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Bounded operators on weighted spaces of
holomorphic functions on the upper half-plane

by

MOHAMMAD ALI ARDALANI (Sanandaj) and
WOLFGANG Lusky (Paderborn)

Abstract. Let v be a standard weight on the upper half-plane G, ie. v : G —
10, 00[ is continuous and satisfies v(w) = v(ilmw), w € G, v(it) > v(is) if t > s > 0
and limyov(it) = 0. Put v1(w) = Imwv(w), w € G. We characterize boundedness
and surjectivity of the differentiation operator D : Hv(G) — Hwvi(G). For example we
show that D is bounded if and only if v is at most of moderate growth. We also study
composition operators on Hv(G).

1. Introduction. A continuous function v : O — ]0,00[ on an open
subset O of C is called a weight. For a function f : O — C we consider the

weighted sup-norm
1fllo = sup £ (2)|v(z)
and study the space
Hv(O) ={f : O — C holomorphic : || f||, < co}.

In this paper we deal with holomorphic functions on the upper half-plane
G={weC:Imw > 0}.

DEFINITION 1.1. A weight v on G is called a standard weight if
v(w) =v(iImw), we G, v(is) < wv(it) when 0 < s <t, and %ir%v(it) =0.
—
EXAMPLE. Let o, 3 > 0 > 5. Then the functions v;(w) = (Imw)?,
v2(w) = min(vi(w), 1),
(1 -log(Imw))” if Imw <1,
v3(w) =

Imw if Imw > 1,
vs(w) = (Imw)?® exp(aImw) and ve(w) = exp(—B/Imw), w € G, are stan-
dard weights.

va(w) = log(Imw + 1),
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Observe that for a holomorphic function f : G — C, we have f € Hv(G)
if and only if sup,cp |f(z + it)| = O(1/v(it)) as t — 0 and ¢t — oo.

We want to compare the growth of f € Hu(G) with the growth of f’.
We investigate the differentiation operator Df = f’ as an operator between
Hv(G) and Hvi(G) where vi(w) = Imwov(w), w € G. We also study the
growth of f o ¢ where ¢ : O — G is a holomorphic map and O C C is
open, i.e. we deal with composition operators between two different weighted
spaces of holomorphic functions on G.

DEFINITION 1.2. Let v be a standard weight on G.
(i) v satisfies condition (x) if there are constants ¢, 5 > 0 such that
: B
t t
U(Z ) < c<> whenever 0 < s < ¢.
v(is) s

(ii) v satisfies condition (%x) if there are constants d,~ > 0 such that

’y .
d<t> < ’u(?t) whenever 0 < s < .
s v(is)

It is easily seen (see [1]) that v satisfies (x) if and only if
’U(i2k+1)
ret v(i2F)
and v satisfies (xx) if and only if

< 00,

ok
inf sup v(i2")

— < 1
neN ez U(Z2n+k)

In the preceding examples, vy, va, v3 and vy satisfy (x) and v; also satisfies
(xx). (Note that a weight is necessarily unbounded if it satisfies (xx).)

It was shown in [I] that, for a standard weight v with (x), Hv(G) is
isomorphic to I if and only if v also satisfies (x*). Moreover, according to a
result of Stanev [§], Hv(G) # {0} if and only if there are constants a,b > 0
such that v(it) < ae®, t > 0.

In the following we always assume that v is such that Hv(G) # {0}.

We start with the differentiation operator D where Df = f'.

THEOREM 1.3. Let v be a standard weight and put v1(w) = Imwv(w),
w € G. Then the following are equivalent:

(i) DHv(G) C Hvi(G).
(ii) D is a bounded operator Hv(G) — Huv(G).
(iii) v satisfies (x).

As a corollary, v is an essential weight (see Proposition 3.5 below; for the
definition see Section 2). We prove Theorem 1.3 in Section 3. In Section 4
we prove the following result.
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THEOREM 1.4. Let v be a standard weight and put vi(w) = Imwv(w),
w € G. Then the following are equivalent:

(i) DHv(G) = Hvi(G).
(ii) D is an isomorphism between Hv(G) and Hvi(G).
(iii) v satisfies (x) and (%*).

We mention again that (x) and (%) together imply that Hv(G) is iso-
morphic to ls.

There are results for radial weights on D = {z € C : |z] < 1} cor-
responding to Theorems 1.3 and 1.4 (see [5, [7]). However the preceding
theorems cannot be inferred from them by applying a biholomorphic map
a: D — G. If v is a standard weight on G then v o « is not radial on D,
ie. v(a(z)) # v(|a(z)|) on D in general. For weights on D of the type v o «
nothing is known so far.

