Bounded operators on weighted spaces of holomorphic functions on the upper half-plane

by
Mohammad Ali Ardalani (Sanandaj) and
Wolfgang Lusky (Paderborn)

Abstract

Let v be a standard weight on the upper half-plane \mathbb{G}, i.e. $v: \mathbb{G} \rightarrow$ $] 0, \infty[$ is continuous and satisfies $v(w)=v(i \operatorname{Im} w), w \in \mathbb{G}, v(i t) \geq v(i s)$ if $t \geq s>0$ and $\lim _{t \rightarrow 0} v(i t)=0$. Put $v_{1}(w)=\operatorname{Im} w v(w), w \in \mathbb{G}$. We characterize boundedness and surjectivity of the differentiation operator $D: H v(\mathbb{G}) \rightarrow H v_{1}(\mathbb{G})$. For example we show that D is bounded if and only if v is at most of moderate growth. We also study composition operators on $H v(\mathbb{G})$.

1. Introduction. A continuous function $v: O \rightarrow] 0, \infty[$ on an open subset O of \mathbb{C} is called a weight. For a function $f: O \rightarrow \mathbb{C}$ we consider the weighted sup-norm

$$
\|f\|_{v}=\sup _{z \in O}|f(z)| v(z)
$$

and study the space

$$
H v(O)=\left\{f: O \rightarrow \mathbb{C} \text { holomorphic }:\|f\|_{v}<\infty\right\}
$$

In this paper we deal with holomorphic functions on the upper half-plane $\mathbb{G}=\{w \in \mathbb{C}: \operatorname{Im} w>0\}$.

Definition 1.1. A weight v on \mathbb{G} is called a standard weight if $v(w)=v(i \operatorname{Im} w), w \in \mathbb{G}, v(i s) \leq v(i t)$ when $0<s \leq t$, and $\lim _{t \rightarrow 0} v(i t)=0$.

Example. Let $\alpha, \beta>0>\gamma$. Then the functions $v_{1}(w)=(\operatorname{Im} w)^{\beta}$, $v_{2}(w)=\min \left(v_{1}(w), 1\right)$,

$$
v_{3}(w)= \begin{cases}(1-\log (\operatorname{Im} w))^{\gamma} & \text { if } \operatorname{Im} w<1, \quad v_{4}(w)=\log (\operatorname{Im} w+1) \\ \operatorname{Im} w & \text { if } \operatorname{Im} w \geq 1,\end{cases}
$$

$v_{5}(w)=(\operatorname{Im} w)^{\beta} \exp (\alpha \operatorname{Im} w)$ and $v_{6}(w)=\exp (-\beta / \operatorname{Im} w), w \in \mathbb{G}$, are standard weights.

[^0]Observe that for a holomorphic function $f: \mathbb{G} \rightarrow \mathbb{C}$, we have $f \in H v(\mathbb{G})$ if and only if $\sup _{x \in \mathbb{R}}|f(x+i t)|=O(1 / v(i t))$ as $t \rightarrow 0$ and $t \rightarrow \infty$.

We want to compare the growth of $f \in H v(\mathbb{G})$ with the growth of f^{\prime}. We investigate the differentiation operator $D f=f^{\prime}$ as an operator between $H v(\mathbb{G})$ and $H v_{1}(\mathbb{G})$ where $v_{1}(w)=\operatorname{Im} w v(w), w \in \mathbb{G}$. We also study the growth of $f \circ \varphi$ where $\varphi: O \rightarrow \mathbb{G}$ is a holomorphic map and $O \subset \mathbb{C}$ is open, i.e. we deal with composition operators between two different weighted spaces of holomorphic functions on \mathbb{G}.

Definition 1.2. Let v be a standard weight on \mathbb{G}.
(i) v satisfies condition (\star) if there are constants $c, \beta>0$ such that

$$
\frac{v(i t)}{v(i s)} \leq c\left(\frac{t}{s}\right)^{\beta} \quad \text { whenever } 0<s \leq t
$$

(ii) v satisfies condition ($* *$) if there are constants $d, \gamma>0$ such that

$$
d\left(\frac{t}{s}\right)^{\gamma} \leq \frac{v(i t)}{v(i s)} \quad \text { whenever } 0<s \leq t
$$

It is easily seen (see [1]) that v satisfies (\star) if and only if

$$
\sup _{k \in \mathbb{Z}} \frac{v\left(i 2^{k+1}\right)}{v\left(i 2^{k}\right)}<\infty
$$

and v satisfies ($\star \star$) if and only if

$$
\inf _{n \in \mathbb{N}} \sup _{k \in \mathbb{Z}} \frac{v\left(i 2^{k}\right)}{v\left(i 2^{n+k}\right)}<1
$$

In the preceding examples, v_{1}, v_{2}, v_{3} and v_{4} satisfy (\star) and v_{1} also satisfies $(\star \star)$. (Note that a weight is necessarily unbounded if it satisfies ($(\star \star)$.)

