}}{(2^{-(j \wedge j')} + |x_I^c - x_{I'}^c|)^{n+M}} |(\phi_{I'} * f)(x_{I'})|^2. \end{split}$$

Given a dyadic cube P, say $\ell(P) = 2^{-j_0}$, we have

$$\frac{1}{w(P)^{2/p-1}} \sum_{I \subset P} \left(\sup_{z \in I} |(\psi_j * f)(z)| \right)^2 \frac{|I|^2}{w(I)} \\
\leq \frac{C}{w(P)^{2/p-1}} \sum_{j=j_0}^{\infty} \sum_{\substack{I \subset P\\ \ell(I)=2^{-j}}} \sum_{j'=j_0}^{\infty} \sum_{I'} 2^{-|j-j'|L|} |I'| \\
\times \frac{2^{-(j\wedge j')M}}{(2^{-(j\wedge j')} + |x_I^c - x_{I'}^c|)^{n+M}} |(\phi_{I'} * f)(x_{I'})|^2 \frac{|I|^2}{w(I)}$$

$$+ \frac{C}{w(P)^{2/p-1}} \sum_{j=j_0}^{\infty} \sum_{\substack{I \subset P\\\ell(I)=2^{-j}}} \sum_{j'=-\infty}^{j_0-1} \sum_{I'} 2^{-|j-j'|L|} |I'| \\ \times \frac{2^{-(j\wedge j')M}}{(2^{-(j\wedge j')} + |x_I^c - x_{I'}^c|)^{n+M}} |(\phi_{I'} * f)(x_{I'})|^2 \frac{|I|^2}{w(I)} \\ := A_1 + A_2.$$

 A_1 can be further decomposed as

$$A_{1} = \frac{C}{w(P)^{2/p-1}} \left(\sum_{j=j_{0}}^{\infty} \sum_{\substack{I \subset P \\ \ell(I)=2^{-j}}} \sum_{j'=j_{0}}^{\infty} \sum_{\substack{I' \subset 3P \\ \ell(I')=2^{-j'}}} + \sum_{j=j_{0}}^{\infty} \sum_{\substack{I \subset P \\ \ell(I)=2^{-j}}} \sum_{j'=j_{0}}^{\infty} \sum_{\substack{I' \cap 3P=\emptyset \\ \ell(I')=2^{-j'}}} \right)$$
$$2^{-|j-j'|L|} |I'| \frac{2^{-(j\wedge j')M}}{(2^{-(j\wedge j')} + |x_{I}^{c} - x_{I'}^{c}|)^{n+M}} |(\phi_{I'} * f)(x_{I'})|^{2} \frac{|I|^{2}}{w(I)}$$
$$:= A_{11} + A_{12}.$$

Let $w \in A_{\infty}$. There exist q, r > 1 such that $w \in A_q \cap RH_r$. The definition of A_q and Hölder's inequality show that

(3.3)
$$|I|^q \approx w(I)(w(I)^{1-q'})^{q-1}$$

Hence,

$$(3.4) \sum_{\substack{I \subset P\\ \ell(I)=2^{-j}}} \frac{|I|^2}{w(I)} \frac{2^{-(j\wedge j')M}}{(2^{-(j\wedge j')} + |x_I^c - x_{I'}^c|)^{n+M}} \\ \leq \sum_{\substack{I \subset P\\ \ell(I)=2^{-j}}} |I|^{2-q} (w(I)^{1-q'})^{q-1} \frac{2^{-(j\wedge j')M}}{(2^{-(j\wedge j')} + |x_I^c - x_{I'}^c|)^{n+M}} \\ \leq 2^{-jn(2-q)} \bigg(\int_P \frac{2^{-(j\wedge j')\frac{M}{q-1}}}{(2^{-(j\wedge j')} + |x_I^c - x_{I'}^c|)^{\frac{n+M}{q-1}}} w(x)^{1-q'} dx \bigg)^{q-1} \\ \leq C2^{-jn(2-q)} \bigg(\bigg(\int_{|x-x_{I'}^c| \le 2^{-j'}} + \int_{|x-x_{I'}^c| > 2^{-j'}} \bigg) \\ \frac{2^{-(j\wedge j')\frac{M}{q-1}}}{(2^{-(j\wedge j')} + |x - x_{I'}^c|)^{\frac{n+M}{q-1}}} w(x)^{1-q'} dx \bigg)^{q-1}.$$

Since $w \in A_q$ it follows that $w^{1-q'} \in A_{q'}$. If we take M > nq'(q-1) - n, Lemma C yields M.-Y. Lee

$$\int_{|x-x_{I'}^c|>2^{-j'}} \frac{2^{-(j\wedge j')\frac{M}{q-1}}}{(2^{-(j\wedge j')}+|x_I^c-x_{I'}^c|)^{\frac{n+M}{q-1}}} w(x)^{1-q'} dx$$
$$\leq C 2^{-(j\wedge j')\frac{M}{q-1}+j'\frac{n+M}{q-1}} w(I')^{1-q'}.$$

Inserting the above estimate into the last term in (3.4) implies

$$\sum_{\substack{I \subset P\\\ell(I)=2^{-j}}} \frac{|I|^2}{w(I)} \frac{2^{-(j\wedge j')M}}{(2^{-(j\wedge j')} + |x_I^c - x_{I'}^c|)^{n+M}} \\ \leq 2^{-jn(2-q)} (2^{(j\wedge j'-j')n} + 2^{(j'-j\wedge j')M}) |I'|^{-1} (w(I')^{1-q'})^{q-1}.$$

By (3.3) again,

(3.5)
$$\sum_{\substack{I \subset P\\\ell(I)=2^{-j}}} \frac{|I|^2}{w(I)} \frac{2^{-(j\wedge j')M}}{(2^{-(j\wedge j')} + |x_I^c - x_{I'}^c|)^{n+M}} \le C2^{-jn(2-q)} (2^{(j\wedge j'-j')n} + 2^{(j'-j\wedge j')M}) |I'|^{q-1} w(I')^{-1}.$$