We also consider composition operators C, = f o ¢ where ¢ : O — G is
a holomorphic map and O C C is open. As a direct consequence of [4] we
obtain (see end of Section 4)

COROLLARY 1.5. Let vy be a weight on O and vy a standard weight on G
satisfying condition (x). Then Cy is a bounded operator Hvi(G) — Hvy(O)
if and only if

sup _va(z)

ooz~

2. The associated weight. For a weight v : O — |0, o[ the function
0(z) = inf{1/|h(2)| : h € Hv(O), ||hll, <1}, 2z€ O,

is called the associated weight. It is known ([2]) that ||f||, = ||f]|s for any
f € Hv(O) and, for any z € O, there is h € Hv(O) with ||h||, < 1 such that

0(z) = 1/|h(z)|. Moreover, v(z) < 9(z) for all z € O. The weight v is called
essential if v and ¥ are equivalent.

Now let v be a standard weight on G. It is easily seen that then v(w) =
o(iImw), w € G.

LEMMA 2.1. We have 9(it) > 0(is) whenever t > s.

Proof. Take

1
:1+Zi, zeD={zeC:|z| <1}
—Z

Then a maps D onto G, we have

a(z)
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a~! maps I'(t) := {w : Imw = t} onto
t

A(t)1={2’2‘z—1+t‘ 1+t}\{}

and we obtain limpey s+00 @ H(w) = 1.

Now fix t > s > 0. Then A(t) is a subset of the interior of A(s). Hence
for h € Hv(G) we obtain

M(h,t) ;= sup |h(w)| = sup [h(a(2))] < sup [h(a(2))] = M(h,s)
wel'(t) 2€A(t) z€A(s)

in view of the maximum principle. (Take into account that h o « is bounded
on {z:|z— 1+S‘ < 1+S} \ {1} since h is bounded on {w : Imw > s}.) Since
the translation operator T, with (T,h)(w) = h(w+x) is an isometry for any
real x, we infer

0(is) = inf{1/|k(is)| : k € Hv(G), ||k], < 1}
= inf{(1/sup (T2h) i)+ € HO(@), [l < 1}
= inf{1/M(h,s): h € Hv(G), ||h|, <1}
<inf{1/M(h,t) : h € Hv(G), ||hll, < 1} = 0(it). m

Observe that ~;(t) := 0(it) is monotone, hence differentiable a.e. More-
over, the fundamental theorem of integral calculus holds for 3 (see [6]).

LEMMA 2.2. Letv be asin Theorem 1.3. Then with c=exp(—3n%/4—1/4)
we have

cto(it) < vy (it) < tov(it)  for all t > 0.

Proof. Fix ty > 0 and consider h € Hvi(G) with ||hl|,, <1 and vy (itg) =
1/|h(ity)|. Put
g(w) = hw)e™ & (/10
where log is the main branch of the complex logarithm. Then ¢ is holo-

morphic on G. Put 6(t) = ¢t~ exp(—log?(t/tg)), t > 0. Then 6(t) attains
its sup at tpexp(—1/2). We have sup,~( () = exp(1/4)/to. Moreover, with

w =1+ it,
9()] = Ih(w) Xp<(g<j;;)> ot (1))
and hence

sup |g(z +it)| < sup|h(x+zt)|exp<7r — log? (t)>
to

zeR zeR
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This implies

—log?(t/t
llglle < exp(wQ)sup sup(|h(z + it|tv(it)) sup exp(— log”(t/to))

t>0 zeR >0 t
_ exp(m? +1/4) 1Bl < exp(n? +1/4)
to " to '
Since exp(72/4)h(ity) = g(itg) we obtain
2+1/4 1 2/4+1/4
to g(ito)| to

|
On the other hand, let f € Hv(G) with ||f|l, < 1 and o(tg) = 1/|f(ito)|-
Put k(w) = f(w)/w. Then

\f( + it)|to(it)

k(z + it)|to(it) = < £, < 1.
a + ineotiny = LD <
We obtain
. to 1 .
to0(ity) = = > 01 (itp). m

|f(ito)|  |K(ito)]
3. Proof of Theorem 1.3. Let v be a standard weight and put
by, = inf {b >0 :supe u(it) < oo}.
>0

According to our general assumption on v preceding Theorem 1.3, we have
by < 0.

Consider the functions e~ ™v(it), t > 0, n > b,. We have sup,q e~ ""v(it
= ||®nlly where O, (w) = ™, w € G. Let s, = inf{t > 0 : e ™v(it) =
16nllv} and ¢, = sup{t > 0: e "™ (it) = ||On ]|, }.