It was shown in 1 that, for a standard weight v with $(\star), H v(\mathbb{G})$ is isomorphic to l_{∞} if and only if v also satisfies ($* *$). Moreover, according to a result of Stanev [8], $\operatorname{Hv}(\mathbb{G}) \neq\{0\}$ if and only if there are constants $a, b>0$ such that $v(i t) \leq a e^{b t}, t>0$.

In the following we always assume that v is such that $\operatorname{Hv}(\mathbb{G}) \neq\{0\}$.
We start with the differentiation operator D where $D f=f^{\prime}$.
Theorem 1.3. Let v be a standard weight and put $v_{1}(w)=\operatorname{Im} w v(w)$, $w \in \mathbb{G}$. Then the following are equivalent:
(i) $D H v(\mathbb{G}) \subset H v_{1}(\mathbb{G})$.
(ii) D is a bounded operator $H v(\mathbb{G}) \rightarrow H v_{1}(\mathbb{G})$.
(iii) v satisfies (\star).

As a corollary, v is an essential weight (see Proposition 3.5 below; for the definition see Section 2). We prove Theorem 1.3 in Section 3. In Section 4 we prove the following result.

TheOrem 1.4. Let v be a standard weight and put $v_{1}(w)=\operatorname{Im} w v(w)$, $w \in \mathbb{G}$. Then the following are equivalent:
(i) $D H v(\mathbb{G})=H v_{1}(\mathbb{G})$.
(ii) D is an isomorphism between $H v(\mathbb{G})$ and $H v_{1}(\mathbb{G})$.
(iii) v satisfies (\star) and $(\star \star)$.

We mention again that (\star) and $(\star \star)$ together imply that $H v(\mathbb{G})$ is isomorphic to l_{∞}.

There are results for radial weights on $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ corresponding to Theorems 1.3 and 1.4 (see [5, 7]). However the preceding theorems cannot be inferred from them by applying a biholomorphic map $\alpha: \mathbb{D} \rightarrow \mathbb{G}$. If v is a standard weight on \mathbb{G} then $v \circ \alpha$ is not radial on \mathbb{D}, i.e. $v(\alpha(z)) \neq v(|\alpha(z)|)$ on \mathbb{D} in general. For weights on \mathbb{D} of the type $v \circ \alpha$ nothing is known so far.

We also consider composition operators $C_{\varphi}=f \circ \varphi$ where $\varphi: O \rightarrow \mathbb{G}$ is a holomorphic map and $O \subset \mathbb{C}$ is open. As a direct consequence of [4] we obtain (see end of Section 4)

Corollary 1.5. Let v_{2} be a weight on O and v_{1} a standard weight on \mathbb{G} satisfying condition (\star). Then C_{φ} is a bounded operator $H v_{1}(\mathbb{G}) \rightarrow H v_{2}(O)$ if and only if

$$
\sup _{z \in O} \frac{v_{2}(z)}{v_{1}(\varphi(z))}<\infty
$$

2. The associated weight. For a weight $v: O \rightarrow] 0, \infty$ [the function

$$
\tilde{v}(z)=\inf \left\{1 /|h(z)|: h \in H v(O),\|h\|_{v} \leq 1\right\}, \quad z \in O
$$

is called the associated weight. It is known ([2]) that $\|f\|_{v}=\|f\|_{\tilde{v}}$ for any $f \in H v(O)$ and, for any $z \in O$, there is $h \in H v(O)$ with $\|h\|_{v} \leq 1$ such that $\tilde{v}(z)=1 /|h(z)|$. Moreover, $v(z) \leq \tilde{v}(z)$ for all $z \in O$. The weight v is called essential if v and \tilde{v} are equivalent.

Now let v be a standard weight on \mathbb{G}. It is easily seen that then $\tilde{v}(w)=$ $\tilde{v}(i \operatorname{Im} w), w \in \mathbb{G}$.