Thus,

$$A_{11} \leq \frac{C}{w(P)^{2/p-1}} \sum_{j=j_0}^{\infty} \sum_{\substack{j'=j_0\\\ell(I')=2^{-j'}}}^{\infty} \sum_{\substack{I'\subset 3P\\\ell(I')=2^{-j'}}}^{N} 2^{-|j-j'|L+(j-j')n(q-2)} (2^{(j\wedge j'-j')n} + 2^{(j'-j\wedge j')M}) \frac{|I'|^2}{w(I')} |(\phi_{I'} * f)(x_{I'})|^2.$$

Since there are 3^n dyadic cubes in 3P with the same edge-length as P,

$$\sum_{\substack{I' \subset 3P\\\ell(I') \le \ell(P)}} |(\phi_{I'} * f)(x_{I'})|^2 \frac{|I'|^2}{w(I')} \le 3^n \sup_{\substack{P' \subset 3P\\\ell(P') = \ell(P)}} \sum_{I' \subset P'} |(\phi_{I'} * f)(x_{I'})|^2 \frac{|I'|^2}{w(I')}.$$

Choosing $L > \max\{M - n(q - 2) - n, n(q - 2)\}$, we have

$$A_{11} \leq \frac{C}{w(P)^{2/p-1}} \sum_{j'=j_0}^{\infty} \sum_{\substack{I' \subset 3P\\\ell(I')=2^{-j'}}} |(\phi_{I'} * f)(x_{I'})|^2 \frac{|I'|^2}{w(I')}$$
$$\times \sum_{j=j_0}^{\infty} 2^{-|j-j'|L+(j-j')n(q-2)} (2^{(j \wedge j'-j')n} + 2^{(j'-j \wedge j')M})$$
$$\leq \frac{C}{w(P)^{2/p-1}} \sup_{\substack{P' \subset 3P\\\ell(P')=\ell(P)}} \sum_{I' \subset P'} |(\phi_{I'} * f)(x_{I'})|^2 \frac{|I'|^2}{w(I')}.$$

Next we decompose the set of dyadic cubes $\{I : I \cap 3P = \emptyset \text{ and } \ell(I) = \ell(P)\}$ into the disjoint union of $\{H_i\}_{i \in \mathbb{N}}$ according to the distance between each Iand P. Namely, for each $i \in \mathbb{N}$,

$$H_i := \{ P' : P' \cap 3P = \emptyset, \, \ell(P') = \ell(P), \, 2^{i-j_0} \le |x_{P'}^c - x_P^c| < 2^{i+1-j_0} \},\$$

where x_P^c and $x_{P'}^c$ denote the centers of P and P', respectively. Thus,

$$A_{12} \leq C \sum_{i=1}^{\infty} \sum_{P' \in H_i} \frac{1}{w(P)^{2/p-1}} \sum_{j=j_0}^{\infty} \sum_{\substack{I \subset P \\ \ell(I)=2^{-j}}} \frac{|I|^2}{w(I)} \sum_{j'=j_0}^{\infty} \sum_{\substack{I' \subset P' \\ \ell(I')=2^{-k'}}} 2^{-|j-j'|L|} |I'| \\ \times \frac{2^{-(j\wedge j')M}}{(2^{-(j\wedge j')} + |x_P^c - x_{P'}^c|)^{n+M}} |(\phi_{I'} * f)(x_{I'})|^2.$$

Let Q_i be the cube with center x_P^c and $\ell(Q_i) = 2^{i+2-j_0}$. Then $P \subset Q_i$ and $P' \subset Q_i$ for any $P' \in H_i$. Theorem B shows that, for any $P' \in H_i$,

$$\frac{w(P')}{w(P)} \le C2^{-i\frac{r-1}{r}+iq}.$$

Note that $|x_{P'}^c - x_P^c| \approx 2^{i-j_0}$ for $P' \in H_i$. By (3.5) for M > 2(nq'(q-1) - n),

$$A_{12} \leq C \sum_{i=1}^{\infty} \sum_{P' \in H_i} \frac{1}{w(P')^{2/p-1}} 2^{(-i+j_0)M/2 + i(q - \frac{r-1}{r})(2/p-1)} \\ \times \sum_{j'=j_0}^{\infty} \sum_{j=j_0}^{\infty} 2^{-|j-j'|L - (j\wedge j')M/2} 2^{(j-j')n(q-2)} (2^{(j\wedge j'-j')n} + 2^{(j'-j\wedge j')M/2}) \\ \times \sum_{\substack{I' \subset P'\\\ell(I')=2^{-j'}}} |(\phi_{I'} * f)(x_{I'})|^2 \frac{|I'|^2}{w(I')}.$$

Since there are at most $2^{(i+2)n}$ cubes P' in H_i and for $j' \ge j_0$,

$$\sum_{j=j_0}^{\infty} 2^{-|j-j'|L-(j\wedge j')M/2} 2^{(j-j')n(q-2)} (2^{(j\wedge j'-j')n} + 2^{(j'-j\wedge j')M/2}) \le C 2^{-j_0M/2},$$

we choose M > 2q(2/p - 1) to get

$$A_{12} \leq C \sup_{P'} \frac{1}{w(P')^{2/p-1}} \sum_{j'=j_0}^{\infty} \sum_{\substack{I' \subset P'\\\ell(I')=2^{-j'}}} |(\phi_{I'} * f)(x_{I'})|^2 \frac{|I'|^2}{w(I')}$$
$$\times \sum_{i=1}^{\infty} 2^{-iM/2+i(q-\frac{r-1}{r})(2/p-1)}$$
$$\leq C \sup_{P'} \frac{1}{w(P')^{2/p-1}} \sum_{I' \subset P'} |(\phi_{I'} * f)(x_{I'})|^2 \frac{|I'|^2}{w(I')}.$$