LEMMA 3.1.
(a) Fiz ry > 0 with e mv(iry,) = ||Onllv. Then
e(n_m)rnH@nHv < |Omlls < e(n_m)rmH@nHv
for any n > b, and m > b,.

(b) If m < n then t, < sy and ||Onllv < [|Omllv-

Proof. (a) We have e=™v(iry,) < ||Om||»- This implies the first inequal-
ity. Moreover

[Omlls = e(n_m)rme_nrmv(irm) < e(n_m)rmH@nHv-

(b) Then (a) implies (n — m)r, < (n —m)ry,. Hence r, < ry, if n > m.
This yields (b).

(c) Let b > b,. Then v(it) < ce®, t > 0, for some constant ¢ > 0. Let
s = inf,,5}, sy, and assume that s > 0. Fix 0 < » < s. Then we obtain, in
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view of (b), since s, is decreasing,

o~ MSn, (s < —n(sn—r)v(isn) —nr, [
[@nllu =€ v(isn) < e 7@(@’7“) e "u(ir)

< e—n(s—r)v(isbv+1) —nr

o(ir) e Mu(ir) <e "

v(ir)

if n > b,+1 is large enough, a contradiction. Hence inf, <, s, = 0. Combined
with (b), this proves (c). =

PROPOSITION 3.2. Let v satisfy (x). Then D : Hv(G) — Huvi(G) is
bounded.

Proof. Fix wyg = xo + itg € G. Consider r = ty/2. Then the Cauchy
integral formula implies, for any f € Hu(G),

2w ;
1 % flwo+re?). .
|/ (wo) |v1 (wo) = o S Wwew dep|tov(ity)
0

< 2(sup | f (wo + re™)|v(i(to + rsin go))) :
%)

% U(ito)
su
@p v(i(to + 27t sinp))
< 2¢|[ £l
for some universal constant ¢ > 0, in view of (). m

PROPOSITION 3.3. Let D : Hu(G) — Hvi(G) be bounded. Then ¥ satis-
fies (%).

Proof. Fix tg > 0 such that ~;(t) = 0(it), t > 0, is differentiable at t.
Find h € Hv(G) with |||, < 1 such that ©(itg) = 1/|h(ito)|. We can assume
that h(itg) = |h(ity)| (otherwise take h - h(itg)/|h(itp)| instead of h). This

implies

Sup [Re h(w)|o(w) = h(ito)d(ito) = 1 = |||

Put 7(t) = Reh(it). We have 7/(to)vs(to) + 7(to)v;(to) = 0. Hence
(o) _  75(to)

7(to) Y5 (to)
Since 4 (to), v5(to) and 7(t) are nonnegative, 7/(tp) must be nonpositive.
Moreover we have |7/(to)| < |h/(itg)| and 7(to) = h(itp). By assumption and
Lemma 2.2,

|1 (ito) [to®(ito) < ¢||D|| - |h(ito)[D(ito)
with ¢ = exp(372/4 + 1/4). Hence
Y(to) _ [T (o)l _ [P (ito)| _ <D
Yoto)  I7(to)|l = |h(ito)] —  to

a.e. (with respect to tg).
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This implies that log~;(t) — || D||clogt and hence #(it)t~IPll¢ is decreasing

in t. We conclude

~ | Dlle

?(Zt) < <t> for0<s<t. m
0(is) s

COROLLARY 3.4. Under the assumptions of Proposition 3.3 we have
bz = 0 and hence b, = 0.
Proof. (%) implies @(it) < tIPlleg(7) for ¢ > 1. This implies by = 0.

ProprosITION 3.5. If D : Hv(G) — Hvi(G) is bounded then v is essen-
tial. Moreover,

e AWPIG(it) < w(it) < o(it)  for all t > 0.
Proof. If v is bounded then 1 € Hv(G). Lemma 3.1 implies that u :=
SUDP,,~0 tmn = limy,—0 £y, = 00.
If v is unbounded then by definition and Corollary 3.4 we again obtain
u = 0. Indeed, otherwise there is a ¢t > u. We have

lim e—m(tm—t)v(itm) _ v(iu) <1
m—0 v(it) v(it)

if t is large enough. Hence

_ —mitm,, _ 7m(tm7t)v(itm) —mt, [ —mt, (-
||8m”v € U(ltm) (& U(it) e U(Zt) <e U(Zt)

if m is small enough, a contradiction. Hence in any case, for any ¢t > 0 there
are mi, mg > 0 with ¢,,,, <t <tp,.
We have 0(it,,) = v(it,,) for all m > 0 since

U(itm) < 6(itm) < ||l@;1nt|7|:‘ = U(itm)'

Lemma 3.1 implies s, = supg~,, tx and t,, = infj ), sp. We have
me" "t v (it) = [ime! @™ |y (ity,) < ||D|| - 1Omlle = | D]le™ v (itm).