Lemma 2.1. We have $\tilde{v}(i t) \geq \tilde{v}(i s)$ whenever $t \geq s$.
Proof. Take

$$
\alpha(z)=\frac{1+z}{1-z} i, \quad z \in \mathbb{D}=\{z \in \mathbb{C}:|z|<1\}
$$

Then α maps \mathbb{D} onto \mathbb{G}, we have

$$
\alpha^{-1}(w)=\frac{w-i}{w+i}, \quad w \in \mathbb{G}
$$

$\alpha^{-1} \operatorname{maps} \Gamma(t):=\{w: \operatorname{Im} w=t\}$ onto

$$
\Delta(t):=\left\{z:\left|z-\frac{t}{1+t}\right|=\frac{1}{1+t}\right\} \backslash\{1\}
$$

and we obtain $\lim _{\operatorname{Re} w \rightarrow \pm \infty} \alpha^{-1}(w)=1$.
Now fix $t>s>0$. Then $\Delta(t)$ is a subset of the interior of $\Delta(s)$. Hence for $h \in H v(\mathbb{G})$ we obtain

$$
M(h, t):=\sup _{w \in \Gamma(t)}|h(w)|=\sup _{z \in \Delta(t)}|h(\alpha(z))| \leq \sup _{z \in \Delta(s)}|h(\alpha(z))|=M(h, s)
$$

in view of the maximum principle. (Take into account that $h \circ \alpha$ is bounded on $\left\{z:\left|z-\frac{s}{1+s}\right| \leq \frac{1}{1+s}\right\} \backslash\{1\}$ since h is bounded on $\{w: \operatorname{Im} w \geq s\}$.) Since the translation operator T_{x} with $\left(T_{x} h\right)(w)=h(w+x)$ is an isometry for any real x, we infer

$$
\begin{aligned}
\tilde{v}(i s) & =\inf \left\{1 /|k(i s)|: k \in H v(\mathbb{G}),\|k\|_{v} \leq 1\right\} \\
& =\inf \left\{1 / \sup _{x}\left|\left(T_{x} h\right)(i s)\right|: h \in H v(\mathbb{G}),\|h\|_{v} \leq 1\right\} \\
& =\inf \left\{1 / M(h, s): h \in H v(\mathbb{G}),\|h\|_{v} \leq 1\right\} \\
& \leq \inf \left\{1 / M(h, t): h \in H v(\mathbb{G}),\|h\|_{v} \leq 1\right\}=\tilde{v}(i t) .
\end{aligned}
$$

Observe that $\gamma_{\tilde{v}}(t):=\tilde{v}(i t)$ is monotone, hence differentiable a.e. Moreover, the fundamental theorem of integral calculus holds for $\gamma_{\tilde{v}}$ (see [6]).

Lemma 2.2. Let v_{1} be as in Theorem 1.3. Then with $c=\exp \left(-3 \pi^{2} / 4-1 / 4\right)$ we have

$$
c t \tilde{v}(i t) \leq \tilde{v_{1}}(i t) \leq t \tilde{v}(i t) \quad \text { for all } t>0
$$

Proof. Fix $t_{0}>0$ and consider $h \in H v_{1}(\mathbb{G})$ with $\|h\|_{v_{1}} \leq 1$ and $\tilde{v_{1}}\left(i t_{0}\right)=$ $1 /\left|h\left(i t_{0}\right)\right|$. Put

$$
g(w)=h(w) e^{-\log ^{2}\left(w / t_{0}\right)}
$$

where \log is the main branch of the complex logarithm. Then g is holomorphic on \mathbb{G}. Put $\delta(t)=t^{-1} \exp \left(-\log ^{2}\left(t / t_{0}\right)\right), t>0$. Then $\delta(t)$ attains its sup at $t_{0} \exp (-1 / 2)$. We have $\sup _{t>0} \delta(t)=\exp (1 / 4) / t_{0}$. Moreover, with $w=x+i t$,

$$
|g(w)|=|h(w)| \exp \left(\left(\arg \left(\frac{w}{t_{0}}\right)\right)^{2}-\log ^{2}\left(\frac{|w|}{t_{0}}\right)\right)
$$

and hence

$$
\sup _{x \in \mathbb{R}}|g(x+i t)| \leq \sup _{x \in \mathbb{R}}|h(x+i t)| \exp \left(\pi^{2}-\log ^{2}\left(\frac{t}{t_{0}}\right)\right)
$$

