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Bounded operators on weighted spaces of
holomorphic functions on the upper half-plane

by

Mohammad Ali Ardalani (Sanandaj) and
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Abstract. Let v be a standard weight on the upper half-plane G, i.e. v : G →
]0,∞[ is continuous and satisfies v(w) = v(i Imw), w ∈ G, v(it) ≥ v(is) if t ≥ s > 0
and limt→0 v(it) = 0. Put v1(w) = Imw v(w), w ∈ G. We characterize boundedness
and surjectivity of the differentiation operator D : Hv(G) → Hv1(G). For example we
show that D is bounded if and only if v is at most of moderate growth. We also study
composition operators on Hv(G).

1. Introduction. A continuous function v : O → ]0,∞[ on an open
subset O of C is called a weight. For a function f : O → C we consider the
weighted sup-norm

‖f‖v = sup
z∈O
|f(z)|v(z)

and study the space

Hv(O) = {f : O → C holomorphic : ‖f‖v <∞}.
In this paper we deal with holomorphic functions on the upper half-plane
G = {w ∈ C : Imw > 0}.

Definition 1.1. A weight v on G is called a standard weight if

v(w) = v(i Imw), w ∈ G, v(is) ≤ v(it) when 0 < s ≤ t, and lim
t→0

v(it) = 0.

Example. Let α, β > 0 > γ. Then the functions v1(w) = (Imw)β,
v2(w) = min(v1(w), 1),

v3(w) =

{
(1− log(Imw))γ if Imw < 1,

Imw if Imw ≥ 1,
v4(w) = log(Imw + 1),

v5(w) = (Imw)β exp(α Imw) and v6(w) = exp(−β/Imw), w ∈ G, are stan-
dard weights.
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Observe that for a holomorphic function f : G→ C, we have f ∈ Hv(G)
if and only if supx∈R |f(x+ it)| = O(1/v(it)) as t→ 0 and t→∞.

We want to compare the growth of f ∈ Hv(G) with the growth of f ′.
We investigate the differentiation operator Df = f ′ as an operator between
Hv(G) and Hv1(G) where v1(w) = Imw v(w), w ∈ G. We also study the
growth of f ◦ ϕ where ϕ : O → G is a holomorphic map and O ⊂ C is
open, i.e. we deal with composition operators between two different weighted
spaces of holomorphic functions on G.

Definition 1.2. Let v be a standard weight on G.

(i) v satisfies condition (?) if there are constants c, β > 0 such that

v(it)

v(is)
≤ c
(
t

s

)β
whenever 0 < s ≤ t.

(ii) v satisfies condition (??) if there are constants d, γ > 0 such that

d

(
t

s

)γ
≤ v(it)

v(is)
whenever 0 < s ≤ t.

It is easily seen (see [1]) that v satisfies (?) if and only if

sup
k∈Z

v(i2k+1)

v(i2k)
<∞,

and v satisfies (??) if and only if

inf
n∈N

sup
k∈Z

v(i2k)

v(i2n+k)
< 1.

In the preceding examples, v1, v2, v3 and v4 satisfy (?) and v1 also satisfies
(??). (Note that a weight is necessarily unbounded if it satisfies (??).)

It was shown in [1] that, for a standard weight v with (?), Hv(G) is
isomorphic to l∞ if and only if v also satisfies (??). Moreover, according to a
result of Stanev [8], Hv(G) 6= {0} if and only if there are constants a, b > 0
such that v(it) ≤ aebt, t > 0.

In the following we always assume that v is such that Hv(G) 6= {0}.
We start with the differentiation operator D where Df = f ′.

Theorem 1.3. Let v be a standard weight and put v1(w) = Imw v(w),
w ∈ G. Then the following are equivalent:

(i) DHv(G) ⊂ Hv1(G).
(ii) D is a bounded operator Hv(G)→ Hv1(G).

(iii) v satisfies (?).

As a corollary, v is an essential weight (see Proposition 3.5 below; for the
definition see Section 2). We prove Theorem 1.3 in Section 3. In Section 4
we prove the following result.
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Theorem 1.4. Let v be a standard weight and put v1(w) = Imw v(w),
w ∈ G. Then the following are equivalent:

(i) DHv(G) = Hv1(G).
(ii) D is an isomorphism between Hv(G) and Hv1(G).
(iii) v satisfies (?) and (??).