To estimate A_2 , we use (3.3) to obtain

$$\begin{split} A_{2} &\leq \frac{C}{w(P)^{2/p-1}} \sum_{j=j_{0}}^{\infty} \sum_{\substack{I \subset P \\ \ell(I) = 2^{-j}}} \sum_{j'=-\infty}^{j_{0}-1} \sum_{I'} \frac{|I|^{2}}{w(I)} 2^{-(j-j')L} \\ &\times |I'| \frac{2^{-j'M}}{(2^{-j'} + |x_{P}^{c} - x_{I'}^{c}|)^{n+M}} |(\phi_{I'} * f)(x_{I'})|^{2} \\ &\leq \frac{C}{w(P)^{2/p-1}} \sum_{j=j_{0}}^{\infty} \sum_{\substack{I \subset P \\ \ell(I) = 2^{-j}}} \sum_{j'=-\infty}^{j_{0}-1} \sum_{I'} 2^{-(j-j')L} 2^{-jn(2-q)} (w(I)^{1-q'})^{q-1} \\ &\times |I'| \frac{2^{-j'M}}{(2^{-j'} + |x_{P}^{c} - x_{I'}^{c}|)^{n+M}} |(\phi_{I'} * f)(x_{I'})|^{2} \\ &= \frac{C}{w(P)^{2/p-1}} \sum_{j=j_{0}}^{\infty} \sum_{j'=-\infty}^{j_{0}-1} \sum_{I'} 2^{-(j-j')L} 2^{-jn(2-q)} (w(P)^{1-q'})^{q-1} \\ &\times |I'| \frac{2^{-j'M}}{(2^{-j'} + |x_{P}^{c} - x_{I'}^{c}|)^{n+M}} |(\phi_{I'} * f)(x_{I'})|^{2} \end{split}$$

Let $E_k^0 = \{I' : \ell(I') = 2^k \ell(P) \text{ and } |x_P^c - x_{I'}^c| \le \ell(I')\}$ and $E_k^i = \{I' : \ell(I') = 2^k \ell(P) \text{ and } 2^{i-1} \ell(I') < |x_P^c - x_{I'}^c| \le 2^i \ell(I')\}$ for $i \in \mathbb{N}$. Then the cube Q_k^i with center x_P^c and $\ell(Q_k^i) = 2^{i+k-j_0+2}$ contains P and I' for any $I' \in E_k^i$. By Theorem B,

$$\frac{w(I')}{w(P)} \le C2^{(i+k)(q-\frac{r-1}{r})} \quad \text{for any } I' \in E_k^i.$$

Since $w^{1-q'} \in A_{q'}$, there exists $\bar{r} > 1$ such that $w^{1-q'} \in RH_{\bar{r}}$. Using Theorem B again, we have

$$\frac{w(P)^{1-q'}}{w(I')^{1-q'}} \le C2^{-(i+k)(q'-\frac{\bar{r}-1}{\bar{r}})} \quad \text{for any } I' \in E_k^i$$

By the above two inequalities and (3.3),

$$A_{2} \leq C \sum_{j=j_{0}}^{\infty} \sum_{k=1}^{\infty} \sum_{\{I': \ell(I')=2^{k}\ell(P)\}}^{\infty} \frac{2^{(i+k)(q-\frac{r-1}{r})(2/p-1)}}{w(I')^{2/p-1}} 2^{-(j-j')L} 2^{(j-j')n(q-2)} \times 2^{-(i+k)(q'-\frac{\bar{r}-1}{\bar{r}})(q-1)} \frac{2^{-j'(M+n)}}{(2^{-j'}+|x_{P}^{c}-x_{I'}^{c}|)^{n+M}} \frac{|I'|^{2}}{w(I')} |(\phi_{I'}*f)(x_{I'})|^{2}.$$

Choosing L = n(q-2) + M + n, we then have

$$A_{2} = C2^{-j_{0}(M+n)} \sum_{k=1}^{\infty} \sum_{\{I': \ell(I')=2^{k}\ell(P)\}} \frac{2^{-(i+k)[(q'-\frac{\bar{r}-1}{\bar{r}})(q-1)-(q-\frac{r-1}{r})(2/p-1)]}}{w(I')^{2/p-1}(\ell(I')+|x_{P}^{c}-x_{I'}^{c}|)^{n+M}} \times |(\phi_{I'}*f)(x_{I'})|^{2} \frac{|I'|^{2}}{w(I')} \\ \leq \sum_{k=1}^{\infty} \sum_{i=0}^{\infty} \sum_{I'\in E_{j}^{i}} \frac{2^{-(i+k)[M+(q'-\frac{\bar{r}-1}{\bar{r}})(q-1)-(q-\frac{r-1}{r})(2/p-1)]}}{w(I')^{2/p-1}} 2^{-(i+k)(n+M)} \times |(\phi_{I'}*f)(x_{I'})|^{2} \frac{|I'|^{2}}{w(I')}.$$

There are at most 2^{in} dyadic cubes $I' \in E_k^i$ for $i \in \mathbb{N}$, and at most 3^n dyadic cubes $I' \in E_k^0$. Thus,

$$A_{2} \leq C \left(\sup_{P} \frac{1}{|P|^{2/p-1}} \sum_{I' \subset P} |(\phi_{I'} * f)(x_{I'})|^{2} \frac{|I'|^{2}}{w(I')} \right) \\ \times \sum_{k=1}^{\infty} 2^{-k[2M+n+(q'-\frac{\bar{r}-1}{\bar{r}})(q-1)-(q-\frac{r-1}{r})(2/p-1)]} \\ \leq C \sup_{P} \frac{1}{|P|^{2/p-1}} \sum_{I' \subset P} |(\phi_{I'} * f)(x_{I'})|^{2} \frac{|I'|^{2}}{w(I')}$$

since M > 2q(2/p-1). The proof of Theorem 1.2 is complete.