This implies

$$
\begin{aligned}
\|g\|_{v} & \leq \exp \left(\pi^{2}\right) \sup _{t>0} \sup _{x \in \mathbb{R}}\left(\left\lvert\, h(x+i t \mid t v(i t)) \sup _{t>0} \frac{\exp \left(-\log ^{2}\left(t / t_{0}\right)\right)}{t}\right.\right. \\
& =\frac{\exp \left(\pi^{2}+1 / 4\right)}{t_{0}}\|h\|_{v_{1}} \leq \frac{\exp \left(\pi^{2}+1 / 4\right)}{t_{0}}
\end{aligned}
$$

Since $\exp \left(\pi^{2} / 4\right) h\left(i t_{0}\right)=g\left(i t_{0}\right)$ we obtain

$$
\tilde{v}\left(i t_{0}\right) \leq \frac{\exp \left(\pi^{2}+1 / 4\right)}{t_{0}} \cdot \frac{1}{\left|g\left(i t_{0}\right)\right|}=\frac{\exp \left(3 \pi^{2} / 4+1 / 4\right)}{t_{0}} \tilde{v}_{1}\left(i t_{0}\right)
$$

On the other hand, let $f \in H v(\mathbb{G})$ with $\|f\|_{v} \leq 1$ and $\tilde{v}\left(t_{0}\right)=1 /\left|f\left(i t_{0}\right)\right|$. Put $k(w)=f(w) / w$. Then

$$
|k(x+i t)| t v(i t)=\frac{|f(x+i t)| t v(i t)}{\sqrt{x^{2}+t^{2}}} \leq\|f\|_{v} \leq 1
$$

We obtain

$$
t_{0} \tilde{v}\left(i t_{0}\right)=\frac{t_{0}}{\left|f\left(i t_{0}\right)\right|}=\frac{1}{\left|k\left(i t_{0}\right)\right|} \geq \tilde{v}_{1}\left(i t_{0}\right)
$$

3. Proof of Theorem 1.3. Let v be a standard weight and put

$$
b_{v}=\inf \left\{b>0: \sup _{t>0} e^{-b t} v(i t)<\infty\right\}
$$

According to our general assumption on v preceding Theorem 1.3, we have $b_{v}<\infty$.

Consider the functions $e^{-n t} v(i t), t>0, n>b_{v}$. We have $\sup _{t>0} e^{-n t} v(i t)$ $=\left\|\Theta_{n}\right\|_{v}$ where $\Theta_{n}(w)=e^{i n w}, w \in \mathbb{G}$. Let $s_{n}=\inf \left\{t>0: e^{-n t} v(i t)=\right.$ $\left.\left\|\Theta_{n}\right\|_{v}\right\}$ and $t_{n}=\sup \left\{t>0: e^{-n t} v(i t)=\left\|\Theta_{n}\right\|_{v}\right\}$.

Lemma 3.1.
(a) Fix $r_{m}>0$ with $e^{-m r_{m}} v\left(i r_{m}\right)=\left\|\Theta_{m}\right\|_{v}$. Then

$$
e^{(n-m) r_{n}}\left\|\Theta_{n}\right\|_{v} \leq\left\|\Theta_{m}\right\|_{v} \leq e^{(n-m) r_{m}}\left\|\Theta_{n}\right\|_{v}
$$

for any $n>b_{v}$ and $m>b_{v}$.
(b) If $m \leq n$ then $t_{n} \leq s_{m}$ and $\left\|\Theta_{n}\right\|_{v} \leq\left\|\Theta_{m}\right\|_{v}$.
(c) $\lim _{n \rightarrow \infty} t_{n}=0$.

Proof. (a) We have $e^{-m r_{n}} v\left(i r_{n}\right) \leq\left\|\Theta_{m}\right\|_{v}$. This implies the first inequality. Moreover

$$
\left\|\Theta_{m}\right\|_{v}=e^{(n-m) r_{m}} e^{-n r_{m}} v\left(i r_{m}\right) \leq e^{(n-m) r_{m}}\left\|\Theta_{n}\right\|_{v}
$$