We mention again that (?) and (??) together imply that Hv(G) is iso-
morphic to l∞.

There are results for radial weights on D = {z ∈ C : |z| < 1} cor-
responding to Theorems 1.3 and 1.4 (see [5, 7]). However the preceding
theorems cannot be inferred from them by applying a biholomorphic map
α : D → G. If v is a standard weight on G then v ◦ α is not radial on D,
i.e. v(α(z)) 6= v(|α(z)|) on D in general. For weights on D of the type v ◦ α
nothing is known so far.

We also consider composition operators Cϕ = f ◦ ϕ where ϕ : O → G is
a holomorphic map and O ⊂ C is open. As a direct consequence of [4] we
obtain (see end of Section 4)

Corollary 1.5. Let v2 be a weight on O and v1 a standard weight on G
satisfying condition (?). Then Cϕ is a bounded operator Hv1(G)→ Hv2(O)
if and only if

sup
z∈O

v2(z)

v1(ϕ(z))
<∞,

2. The associated weight. For a weight v : O → ]0,∞[ the function

ṽ(z) = inf{1/|h(z)| : h ∈ Hv(O), ‖h‖v ≤ 1}, z ∈ O,

is called the associated weight. It is known ([2]) that ‖f‖v = ‖f‖ṽ for any
f ∈ Hv(O) and, for any z ∈ O, there is h ∈ Hv(O) with ‖h‖v ≤ 1 such that
ṽ(z) = 1/|h(z)|. Moreover, v(z) ≤ ṽ(z) for all z ∈ O. The weight v is called
essential if v and ṽ are equivalent.

Now let v be a standard weight on G. It is easily seen that then ṽ(w) =
ṽ(i Imw), w ∈ G.

Lemma 2.1. We have ṽ(it) ≥ ṽ(is) whenever t ≥ s.

Proof. Take

α(z) =
1 + z

1− z
i, z ∈ D = {z ∈ C : |z| < 1}.

Then α maps D onto G, we have

α−1(w) =
w − i
w + i

, w ∈ G,
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α−1 maps Γ (t) := {w : Imw = t} onto

∆(t) :=

{
z :

∣∣∣∣z − t

1 + t

∣∣∣∣ =
1

1 + t

}
\ {1}

and we obtain limRew→±∞ α
−1(w) = 1.

Now fix t > s > 0. Then ∆(t) is a subset of the interior of ∆(s). Hence
for h ∈ Hv(G) we obtain

M(h, t) := sup
w∈Γ (t)

|h(w)| = sup
z∈∆(t)

|h(α(z))| ≤ sup
z∈∆(s)

|h(α(z))| = M(h, s)

in view of the maximum principle. (Take into account that h ◦α is bounded
on
{
z :
∣∣z− s

1+s

∣∣ ≤ 1
1+s

}
\ {1} since h is bounded on {w : Imw ≥ s}.) Since

the translation operator Tx with (Txh)(w) = h(w+x) is an isometry for any
real x, we infer

ṽ(is) = inf{1/|k(is)| : k ∈ Hv(G), ‖k‖v ≤ 1}
= inf{1/sup

x
|(Txh)(is)| : h ∈ Hv(G), ‖h‖v ≤ 1}

= inf{1/M(h, s) : h ∈ Hv(G), ‖h‖v ≤ 1}
≤ inf{1/M(h, t) : h ∈ Hv(G), ‖h‖v ≤ 1} = ṽ(it).

Observe that γṽ(t) := ṽ(it) is monotone, hence differentiable a.e. More-
over, the fundamental theorem of integral calculus holds for γṽ (see [6]).

Lemma 2.2. Let v1 be as in Theorem 1.3. Then with c=exp(−3π2/4−1/4)
we have

ctṽ(it) ≤ ṽ1(it) ≤ tṽ(it) for all t > 0.