4. Some results on CMO_w^p . We now use Theorem D to obtain the following density statement.

PROPOSITION 4.1. Let $0 and <math>w \in A_{\infty}$. Then $L^{2}(\mathbb{R}^{n}) \cap \mathrm{CMO}_{w}^{p}(\mathbb{R}^{n})$ is dense in $\mathrm{CMO}_{w}^{p}(\mathbb{R}^{n})$ in the weak topology $(H_{w}^{p}, \mathrm{CMO}_{w}^{p})$. More precisely, for any $f \in \mathrm{CMO}_{w}^{p}(\mathbb{R}^{n})$, there exists a sequence $\{f_{N}\} \subset L^{2}(\mathbb{R}^{n}) \cap \mathrm{CMO}_{w}^{p}(\mathbb{R}^{n})$ satisfying $\|f_{N}\|_{\mathrm{CMO}_{w}^{p}} \le C \|f\|_{\mathrm{CMO}_{w}^{p}}$ such that, for each $g \in H_{w}^{p}(\mathbb{R}^{n})$, $\lim_{N\to\infty} \langle f_{N}, g \rangle = \langle f, g \rangle$, where the constant C is independent of N and f.

Suppose that $f \in CMO_w^p(\mathbb{R}^n)$. Denote

$$E_N = \{ (j, \mathbf{j}) \in \mathbb{Z} \times \mathbb{Z}^n : |j| \le N, \, |\mathbf{j}| \le N \}.$$

Set

(4.1)
$$f_N(x) = \sum_{(j,\mathbf{j})\in E_N} 2^{-jn} (\psi_j * f)(x_I) \psi_j(x - x_I),$$

where ψ satisfies (1.1)–(1.2). It is easy to see that $f_N \in L^2(\mathbb{R}^n)$.

To show Proposition 4.1, we need the following lemma.

LEMMA 4.2. Let $w \in A_{\infty}$. Suppose that $f \in \text{CMO}_{w}^{p}(\mathbb{R}^{n})$ and f_{N} is given by (4.1). Then $f_{N} \in \text{CMO}_{w}^{p}(\mathbb{R}^{n})$ and $\|f_{N}\|_{\text{CMO}_{w}^{p}} \leq C \|f\|_{\text{CMO}_{w}^{p}}$, where the constant C is independent of N.

Proof. It suffices to show

$$\sup_{P} \left\{ \frac{1}{w(P)^{2/p-1}} \sum_{j \in \mathbb{Z}} \sum_{I \subset P} |(\psi_j * f_N)(x_I)|^2 \frac{|I|^2}{w(I)} \right\}^{1/2} \\ \leq C \sup_{P} \left\{ \frac{1}{w(P)^{2/p-1}} \sum_{j \in \mathbb{Z}} \sum_{I \subset P} |(\psi_j * f)(x_I)|^2 \frac{|I|^2}{w(I)} \right\}^{1/2}$$

The proof of the above inequality is similar to the proof of Theorem 1.2. We omit the details. \blacksquare

We use Lemma 4.2 to show Proposition 4.1.

Proof of Proposition 4.1. Without loss of generality, we may choose ψ to satisfy (1.1)–(1.2) with $\psi(x) = \psi(-x)$. For each $h \in S_{\infty}$, by Theorem D and (4.1),

$$\langle f - f_N, h \rangle = \Big\langle \sum_{(j,\mathbf{j})\in(E_N)^c} 2^{-nj} (\psi_j * f)(x_I) \psi_j(\cdot - x_I), h \Big\rangle$$

= $\Big\langle f, \sum_{(j,\mathbf{j})\in(E_N)^c} 2^{-nj} (\psi_j * h)(x_I) \psi_j(\cdot - x_I) \Big\rangle.$

By Theorem D,

$$\sum_{(j,\mathbf{j})\in(E_N)^c} 2^{-nj} (\psi_j * h)(x_I) \psi_j(x - x_I)$$

tends to zero in $\mathcal{S}_{\infty}(\mathbb{R}^n)$ as $N \to \infty$ and hence, for each $h \in \mathcal{S}_{\infty}(\mathbb{R}^n)$, $\langle f - f_N, h \rangle$ tends to zero as $N \to \infty$. Since \mathcal{S}_{∞} is dense in H^p_w , it follows that for each $g \in H^p_w$, $\langle f - f_N, g \rangle$ tends to 0 as $N \to \infty$. Indeed, for any given $\varepsilon > 0$, there exists $h \in \mathcal{S}_{\infty}$ such that $\|g - h\|_{H^p_w} \leq \varepsilon$. It follows from Lemma 4.2, $\|f_N\|_{\mathrm{CMO}^p_w} \leq C \|f\|_{\mathrm{CMO}^p_w}$, and Theorem A that

$$\begin{aligned} |\langle f - f_N, g \rangle| &\leq |\langle f - f_N, g - h \rangle| + |\langle f - f_N, h \rangle| \\ &\leq C ||f - f_N||_{\mathrm{CMO}_w^p} ||g - h||_{H_w^p} + |\langle f - f_N, h \rangle| \\ &\leq C \varepsilon ||f||_{\mathrm{CMO}_w^p} + |\langle f - f_N, h \rangle|. \end{aligned}$$

This implies $\langle f - f_N, g \rangle \to 0$ as $N \to \infty$.

5. The proof of Theorem 1.3. We define R_j on $\text{CMO}_w^p(\mathbb{R}^n)$ as follows. Given $f \in \text{CMO}_w^p(\mathbb{R}^n)$, by Proposition 4.1, there is a sequence $\{f_N\} \subset L^2 \cap \text{CMO}_w^p$ such that $\|f_N\|_{\text{CMO}_w^p} \leq C \|f\|_{\text{CMO}_w^p}$ and, for each $g \in L^2 \cap H_w^p$,

$$\langle f_N, g \rangle \to \langle f, g \rangle$$
 as $N \to \infty$. Thus, for $f \in \text{CMO}_w^p$, define
 $\langle R_j f, g \rangle = \lim_{N \to \infty} \langle R_j f_N, g \rangle$ for $g \in L^2 \cap H_w^p$.