(b) Then (a) implies $(n-m) r_{n} \leq(n-m) r_{m}$. Hence $r_{n} \leq r_{m}$ if $n \geq m$. This yields (b).
(c) Let $b>b_{v}$. Then $v(i t) \leq c e^{b t}, t>0$, for some constant $c>0$. Let $s=\inf _{n>b_{v}} s_{n}$ and assume that $s>0$. Fix $0<r<s$. Then we obtain, in
view of (b), since s_{n} is decreasing,

$$
\begin{aligned}
\left\|\Theta_{n}\right\|_{v} & =e^{-n s_{n}} v\left(i s_{n}\right) \leq e^{-n\left(s_{n}-r\right)} \frac{v\left(i s_{n}\right)}{v(i r)} e^{-n r} v(i r) \\
& \leq e^{-n(s-r)} \frac{v\left(i s_{b_{v}+1}\right)}{v(i r)} e^{-n r} v(i r)<e^{-n r} v(i r)
\end{aligned}
$$

if $n \geq b_{v}+1$ is large enough, a contradiction. Hence $\inf _{n>b_{v}} s_{n}=0$. Combined with (b), this proves (c).

Proposition 3.2. Let v satisfy (\star). Then $D: H v(\mathbb{G}) \rightarrow H v_{1}(\mathbb{G})$ is bounded.

Proof. Fix $w_{0}=x_{0}+i t_{0} \in \mathbb{G}$. Consider $r=t_{0} / 2$. Then the Cauchy integral formula implies, for any $f \in H v(\mathbb{G})$,

$$
\begin{aligned}
\left|f^{\prime}\left(w_{0}\right)\right| v_{1}\left(w_{0}\right)= & \left|\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f\left(w_{0}+r e^{i \varphi}\right)}{r^{2} e^{2 i \varphi}} i r e^{i \varphi} d \varphi\right| t_{0} v\left(i t_{0}\right) \\
\leq & 2\left(\sup _{\varphi}\left|f\left(w_{0}+r e^{i \varphi}\right)\right| v\left(i\left(t_{0}+r \sin \varphi\right)\right)\right) \\
& \times \sup _{\varphi}\left(\frac{v\left(i t_{0}\right)}{v\left(i\left(t_{0}+2^{-1} t_{0} \sin \varphi\right)\right)}\right) \\
\leq & 2 c\|f\|_{v}
\end{aligned}
$$

for some universal constant $c>0$, in view of (\star).
Proposition 3.3. Let $D: H v(\mathbb{G}) \rightarrow H v_{1}(\mathbb{G})$ be bounded. Then \tilde{v} satisfies (\star).

Proof. Fix $t_{0}>0$ such that $\gamma_{\tilde{v}}(t)=\tilde{v}(i t), t>0$, is differentiable at t_{0}. Find $h \in H v(\mathbb{G})$ with $\|h\|_{v} \leq 1$ such that $\tilde{v}\left(i t_{0}\right)=1 /\left|h\left(i t_{0}\right)\right|$. We can assume that $h\left(i t_{0}\right)=\left|h\left(i t_{0}\right)\right|\left(\right.$ otherwise take $h \cdot \overline{h\left(i t_{0}\right)} /\left|h\left(i t_{0}\right)\right|$ instead of $\left.h\right)$. This implies

$$
\sup _{w \in \mathbb{G}}|\operatorname{Re} h(w)| \tilde{v}(w)=h\left(i t_{0}\right) \tilde{v}\left(i t_{0}\right)=1=\|h\|_{\tilde{v}}
$$

Put $\tau(t)=\operatorname{Re} h(i t)$. We have $\tau^{\prime}\left(t_{0}\right) \gamma_{\tilde{v}}\left(t_{0}\right)+\tau\left(t_{0}\right) \gamma_{\tilde{v}}^{\prime}\left(t_{0}\right)=0$. Hence

$$
\frac{\tau^{\prime}\left(t_{0}\right)}{\tau\left(t_{0}\right)}=-\frac{\gamma_{\tilde{v}}^{\prime}\left(t_{0}\right)}{\gamma_{\tilde{v}}\left(t_{0}\right)}
$$