Proof. Fix t0 > 0 and consider h ∈ Hv1(G) with ‖h‖v1 ≤ 1 and ṽ1(it0) =
1/|h(it0)|. Put

g(w) = h(w)e− log2(w/t0)

where log is the main branch of the complex logarithm. Then g is holo-
morphic on G. Put δ(t) = t−1 exp(− log2(t/t0)), t > 0. Then δ(t) attains
its sup at t0 exp(−1/2). We have supt>0 δ(t) = exp(1/4)/t0. Moreover, with
w = x+ it,

|g(w)| = |h(w)| exp

((
arg

(
w

t0

))2

− log2
(
|w|
t0

))
and hence

sup
x∈R
|g(x+ it)| ≤ sup

x∈R
|h(x+ it)| exp

(
π2 − log2

(
t

t0

))
.
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This implies

‖g‖v ≤ exp(π2) sup
t>0

sup
x∈R

(|h(x+ it|tv(it)) sup
t>0

exp(− log2(t/t0))

t

=
exp(π2 + 1/4)

t0
‖h‖v1 ≤

exp(π2 + 1/4)

t0
.

Since exp(π2/4)h(it0) = g(it0) we obtain

ṽ(it0) ≤
exp(π2 + 1/4)

t0
· 1

|g(it0)|
=

exp(3π2/4 + 1/4)

t0
ṽ1(it0).

On the other hand, let f ∈ Hv(G) with ‖f‖v ≤ 1 and ṽ(t0) = 1/|f(it0)|.
Put k(w) = f(w)/w. Then

|k(x+ it)|tv(it) =
|f(x+ it)|tv(it)√

x2 + t2
≤ ‖f‖v ≤ 1.

We obtain

t0ṽ(it0) =
t0

|f(it0)|
=

1

|k(it0)|
≥ ṽ1(it0).

3. Proof of Theorem 1.3. Let v be a standard weight and put

bv = inf
{
b > 0 : sup

t>0
e−btv(it) <∞

}
.

According to our general assumption on v preceding Theorem 1.3, we have
bv <∞.

Consider the functions e−ntv(it), t > 0, n > bv. We have supt>0 e
−ntv(it)

= ‖Θn‖v where Θn(w) = einw, w ∈ G. Let sn = inf{t > 0 : e−ntv(it) =
‖Θn‖v} and tn = sup{t > 0 : e−ntv(it) = ‖Θn‖v}.

Lemma 3.1.

(a) Fix rm > 0 with e−mrmv(irm) = ‖Θm‖v. Then

e(n−m)rn‖Θn‖v ≤ ‖Θm‖v ≤ e(n−m)rm‖Θn‖v
for any n > bv and m > bv.

(b) If m ≤ n then tn ≤ sm and ‖Θn‖v ≤ ‖Θm‖v.
(c) limn→∞ tn = 0.

Proof. (a) We have e−mrnv(irn) ≤ ‖Θm‖v. This implies the first inequal-
ity. Moreover

‖Θm‖v = e(n−m)rme−nrmv(irm) ≤ e(n−m)rm‖Θn‖v.
(b) Then (a) implies (n−m)rn ≤ (n−m)rm. Hence rn ≤ rm if n ≥ m.

This yields (b).
(c) Let b > bv. Then v(it) ≤ cebt, t > 0, for some constant c > 0. Let

s = infn>bv sn and assume that s > 0. Fix 0 < r < s. Then we obtain, in
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view of (b), since sn is decreasing,

‖Θn‖v = e−nsnv(isn) ≤ e−n(sn−r) v(isn)

v(ir)
e−nrv(ir)

≤ e−n(s−r) v(isbv+1)

v(ir)
e−nrv(ir) < e−nrv(ir)

if n ≥ bv+1 is large enough, a contradiction. Hence infn>bv sn = 0. Combined
with (b), this proves (c).

Proposition 3.2. Let v satisfy (?). Then D : Hv(G) → Hv1(G) is
bounded.

Proof. Fix w0 = x0 + it0 ∈ G. Consider r = t0/2. Then the Cauchy
integral formula implies, for any f ∈ Hv(G),

|f ′(w0)|v1(w0) =

∣∣∣∣ 1

2π

2π�

0

f(w0 + reiϕ)

r2e2iϕ
ireiϕ dϕ

∣∣∣∣t0v(it0)

≤ 2
(

sup
ϕ
|f(w0 + reiϕ)|v(i(t0 + r sinϕ))

)
·

× sup
ϕ

(
v(it0)

v(i(t0 + 2−1t0 sinϕ))

)
≤ 2c‖f‖v

for some universal constant c > 0, in view of (?).