To see the existence of this limit, we write $\langle (R_j(f_i - f_k), g) \rangle = \langle f_i - f_k, R_j^*(g) \rangle$ since both $f_i - f_k$ and g belong to L^2 , and R_j is bounded on L^2 . It is known that R_j is bounded on H_w^p and hence $R_j^*g \in L^2 \cap H_w^p$. Consequently, by Proposition 4.1 again, $\langle f_i - f_k, R_j^*g \rangle$ tends to zero as $i, k \to \infty$. It is also easy to see that the above definition of $R_j f$ is independent of the choice of the sequence $\{f_N\}$ which satisfies the conditions in Proposition 4.1. We now show the boundedness of R_j on $L^2 \cap CMO_w^p$.

THEOREM 5.1. Suppose that $w \in A_{\infty}$. For $f \in L^2(\mathbb{R}^n) \cap CMO_w^p(\mathbb{R}^n)$,

 $||R_j f||_{\mathrm{CMO}_w^p} \le C ||f||_{\mathrm{CMO}_w^p},$

where the constant C is independent of f.

To show Theorem 5.1, we need a discrete Calderón-type identity on $L^2 \cap CMO_w^p$. For this purpose, let $\phi \in \mathcal{S}$ with supp $\phi \subset B(0,1)$,

(5.1)
$$\sum_{j\in\mathbb{Z}} |\widehat{\phi}(2^{-j}\xi)|^2 = 1 \quad \text{for all } \xi \in \mathbb{R}^n \setminus \{0\},$$

and

(5.2)
$$\int_{\mathbb{R}^n} \phi(x) x^{\alpha} \, dx = 0 \quad \text{for all } |\alpha| \le 10M,$$

where M is any fixed large positive integer.

The discrete Calderón-type identity on $L^2 \cap CMO_w^p$ is given by the following

LEMMA 5.2. Let $0 , <math>w \in A_{\infty}$ and ϕ satisfy conditions (5.1)–(5.2) with a large M depending on p. Then for any $f \in L^2 \cap CMO_w^p$, there exists $h \in L^2 \cap CMO_w^p$ such that, for sufficiently large $N \in \mathbb{N}$,

$$f(x) = \sum_{j \in \mathbb{Z}} \sum_{\widetilde{I}}^{(N)} |\widetilde{I}| \phi_j(x - x_{\widetilde{I}}) (\phi_j * h)(x_{\widetilde{I}}),$$

where the series converges in L^2 and, hereafter, $\sum_{\widetilde{I}}^{(N)}$ denotes summation over \widetilde{I} running over dyadic cubes in \mathbb{R}^n with edge-lengths 2^{-j-N} and lowerleft corners $x_{\widetilde{I}}$. Moreover,

$$||f||_{L^2} \approx ||h||_{L^2}$$
 and $||f||_{CMO_w^p} \approx ||h||_{CMO_w^p}$.

Proof. By taking the Fourier transform, it is easy to see that

$$f(x) = \sum_{j \in \mathbb{Z}} (\phi_j * \phi_j * f)(x) \quad \text{ for } f \in L^2.$$

Applying Coifman's decomposition of the identity operator, we obtain

$$f(x) = \sum_{j \in \mathbb{Z}} \sum_{\widetilde{I}}^{(N)} |\widetilde{I}| \phi_j(x - x_{\widetilde{I}}) (\phi_j * f)(x_{\widetilde{I}}) + \mathcal{R}_N f(x)$$

:= $T_N f(x) + \mathcal{R}_N f(x),$

where

$$\begin{aligned} \mathcal{R}_N f(x) &= \sum_{j \in \mathbb{Z}} \sum_{\widetilde{I}} \sum_{\widetilde{I}} \sum_{\widetilde{I}} \sum_{\widetilde{I}} \sum_{\widetilde{I}} \left[\phi_j(x-u)(\phi_j * f)(u) - \phi_j(x-x_{\widetilde{I}})(\phi_j * f)(x_{\widetilde{I}}) \right] du \\ &= \sum_{j \in \mathbb{Z}} \sum_{\widetilde{I}} \sum_{\widetilde{I}} \sum_{\widetilde{I}} \sum_{\widetilde{I}} \left[\phi_j(x-u) - \phi_j(x-x_{\widetilde{I}}) \right] (\phi_j * f)(u) \, du \\ &+ \sum_{j \in \mathbb{Z}} \sum_{\widetilde{I}} \sum_{\widetilde{I}} \sum_{\widetilde{I}} \sum_{\widetilde{I}} \left[\phi_j(x-x_{\widetilde{I}}) \right] (\phi_j * f)(u) - (\phi_j * f)(x_{\widetilde{I}}) \right] du \\ &:= \mathcal{R}_N^1 f(x) + \mathcal{R}_N^2 f(x). \end{aligned}$$

We claim that, for $f \in L^2 \cap CMO_w^p$,

(5.3)
$$\|\mathcal{R}_N^i f\|_2 \le C2^{-N} \|f\|_2, \qquad i = 1, 2$$

(5.4)
$$\|\mathcal{R}_N^i f\|_{\mathrm{CMO}_w^p} \le C2^{-N} \|f\|_{\mathrm{CMO}_w^p}, \quad i = 1, 2,$$

where C is a constant independent of f and N.

Assume the claim for the moment. Then, by choosing N sufficiently large, $T_N^{-1} = \sum_{n=0}^{\infty} (\mathcal{R}_N)^n$ is bounded on both L^2 and CMO_w^p , which implies

$$|T_N^{-1}f||_2 \approx ||f||_2$$
 and $||T_N^{-1}f||_{\mathrm{CMO}_w^p} \approx ||f||_{\mathrm{CMO}_w^p}.$

Moreover, for any $f \in L^2 \cap CMO_w^p$, set $h = T_N^{-1}f$. We obtain

$$f(x) = T_N(T_N^{-1}f)(x) = \sum_{j \in \mathbb{Z}} \sum_{\widetilde{I}}^{(N)} |\widetilde{I}| \phi_j(x - x_{\widetilde{I}})(\phi_j * h)(x_{\widetilde{I}}),$$

where the series converges in L^2 .