Since $\gamma_{\tilde{v}}^{\prime}\left(t_{0}\right), \gamma_{\tilde{v}}\left(t_{0}\right)$ and $\tau\left(t_{0}\right)$ are nonnegative, $\tau^{\prime}\left(t_{0}\right)$ must be nonpositive. Moreover we have $\left|\tau^{\prime}\left(t_{0}\right)\right| \leq\left|h^{\prime}\left(i t_{0}\right)\right|$ and $\tau\left(t_{0}\right)=h\left(i t_{0}\right)$. By assumption and Lemma 2.2,

$$
\left|h^{\prime}\left(i t_{0}\right)\right| t_{0} \tilde{v}\left(i t_{0}\right) \leq c\|D\| \cdot\left|h\left(i t_{0}\right)\right| \tilde{v}\left(i t_{0}\right)
$$

with $c=\exp \left(3 \pi^{2} / 4+1 / 4\right)$. Hence

$$
\frac{\gamma_{\tilde{v}}^{\prime}\left(t_{0}\right)}{\gamma_{\tilde{v}}\left(t_{0}\right)}=\frac{\left|\tau^{\prime}\left(t_{0}\right)\right|}{\left|\tau\left(t_{0}\right)\right|} \leq \frac{\left|h^{\prime}\left(i t_{0}\right)\right|}{\left|h\left(i t_{0}\right)\right|} \leq \frac{c\|D\|}{t_{0}} \quad \text { a.e. (with respect to } t_{0} \text {). }
$$

This implies that $\log \gamma_{\tilde{v}}(t)-\|D\| c \log t$ and hence $\tilde{v}(i t) t^{-\|D\| c}$ is decreasing in t. We conclude

$$
\frac{\tilde{v}(i t)}{\tilde{v}(i s)} \leq\left(\frac{t}{s}\right)^{\|D\| c} \quad \text { for } 0<s \leq t
$$

Corollary 3.4. Under the assumptions of Proposition 3.3 we have $b_{\tilde{v}}=0$ and hence $b_{v}=0$.

Proof. (\star) implies $\tilde{v}(i t) \leq t^{\|D\| c} \tilde{v}(i)$ for $t \geq 1$. This implies $b_{\tilde{v}}=0$.
Proposition 3.5. If $D: H v(\mathbb{G}) \rightarrow H v_{1}(\mathbb{G})$ is bounded then v is essential. Moreover,

$$
e^{-2\|D\|} \tilde{v}(i t) \leq v(i t) \leq \tilde{v}(i t) \quad \text { for all } t>0 .
$$

Proof. If v is bounded then $1 \in H v(\mathbb{G})$. Lemma 3.1 implies that $u:=$ $\sup _{m>0} t_{m}=\lim _{m \rightarrow 0} t_{m}=\infty$.

If v is unbounded then by definition and Corollary 3.4 we again obtain $u=\infty$. Indeed, otherwise there is a $t>u$. We have

$$
\lim _{m \rightarrow 0} e^{-m\left(t_{m}-t\right)} \frac{v\left(i t_{m}\right)}{v(i t)}=\frac{v(i u)}{v(i t)}<1
$$

if t is large enough. Hence

$$
\left\|\Theta_{m}\right\|_{v}=e^{-m t_{m}} v\left(i t_{m}\right)=e^{-m\left(t_{m}-t\right)} \frac{v\left(i t_{m}\right)}{v(i t)} e^{-m t} v(i t)<e^{-m t} v(i t)
$$

if m is small enough, a contradiction. Hence in any case, for any $t>0$ there are $m_{1}, m_{2}>0$ with $t_{m_{1}} \leq t \leq t_{m_{2}}$.

We have $\tilde{v}\left(i t_{m}\right)=v\left(i t_{m}\right)$ for all $m>0$ since

$$
v\left(i t_{m}\right) \leq \tilde{v}\left(i t_{m}\right) \leq \frac{\left\|\Theta_{m}\right\|_{v}}{\left|e^{-m t_{m}}\right|}=v\left(i t_{m}\right) .
$$

Lemma 3.1 implies $s_{m}=\sup _{k>m} t_{k}$ and $t_{m}=\inf _{k<m} s_{k}$. We have $m e^{-m t_{m}} t_{m} v\left(i t_{m}\right)=\left|i m e^{i\left(i t_{m} m\right)}\right| v_{1}\left(i t_{m}\right) \leq\|D\| \cdot\left\|\Theta_{m}\right\|_{v}=\|D\| e^{-m t_{m}} v\left(i t_{m}\right)$.
This yields $t_{m} m \leq\|D\|$ and hence

$$
\frac{\tilde{v}\left(i t_{m}\right)}{\tilde{v}\left(i s_{m}\right)}=e^{m\left(t_{m}-s_{m}\right)} \leq e^{2\|D\|} .
$$