Proposition 3.3. Let D : Hv(G)→ Hv1(G) be bounded. Then ṽ satis-
fies (?).

Proof. Fix t0 > 0 such that γṽ(t) = ṽ(it), t > 0, is differentiable at t0.
Find h ∈ Hv(G) with ‖h‖v ≤ 1 such that ṽ(it0) = 1/|h(it0)|. We can assume

that h(it0) = |h(it0)| (otherwise take h · h(it0)/|h(it0)| instead of h). This
implies

sup
w∈G
|Reh(w)|ṽ(w) = h(it0)ṽ(it0) = 1 = ‖h‖ṽ.

Put τ(t) = Reh(it). We have τ ′(t0)γṽ(t0) + τ(t0)γ
′
ṽ(t0) = 0. Hence

τ ′(t0)

τ(t0)
= −γ

′
ṽ(t0)

γṽ(t0)
.

Since γ′ṽ(t0), γṽ(t0) and τ(t0) are nonnegative, τ ′(t0) must be nonpositive.
Moreover we have |τ ′(t0)| ≤ |h′(it0)| and τ(t0) = h(it0). By assumption and
Lemma 2.2,

|h′(it0)|t0ṽ(it0) ≤ c‖D‖ · |h(it0)|ṽ(it0)

with c = exp(3π2/4 + 1/4). Hence

γ′ṽ(t0)

γṽ(t0)
=
|τ ′(t0)|
|τ(t0)|

≤ |h
′(it0)|
|h(it0)|

≤ c‖D‖
t0

a.e. (with respect to t0).
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This implies that log γṽ(t) − ‖D‖c log t and hence ṽ(it)t−‖D‖c is decreasing
in t. We conclude

ṽ(it)

ṽ(is)
≤
(
t

s

)‖D‖c
for 0 < s ≤ t.

Corollary 3.4. Under the assumptions of Proposition 3.3 we have
bṽ = 0 and hence bv = 0.

Proof. (?) implies ṽ(it) ≤ t‖D‖cṽ(i) for t ≥ 1. This implies bṽ = 0.

Proposition 3.5. If D : Hv(G)→ Hv1(G) is bounded then v is essen-
tial. Moreover,

e−2‖D‖ṽ(it) ≤ v(it) ≤ ṽ(it) for all t > 0.

Proof. If v is bounded then 1 ∈ Hv(G). Lemma 3.1 implies that u :=
supm>0 tm = limm→0 tm =∞.

If v is unbounded then by definition and Corollary 3.4 we again obtain
u =∞. Indeed, otherwise there is a t > u. We have

lim
m→0

e−m(tm−t) v(itm)

v(it)
=
v(iu)

v(it)
< 1

if t is large enough. Hence

‖Θm‖v = e−mtmv(itm) = e−m(tm−t) v(itm)

v(it)
e−mtv(it) < e−mtv(it)

if m is small enough, a contradiction. Hence in any case, for any t > 0 there
are m1,m2 > 0 with tm1 ≤ t ≤ tm2 .

We have ṽ(itm) = v(itm) for all m > 0 since

v(itm) ≤ ṽ(itm) ≤ ‖Θm‖v
|e−mtm |

= v(itm).

Lemma 3.1 implies sm = supk>m tk and tm = infk<m sk. We have

me−mtmtmv(itm) = |imei(itmm)|v1(itm) ≤ ‖D‖ · ‖Θm‖v = ‖D‖e−mtmv(itm).

This yields tmm ≤ ‖D‖ and hence

ṽ(itm)

ṽ(ism)
= em(tm−sm) ≤ e2‖D‖.

Now, let t > 0. Put m1 = sup{m > 0 : tm ≤ t} and m2 = inf{m > 0 :
sm ≥ t}. Then sm1 ≤ t ≤ tm2 . Lemma 3.1 implies m2 ≤ m1. If m2 < m < m1

then either sm1 < sm ≤ tm ≤ t or t ≤ tm < tm2 . In both cases we obtain a
contradiction. Hence m := m1 = m2 and t ∈ [sm, tm], so that

ṽ(it) ≤ ṽ(itm) = v(itm) ≤ e2‖D‖v(ism) ≤ e2‖D‖v(it) ≤ e2‖D‖ṽ(it).