Now we prove (5.3) and (5.4). Since the proofs for \mathcal{R}_N^1 and \mathcal{R}_N^2 are similar, we give the proof for \mathcal{R}_N^1 only. Let $f \in L^2 \cap \mathrm{CMO}_w^p$. By Theorem D,

$$(5.5) \quad (\psi_{j'} * \mathcal{R}_{N}^{1} f)(x) = \sum_{j \in \mathbb{Z}} \sum_{\widetilde{I}}^{(N)} \int_{\widetilde{I}} (\psi_{j'} * [\phi_{j}(\cdot - u) - \phi_{j}(\cdot - x_{\widetilde{I}})])(x)(\phi_{j} * f)(u) \, du \\ = \sum_{j \in \mathbb{Z}} \sum_{\widetilde{I}}^{(N)} \int_{\widetilde{I}} (\psi_{j'} * [\phi_{j}(\cdot - u) - \phi_{j}(\cdot - x_{\widetilde{I}})])(x) \\ \times \left(\phi_{j} * \left\{\sum_{j'' \in \mathbb{Z}} \sum_{I''} |I''|\psi_{j''}(\cdot - x_{I''})(\psi_{j''} * f)(x_{I''})\right\}\right)(u) \, du,$$

where I'' are dyadic cubes in \mathbb{R}^n with edge-lengths $2^{-j''}$ and lower-left corners $x_{I''}$.

Set $\phi_j(z) = \phi_j(z-u) - \phi_j(z-x_{\widetilde{I}})$, where $u \in \widetilde{I}$. Note that $\phi_j \in \mathcal{S}$ and $|\phi_j(x)| \leq C2^{-N}2^{jn}(1+2^j|x-u|)^{-M}$ for any $M \in \mathbb{N}$ since, if $u \in \widetilde{I}$, then $|u-x_{\widetilde{I}}| \leq C2^{-j-N}$. Thus, by an almost orthogonality argument, for large positive integers M we obtain

$$\begin{aligned} |(\psi_{j'} * \widetilde{\phi}_j)(x)| &\leq C 2^{-N} 2^{-10M|j-j'|} \frac{2^{n(j\wedge j')}}{(1+2^{j\wedge j'}|x-u|)^{n+M}} \\ &\leq C 2^{-N} 2^{-5M|j-j'|} \frac{2^{nj'}}{(1+2^{j'}|x-u|)^{n+M}}. \end{aligned}$$

Similarly, for $u \in \widetilde{I}$,

$$|(\phi_j * \psi_{j''})(u - x_{I''})| \le C 2^{-5M|j-j''|} \frac{2^{nj''}}{(1 + 2^{j''}|u - x_{I''}|)^{n+M}}.$$

Substituting these estimates into the last term in (5.5) yields

$$\begin{split} |(\psi_{j'} * \mathcal{R}_N^1 f)(x)| \\ &\leq C 2^{-N} \sum_{j'' \in \mathbb{Z}} \sum_{I''} |I''| \, |(\psi_{j''} * f)(x_{I''})| \sum_{j \in \mathbb{Z}} \sum_{\widetilde{I}}^{(N)} \int_{\widetilde{I}} 2^{-5M|j-j'|} \\ &\times \frac{2^{nj'}}{(1+2^{j'}|x-u|)^{n+M}} 2^{-5M|j-j''|} \frac{2^{nj''}}{(1+2^{j''}|u-x_{I''}|)^{n+M}} \, du \\ &\leq C 2^{-N} \sum_{j'' \in \mathbb{Z}} \sum_{I''} 2^{-5M|j'-j''|} |I''| \frac{2^{n(j' \wedge j'')}}{(1+2^{j' \wedge j''}|x-x_{I''}|)^{n+M}} |(\psi_{j''} * f)(x_{I''})|. \end{split}$$

By the equivalence $\|\mathcal{G}(f)\|_2 \approx \|f\|_2$ and Hölder's inequality,

$$\begin{aligned} \|\mathcal{R}_N^1 f\|_2 &\leq C \|\mathcal{G}(\mathcal{R}_N^1 f)\|_2 \\ &\leq C 2^{-N} \left\| \left\{ \sum_{j'' \in \mathbb{Z}} \sum_{I''} |(\psi_{j''} * f)(x_{I''})|^2 \chi_{I''} \right\}^{1/2} \right\|_2 &\leq C 2^{-N} \|f\|_2. \end{aligned}$$

Similarly, repeating the same proof of Theorem 1.2 yields

$$\|\mathcal{R}_N^1 f\|_{\mathrm{CMO}_w^p} \le C2^{-N} \|f\|_{\mathrm{CMO}_w^p}.$$

Thus both (5.3) and (5.4) are proved and Lemma 5.2 follows. \blacksquare

As a consequence of Lemma 5.2, we give an equivalent norm for functions in $L^2 \cap CMO_w^p$.