Now, let $t>0$. Put $m_{1}=\sup \left\{m>0: t_{m} \leq t\right\}$ and $m_{2}=\inf \{m>0$: $\left.s_{m} \geq t\right\}$. Then $s_{m_{1}} \leq t \leq t_{m_{2}}$. Lemma 3.1 implies $m_{2} \leq m_{1}$. If $m_{2}<m<m_{1}$ then either $s_{m_{1}}<s_{m} \leq t_{m} \leq t$ or $t \leq t_{m}<t_{m_{2}}$. In both cases we obtain a contradiction. Hence $m:=m_{1}=m_{2}$ and $t \in\left[s_{m}, t_{m}\right]$, so that

$$
\tilde{v}(i t) \leq \tilde{v}\left(i t_{m}\right)=v\left(i t_{m}\right) \leq e^{2\|D\|} v\left(i s_{m}\right) \leq e^{2\|D\|} v(i t) \leq e^{2\|D\|} \tilde{v}(i t) .
$$

Corollary 3.6. Let $D: H v(\mathbb{G}) \rightarrow H v_{1}(\mathbb{G})$ be bounded. Then v satisfies (\star).

If $D H v(\mathbb{G}) \subset H v_{1}(\mathbb{G})$ then D is a bounded operator $H v(\mathbb{G}) \rightarrow H v_{1}(\mathbb{G})$ by the closed graph theorem. This completes the proof of Theorem 1.3.

4. Proof of Theorem 1.4. First we show

Proposition 4.1. Let v satisfy (\star) and $(\star \star)$. Then $D: H v(\mathbb{G}) \rightarrow$ $H v_{1}(\mathbb{G})$ is bounded and surjective.

Proof. We already showed that D is bounded. Since v satisfies ($\star \star$), it is unbounded. To show the surjectivity take $h \in H v_{1}(\mathbb{G})$. Let $w_{0} \in \mathbb{G}$ be fixed, say $w_{0}=i n$ for some integer $n>0$, and let $w=x+i t \in \mathbb{G}$ be arbitrary. Moreover, let Γ be a Jordan curve in \mathbb{G} connecting w_{0} and w. Then $(I h)(w):=\int_{\Gamma} h(u) d u$ is holomorphic and $(I h)^{\prime}=h$. We now define

$$
\left(I_{n} h\right)(x+i t):=\int_{n}^{t} h(x+i s) i d s+\int_{0}^{x} h(s+i n) d s
$$

(i.e. Γ runs parallel to the axes from in to $x+i n$ and then to $x+i t$). Then $I_{n} h$ is holomorphic and $\left(I_{n} h\right)^{\prime}=h$. Moreover, there are $d, \gamma>0$ such that, for $t \leq n$ and $|x| \leq n$,

$$
\begin{aligned}
\left|\left(I_{n} h\right)(x+i t)\right| v(i t) \leq & \sup _{t \leq s \leq n}|h(x+i s)| s v(i s)\left|\int_{t}^{n} \frac{v(i t)}{s v(i s)} d s\right| \\
& +\sup _{\tilde{x} \in \mathbb{R}}|h(\tilde{x}+i n)| n v(i n)\left(\int_{0}^{n} \frac{1}{n} d s\right) \frac{v(i t)}{v(i n)} \\
\leq & d\|h\|_{v_{1}}\left|\int_{t}^{n} \frac{t^{\gamma}}{s^{\gamma+1}} d s\right|+\|h\|_{v_{1}} \\
= & \frac{d}{\gamma}\|h\|_{v_{1}}\left|\frac{t^{\gamma}}{t^{\gamma}}-\frac{t^{\gamma}}{n^{\gamma}}\right|+\|h\|_{v_{1}} \leq\left(\frac{d}{\gamma}+1\right)\|h\|_{v_{1}}
\end{aligned}
$$

In the second inequality we used that v satisfies $(\star \star)$. Hence $\left(I_{n} h\right)_{n}$ is locally bounded. By Montel's theorem we find a subsequence which converges uniformly on compact subsets to a holomorphic function g. We obtain $\|g\|_{v} \leq(1+d / \gamma)\|h\|_{v_{1}}<\infty$. Thus $g \in H v(\mathbb{G})$ and $g^{\prime}=h$.

To show the converse we need
LEMMA 4.2. If $D: H v(\mathbb{G}) \rightarrow H v_{1}(\mathbb{G})$ is a surjective operator then v is unbounded.