This yields t,,m < ||D]| and hence

O(@tm) _ mitm=sm) < 21D
0(i8pm)

Now, let t > 0. Put m; = sup{m > 0 : ¢, < t} and mg = inf{m > 0 :
Sm > t}. Then s,,, <t < t,. Lemma 3.1 implies mg < mq. Ilf my < m < my
then either s, < sy <t < tort <ty < tm,. In both cases we obtain a

contradiction. Hence m := my = mg and t € [Sy,, ], so that
o(it) < 0(itm) = v(itm) < e2Ply(is,,) < IPly(it) < IPI5(it). w
COROLLARY 3.6. Let D : Hv(G) — Hv1(G) be bounded. Then v satis-
fies (%).
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If DHv(G) C Hvi(G) then D is a bounded operator Hv(G) — Hvy(G)
by the closed graph theorem. This completes the proof of Theorem 1.3.

4. Proof of Theorem 1.4. First we show

PROPOSITION 4.1. Let v satisfy (x) and (%*). Then D : Hv(G) —
Hvi(G) is bounded and surjective.

Proof. We already showed that D is bounded. Since v satisfies (%), it
is unbounded. To show the surjectivity take h € Hvi(G). Let wy € G be
fixed, say wg = in for some integer n > 0, and let w = x + it € G be
arbitrary. Moreover, let I' be a Jordan curve in G connecting wy and w.
Then (Ih)(w) := §{,h(u)du is holomorphic and (Ih) = h. We now de-
fine

(Inh)(x + it) := | h(z + is)ids + § h(s + in)ds
n 0

(i.e. I' runs parallel to the axes from in to x + in and then to z + it). Then
I,,h is holomorphic and (I,h)" = h. Moreover, there are d,y > 0 such that,
for t <n and |z| < n,

|(Inh)(x 4 it)|v(it) < sup |h(z +is)|sv(is)

t<s<n

. . nl . v(it)
+21€1§ ]h(m—i—mﬂnv(zn}(é - d )

< d|hlf, + 1 Allo,

n

Y
S S'Y+1 ds
t

d 2
= Al
~

7
v

d
Tl < (W ; 1>||h||v1.

In the second inequality we used that v satisfies (x%). Hence (I,h), is
locally bounded. By Montel’s theorem we find a subsequence which con-
verges uniformly on compact subsets to a holomorphic function g. We obtain
llgllo < (1 +d/¥)||h|ls, < co. Thus g € Hv(G) and ¢’ = h. =

To show the converse we need

LEMMA 4.2. If D : Hu(G) — Hvi(G) is a surjective operator then v is
unbounded.

Proof. Otherwise the function g(w) = 1/w, w € G, is an element of
Huv;(G) since
tv(it) ,
sup ————= < supo(it) < oo.
t>0,z€R V2 + 12 7 >0
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Then there is h € Hv(G) with h'(w) = 1/w, w € G. Hence there is a
constant ¢ € C with h(w) = logw + ¢, w € G. But this means ||h|, >
Sup;s |logt + c|v(it) = oo, a contradiction. m

PROPOSITION 4.3. Let D : Hu(G) — Hvi(G) be bounded and surjective.
Then v satisfies (x) and (xx).

Proof. We already showed that v satisfies (x). Moreover, by Lemma 4.2
we know that v cannot be bounded. This implies that D is injective because
otherwise Hv(G) would contain a constant function different from zero. The
open mapping theorem implies that D is an isomorphism between Hv(G)
and Hvy(G). By definition v; always satisfies (xx). Moreover it also satisfies
(%) since v does. Hence Hv1(G) is isomorphic to lo. It follows that Hvu(G)
is isomorphic to lo. This implies that v satisfies (%*) (see [1]). =

Finally we note that DHv(G) = Hvy(G) implies that D is surjective and
bounded by the closed graph theorem. This completes the proof of Theorem
1.4.

Proof of Corollary 1.5. According to [4, Proposition 5|, the boundedness
of Cy, : Hu1(G) — Hvz(O) is equivalent to

supL(z) < 00.

=0 V1(p(2))

(This is a generalization of a corresponding condition for holomorphic func-
tions on the unit disc, see [3, Proposition 2.1].) From Proposition 3.5 we
conclude that the boundedness of Uy, is equivalent to

supL(z)<oo. "

20 v1((2))
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