COROLLARY 5.3. Let $w \in A_{\infty}$ and $0 . Suppose <math>\phi_j$'s satisfy the same conditions as in Lemma 5.2. Then for a fixed large N as in Lemma 5.2

and $f \in L^2 \cap \mathrm{CMO}_w^p$,

$$\|f\|_{\mathrm{CMO}_{w}^{p}} \approx \sup_{P} \left\{ \frac{1}{w(P)^{2/p-1}} \sum_{j \in \mathbb{Z}} \sum_{\widetilde{I} \subset P}^{(N)} |(\phi_{j} * f)(x_{\widetilde{I}})|^{2} \frac{|\widetilde{I}|^{2}}{w(\widetilde{I})} \right\}^{1/2}.$$

Proof. Suppose $f \in L^2 \cap CMO_w^p$. Let $T_N f$ be as in Lemma 5.2. The boundedness of T_N^{-1} on $L^2 \cap CMO_w^p$ gives

$$||f||_{\mathrm{CMO}_w^p} = ||T_N^{-1}T_Nf||_{\mathrm{CMO}_w^p} \le C||T_Nf||_{\mathrm{CMO}_w^p}.$$

For any dyadic cube $P \subset \mathbb{R}^n$, by the definition of T_N ,

(5.6)
$$\sum_{j \in \mathbb{Z}} \sum_{I \subset P} |(\psi_j * T_N f)(x_I)|^2 \frac{|I|^2}{w(I)}$$
$$= \sum_{j \in \mathbb{Z}} \sum_{I \subset P} \left| \sum_{j' \in \mathbb{Z}} \sum_{\widetilde{I'}} {}^{(N)} (\psi_j * \phi_{j'}) (x_I - x_{\widetilde{I'}}) (\phi_{j'} * f)(x_{\widetilde{I'}}) |\widetilde{I'}| \right|^2 \frac{|I|^2}{w(I)},$$

where ψ_j and $\phi_{j'}$ are as in Theorem 1.2 and Lemma 5.2, respectively.

Applying the classical almost orthogonality estimates, we have

(5.7)
$$|\psi_j * \phi_{j'}(x)| \le C 2^{-|j-j'|L} \frac{2^{n(j \wedge j')}}{(1+2^{j \wedge j'}|x|)^{n+M}}.$$

This, together with Hölder's inequality, shows that the right hand side in (5.6) is dominated by

$$C\sum_{j\in\mathbb{Z}}\sum_{I\subset P}\sum_{j'\in\mathbb{Z}}\sum_{\widetilde{I'}}\sum_{\widetilde{I'}}^{(N)} 2^{-|j-j'|L} \times \frac{2^{-(j\wedge j')M}}{(2^{-(j\wedge j')}+|x_I-x_{\widetilde{I'}}|)^{n+M}} |\widetilde{I'}|(\phi_{j'}*f)(x_{\widetilde{I'}})^2 \frac{|I|^2}{w(I)}.$$

Applying a similar argument to the proof of Theorem 1.2, we obtain

$$|f||_{\mathrm{CMO}_{w}^{p}} \leq C ||T_{N}f||_{\mathrm{CMO}_{w}^{p}} \\ \leq C \sup_{P} \left(\frac{1}{w(P)^{2/p-1}} \sum_{j' \in \mathbb{Z}} \sum_{\widetilde{I}' \subset P}^{(N)} |(\phi_{j'} * f)(x_{\widetilde{I}'})|^{2} \frac{|\widetilde{I}'|^{2}}{w(\widetilde{I}')} \right)^{1/2}$$

On the other hand, applying first the discrete Calderón identity (Lemma 5.2) and then the orthogonality estimates (5.7), we also find that, for

any dyadic cube $P \subset \mathbb{R}^n$,

$$\begin{split} \sum_{j' \in \mathbb{Z}} \sum_{\widetilde{I'} \subset P}^{(N)} |(\phi_{j'} * f)(x_{\widetilde{I'}})|^2 \frac{|\widetilde{I'}|^2}{w(\widetilde{I'})} \\ &= \sum_{j' \in \mathbb{Z}} \sum_{\widetilde{I'} \subset P}^{(N)} \left| \sum_{j} \sum_{I} (\phi_{j'} * \psi_j)(x_{\widetilde{I'}} - x_I)(\psi_j * f)(x_I)|I| \right|^2 \frac{|\widetilde{I'}|^2}{w(\widetilde{I'})} \\ &\leq C \sum_{j' \in \mathbb{Z}} \sum_{\widetilde{I'} \subset P}^{(N)} \sum_{j} \sum_{I} 2^{-|j-j'|L} \\ &\times \frac{2^{-(j \wedge j')M}}{(2^{-(j \wedge j')} + |x_{\widetilde{I'}} - x_I|)^{n+M}} |I|(\psi_j * f)(x_I)^2 \frac{|\widetilde{I'}|^2}{w(\widetilde{I'})}, \end{split}$$

where I and I' are as in (5.6).

Using again a similar argument to the proof of Theorem 1.2, we have

$$\sup_{P} \left\{ \frac{1}{w(P)^{2/p-1}} \sum_{\widetilde{I} \subset P}^{(N)} |(\phi_j * f)(x_{\widetilde{I}})|^2 \frac{|\widetilde{I}|^2}{w(\widetilde{I})} \right\}^{1/2} \le C ||f||_{\mathrm{CMO}_w^p},$$

completing the proof. \blacksquare

We are ready to show Theorem 5.1.

Proof of Theorem 5.1. By Corollary 5.3, it suffices to show that for any dyadic cube P,

$$\left(\frac{1}{w(P)^{2/p-1}}\sum_{i\in\mathbb{Z}}\sum_{\widetilde{I}\subset P}^{(N)} |(\phi_i * R_j f)(x_{\widetilde{I}})|^2 \frac{|\widetilde{I}|^2}{w(\widetilde{I})}\right)^{1/2} \le C ||f||_{\mathrm{CMO}_w^p},$$

where ϕ_i and I satisfy the conditions as in Lemma 5.2 and the constant C is independent of P and f.

Using the L^2 boundedness of R_j and the discrete Carderón-type identity given in Lemma 5.2, we write

$$\sum_{i\in\mathbb{Z}}\sum_{\widetilde{I}\subset P}^{(N)} |(\phi_i * R_j f)(x_{\widetilde{I}})|^2 \frac{|\widetilde{I}|^2}{w(\widetilde{I})}$$
$$= \sum_{i\in\mathbb{Z}}\sum_{\widetilde{I}\subset P}^{(N)} \left|\sum_{i'\in\mathbb{Z}}\sum_{\widetilde{I'}}^{(N)} (\phi_{i'} * h)(x_{\widetilde{I'}})|\widetilde{I'}|(K_j * \phi_i * \phi_{i'})(x_{\widetilde{I}} - x_{\widetilde{I'}})\right|^2 \frac{|\widetilde{I}|^2}{w(\widetilde{I})},$$

where $||h||_{\mathrm{CMO}_w^p} \leq C ||f||_{\mathrm{CMO}_w^p}$.