Proof. Otherwise the function $g(w)=1 / w, w \in \mathbb{G}$, is an element of $H v_{1}(\mathbb{G})$ since

$$
\sup _{t>0, x \in \mathbb{R}} \frac{t v(i t)}{\sqrt{x^{2}+t^{2}}} \leq \sup _{t>0} v(i t)<\infty
$$

Then there is $h \in \operatorname{Hv}(\mathbb{G})$ with $h^{\prime}(w)=1 / w, w \in \mathbb{G}$. Hence there is a constant $c \in \mathbb{C}$ with $h(w)=\log w+c, w \in \mathbb{G}$. But this means $\|h\|_{v} \geq$ $\sup _{t>0}|\log t+c| v(i t)=\infty$, a contradiction.

Proposition 4.3. Let $D: H v(\mathbb{G}) \rightarrow H v_{1}(\mathbb{G})$ be bounded and surjective. Then v satisfies (\star) and ($(\star$).

Proof. We already showed that v satisfies (\star). Moreover, by Lemma 4.2 we know that v cannot be bounded. This implies that D is injective because otherwise $H v(\mathbb{G})$ would contain a constant function different from zero. The open mapping theorem implies that D is an isomorphism between $H v(\mathbb{G})$ and $H v_{1}(\mathbb{G})$. By definition v_{1} always satisfies $(* *)$. Moreover it also satisfies (\star) since v does. Hence $H v_{1}(\mathbb{G})$ is isomorphic to l_{∞}. It follows that $H v(\mathbb{G})$ is isomorphic to l_{∞}. This implies that v satisfies ($* *$) (see [1]).

Finally we note that $D H v(\mathbb{G})=H v_{1}(\mathbb{G})$ implies that D is surjective and bounded by the closed graph theorem. This completes the proof of Theorem 1.4.

Proof of Corollary 1.5. According to [4, Proposition 5], the boundedness of $C_{\varphi}: H v_{1}(\mathbb{G}) \rightarrow H v_{2}(O)$ is equivalent to

$$
\sup _{z \in O} \frac{v_{2}(z)}{\tilde{v}_{1}(\varphi(z))}<\infty
$$

(This is a generalization of a corresponding condition for holomorphic functions on the unit disc, see [3, Proposition 2.1].) From Proposition 3.5 we conclude that the boundedness of C_{φ} is equivalent to

$$
\sup _{z \in O} \frac{v_{2}(z)}{v_{1}(\varphi(z))}<\infty
$$

References

[1] M. A. Ardalani and W. Lusky, Weighted spaces of holomorphic functions on the upper half-plane, Math. Scand., to appear.
[2] K. D. Bierstedt, J. Bonet and J. Taskinen, Associated weights and spaces of holomorphic functions, Studia Math. 127 (1998), 137-168.
[3] J. Bonet, P. Domański, M. Lindström and J. Taskinen, Composition operators between weighted Banach spaces of analytic functions, J. Austral. Math. Soc. 64 (1998), 101-118.
[4] J. Bonet, M. Fritz and E. Jorda, Composition operators between weighted inductive limits of spaces of holomorphic functions, Publ. Math. Debrecen 67 (2005), 333-348.
[5] A. Harutyunyan and W. Lusky, On the boundedness of the differentiation operator between weighted spaces of holomorphic functions, Studia Math. 184 (2008), 233-247.
[6] E. Hewitt and K. R. Stromberg, Real and Abstract Analysis, Grad. Texts in Math. 25, Springer, New York, 1975.
[7] W. Lusky, Growth conditions for harmonic and holomorphic functions, in: Functional Analysis (Trier, 1994), de Gruyter, 1996, 281-291.
[8] M. A. Stanev, Weighted Banach spaces of holomorphic functions in the upper half plane, arXiv:math.FA/9911082 v1 (1999).

Mohammad Ali Ardalani
Department of Mathematics
Faculty of Science
University of Kurdistan
Pasdaran Ave.
Postal code: 66177-15175
Wolfgang Lusky
Institute for Mathematics
University of Paderborn
Warburger Str. 100
D-33098 Paderborn, Germany
E-mail: lusky@math.upb.de
Sanandaj, Iran
E-mail: M.Ardalani@uok.ac.ir

> Received October 4, 2011
> Revised version May 25, 2012

[^0]: 2010 Mathematics Subject Classification: Primary 46E15; Secondary 47B38.
 Key words and phrases: differentiation operator, composition operator, holomorphic functions, weighted spaces, upper half-plane.