Corollary 3.6. Let D : Hv(G) → Hv1(G) be bounded. Then v satis-
fies (?).
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If DHv(G) ⊂ Hv1(G) then D is a bounded operator Hv(G)→ Hv1(G)
by the closed graph theorem. This completes the proof of Theorem 1.3.

4. Proof of Theorem 1.4. First we show

Proposition 4.1. Let v satisfy (?) and (??). Then D : Hv(G) →
Hv1(G) is bounded and surjective.

Proof. We already showed that D is bounded. Since v satisfies (??), it
is unbounded. To show the surjectivity take h ∈ Hv1(G). Let w0 ∈ G be
fixed, say w0 = in for some integer n > 0, and let w = x + it ∈ G be
arbitrary. Moreover, let Γ be a Jordan curve in G connecting w0 and w.
Then (Ih)(w) :=

	
Γ h(u) du is holomorphic and (Ih)′ = h. We now de-

fine

(Inh)(x+ it) :=

t�

n

h(x+ is)i ds+

x�

0

h(s+ in) ds

(i.e. Γ runs parallel to the axes from in to x+ in and then to x+ it). Then
Inh is holomorphic and (Inh)′ = h. Moreover, there are d, γ > 0 such that,
for t ≤ n and |x| ≤ n,

|(Inh)(x+ it)|v(it) ≤ sup
t≤s≤n

|h(x+ is)|sv(is)

∣∣∣∣ n�
t

v(it)

sv(is)
ds

∣∣∣∣
+ sup
x̃∈R
|h(x̃+ in)|nv(in)

( n�

0

1

n
ds

)
v(it)

v(in)

≤ d‖h‖v1
∣∣∣∣ n�
t

tγ

sγ+1
ds

∣∣∣∣+ ‖h‖v1

=
d

γ
‖h‖v1

∣∣∣∣ tγtγ − tγ

nγ

∣∣∣∣+ ‖h‖v1 ≤
(
d

γ
+ 1

)
‖h‖v1 .

In the second inequality we used that v satisfies (??). Hence (Inh)n is
locally bounded. By Montel’s theorem we find a subsequence which con-
verges uniformly on compact subsets to a holomorphic function g. We obtain
‖g‖v ≤ (1 + d/γ)‖h‖v1 <∞. Thus g ∈ Hv(G) and g′ = h.

To show the converse we need

Lemma 4.2. If D : Hv(G) → Hv1(G) is a surjective operator then v is
unbounded.

Proof. Otherwise the function g(w) = 1/w, w ∈ G, is an element of
Hv1(G) since

sup
t>0, x∈R

tv(it)√
x2 + t2

≤ sup
t>0

v(it) <∞.
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Then there is h ∈ Hv(G) with h′(w) = 1/w, w ∈ G. Hence there is a
constant c ∈ C with h(w) = logw + c, w ∈ G. But this means ‖h‖v ≥
supt>0 |log t+ c|v(it) =∞, a contradiction.

Proposition 4.3. Let D : Hv(G)→ Hv1(G) be bounded and surjective.
Then v satisfies (?) and (??).

Proof. We already showed that v satisfies (?). Moreover, by Lemma 4.2
we know that v cannot be bounded. This implies that D is injective because
otherwise Hv(G) would contain a constant function different from zero. The
open mapping theorem implies that D is an isomorphism between Hv(G)
and Hv1(G). By definition v1 always satisfies (??). Moreover it also satisfies
(?) since v does. Hence Hv1(G) is isomorphic to l∞. It follows that Hv(G)
is isomorphic to l∞. This implies that v satisfies (??) (see [1]).

Finally we note that DHv(G) = Hv1(G) implies that D is surjective and
bounded by the closed graph theorem. This completes the proof of Theorem
1.4.

Proof of Corollary 1.5. According to [4, Proposition 5], the boundedness
of Cϕ : Hv1(G)→ Hv2(O) is equivalent to

sup
z∈O

v2(z)

ṽ1(ϕ(z))
<∞.

(This is a generalization of a corresponding condition for holomorphic func-
tions on the unit disc, see [3, Proposition 2.1].) From Proposition 3.5 we
conclude that the boundedness of Cϕ is equivalent to

sup
z∈O

v2(z)

v1(ϕ(z))
<∞.
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