We claim that

(5.8)
$$|(K_j * \phi_i)(x)| \le C \frac{2^{in}}{(1+2^i|x|)^{n+M}}.$$

To show (5.8), we consider the following two cases. For $|x| \leq 2^{1-i}$, by the support condition on ϕ_i ,

$$\begin{aligned} |(K_j * \phi_i)(x)| &= \left| \lim_{\varepsilon_1 \to 0} \int_{\varepsilon_1 \le |x-u| \le 3 \cdot 2^{-i}} K_j(x-u)\phi_i(u) \, du \right| \\ &= \left| \lim_{\varepsilon_1 \to 0} \int_{\varepsilon_1 \le |x-u| \le 3 \cdot 2^{-i}} K_j(x-u)[\phi_i(u) - \phi_i(x)] \, du \right| \\ &\le C 2^{i(n+1)} \int_{|x-u| \le 3 \cdot 2^{-i}} |x-u|^{-n+1} \, du \\ &\le C 2^{in} \le C \frac{2^{in}}{(1+2^i|x|)^{n+M}}. \end{aligned}$$

For $|x| > 2^{1-i}$, by the cancellation condition on ϕ_i with order M,

$$\begin{aligned} |(K_j * \phi_i)(x)| &= \left| \int_{|u| \le 2^{-i}} \left[K_j(x-u) - \sum_{|\alpha| \le M} \frac{1}{\alpha!} \partial_x^{\alpha} K_j(x) u^{\alpha} \right] \phi_i(u) \, du \right| \\ &\le C \int_{|u| \le 2^{-i}} \frac{|u|^{M+1}}{|x|^{n+M+1}} |\phi_i(u)| \, du \le C \frac{2^{in}}{(1+2^i|x|)^{n+M}}. \end{aligned}$$

Estimate (5.8) and the classical orthogonality estimate

$$|(\phi_i * \phi_{i'})(x)| \le C 2^{-|i-i'|L} \frac{2^{n(i\wedge i')}}{(1+2^{i\wedge i'}|x|)^{n+M}}$$

imply

$$|(K_j * \phi_i * \phi_{i'})(x)| \le C 2^{-|i-i'|L} \frac{2^{n(i \wedge i')}}{(1 + 2^{i \wedge i'}|x|)^{n+M}}.$$

Therefore, the same argument as in Theorem 1.2 yields

$$||R_j f||_{\operatorname{CMO}_w^p} \le C ||h||_{\operatorname{CMO}_w^p} \le C ||f||_{\operatorname{CMO}_w^p}$$

for $f \in L^2 \cap CMO^p_w$.

We now prove the main result of this article.

Proof of Theorem 1.3. By the definition of $R_j f$ for $f \in \text{CMO}_w^p$ and the boundedness of R_j on $L^2 \cap \text{CMO}_w^p$, we choose a sequence $\{f_N\} \subset L^2 \cap \text{CMO}_w^p$ such that $\|f_N\|_{\text{CMO}_w^p} \leq C \|f\|_{\text{CMO}_w^p}$ and

$$\begin{aligned} \|R_j f\|_{\mathrm{CMO}_w^p} &\leq \liminf_{N \to \infty} \|R_j f_N\|_{\mathrm{CMO}_w^p} \\ &\leq C \liminf_{N \to \infty} \|f_N\|_{\mathrm{CMO}_w^p} \leq C \|f\|_{\mathrm{CMO}_w^p}. \end{aligned}$$

This completes the proof. \blacksquare

Acknowledgements. This research was supported by NSC of Taiwan under Grant #NSC 99-2115-M-008-002-MY3.

References

- [CF] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250.
- [CW] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645.
- [DHLW] Y. Ding, Y. Han, G. Lu and X. Wu, Boundedness of singular integrals on multiparameter weighted Hardy spaces $H^p_w(\mathbb{R}^n \times \mathbb{R}^m)$, Potential Anal.; DOI 10.1007/ s11118-011-9244-y.
- [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes 28, Princeton Univ. Press, Princeton, NJ, 1982.
- [FJ] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34–170.
- [GM] J. García-Cuerva and J. M. Martell, Wavelet characterization of weighted spaces, J. Geom. Anal. 11 (2001), 241–264.
- [GR] J. García-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
- [GW] R. F. Gundy and R. L. Wheeden, Weighted integral inequalities for the nontangential maximal function, Lusin area integral, and Walsh-Paley series, Studia Math. 49 (1974), 107–124.
- [HS] Y. Han and E. T. Sawyer, Para-accretive functions, the weak boundedness property and the Tb theorem, Rev. Mat. Iberoamer. 6 (1990), 17–41.
- [HMW] R. Hunt, B. Muckenhoupt, and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251.
- P. Lemarié, Continuité sur les espaces de Besov des opérations définies par des intégrales singulières, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 4, 175–187.
- [LLL] M.-Y. Lee, C.-C. Lin and Y.-C. Lin, A wavelet characterization for the dual of weighted Hardy spaces, Proc. Amer. Math. Soc. 137 (2009), 4219–4225.
- [LLY] M.-Y. Lee, C.-C. Lin and W.-C. Yang, H_w^p boundedness of Riesz transforms, J. Math. Anal. Appl. 301 (2005), 394–400.
- [MC] Y. Meyer and R. R. Coifman, Wavelets. Calderón-Zygmund and Multilinear Operators, Cambridge Stud. Adv. Math. 48, Cambridge Univ. Press, Cambridge, 1997.
- [M] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.

Ming-Yi Lee Department of Mathematics National Central University Chung-Li 320, Taiwan E-mail: mylee@math.ncu.edu.tw

> Received November 8, 2011 Revised version April 4, 2012

187

(7350)