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On (n, k)-quasiparanormal operators

by

Jiangtao Yuan (Xian and Jiaozuo) and Guoxing Ji (Xian)

Abstract. Let T be a bounded linear operator on a complex Hilbert space H. For
positive integers n and k, an operator T is called (n, k)-quasiparanormal if

‖T 1+n(T kx)‖1/(1+n)‖T kx‖n/(1+n) ≥ ‖T (T kx)‖ for x ∈ H.

The class of (n, k)-quasiparanormal operators contains the classes of n-paranormal and
k-quasiparanormal operators. We consider some properties of (n, k)-quasiparanormal op-
erators: (1) inclusion relations and examples; (2) a matrix representation and SVEP (single
valued extension property); (3) ascent and Bishop’s property (β); (4) quasinilpotent part
and Riesz idempotents for k-quasiparanormal operators.

1. Introduction. In this paper, an operator means a bounded linear
operator on a complex Hilbert space H. As extensions of well-known hy-
ponormal and paranormal operators, some operator classes were introduced
in recent years. Let n, k be positive integers and T an operator.

(1) T belongs to k-quasiclass A if T ∗k|T 2|T k ≥ T ∗k|T |2T k (see [19, 10]).
(2) T is called n-paranormal if ‖T 1+nx‖1/(1+n)‖x‖n/(1+n) ≥ ‖Tx‖ for

x ∈ H (see [23]).
(3) T is called k-quasiparanormal if ‖T 2(T kx)‖1/2‖T kx‖1/2 ≥ ‖T (T kx)‖

for x ∈ H (see [16]).

Class A operators (defined by |T 2| ≥ |T |2) are paranormal by defini-
tion ([9], [20]). k-Quasiclass A contains class A and is contained in the class
of k-quasiparanormal operators [10, Theorem 2.2]. n-Paranormal operators
are normaloid [11, Theorem 1]. These operator classes have many interesting
properties, such as inclusion relations, SVEP (single valued extension prop-
erty), Bishop’s property (β), finite ascent, properties of isolated spectral
points, and so on. We refer to [2], [3], [19], [22], [8], [16].
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As an extension, for positive integers n and k, we call an operator T
(n, k)-quasiparanormal if

(1.1) ‖T 1+n(T kx)‖1/(1+n)‖T kx‖n/(1+n) ≥ ‖T (T kx)‖ for x ∈ H.

The class of (n, k)-quasiparanormal operators contains the classes of n-para-
normal and k-quasiparanormal (that is, (1, k)-quasiparanormal) operators
(see Theorem 2.1 below).

In this work we consider some properties of (n, k)-quasiparanormal oper-
ators. In Section 2, some inclusion relations and examples related to (n, k)-
quasiparanormal operators are discussed. In Section 3, a matrix represen-
tation is obtained and it is proved that (n, k)-quasiparanormal operators
have SVEP (single valued extension property). In Section 4, we prove that
they have finite ascent and Bishop’s property (β). Section 5 is devoted to the
quasinilpotent part and Riesz idempotents for k-quasiparanormal operators.

2. Inclusion relations and examples

Theorem 2.1. The following assertions hold:

(1) If T is (n, k)-quasiparanormal, then it is (n, k+1)-quasiparanormal.
(2) If T is (n, k)-quasiparanormal, then its restriction to each invariant

subspace is also (n, k)-quasiparanormal.
(3) If T is k-quasiparanormal, then it is (n, k)-quasiparanormal.
(4) Assume T kH is not dense. Let

T =

(
T1 T2

0 T3

)
on [T kH]⊕ kerT ∗k

where [T kH] is the closure of T kH. If T is (n, k)-quasiparanormal,
then T1 is n-paranormal, T k3 = 0 and σ(T ) = σ(T1) ∪ {0}.

Similar results hold for (p, k)-quasihyponormal operators (defined by
T ∗k(T ∗T )pT k ≥ T ∗k(TT ∗)pT k where p > 0 and k is a positive integer)
and k-quasiclass A operators ([19]).

Proof. (1) follows by taking x = Tz in the definition, and (2) is clear.

(3) By assumption, for x ∈ T kH and Tx 6= 0 we have

(2.1)
‖T 2x‖
‖Tx‖

≥ ‖Tx‖
‖x‖

.

Noting that Tx ∈ T k+1H ⊆ T kH, for T 2x 6= 0, (2.1) implies

‖T 3x‖
‖T 2x‖

≥ ‖T
2x‖

‖Tx‖
.
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By repeating this process, for x ∈ T kH and Tnx 6= 0, we obtain

‖T‖ ≥ · · · ≥ ‖T
1+nx‖
‖Tnx‖

≥ ‖Tnx‖
‖Tn−1x‖

≥ · · · ≥ ‖T
2x‖

‖Tx‖
≥ ‖Tx‖
‖x‖

,

‖T 1+nx‖ ‖x‖n ≥ ‖Tx‖1+n.

If Tnx = 0, then there exists y ∈ H such that y ∈ kerTn+k. By definition of
k-quasiparanormality, kerT 2+k = kerT 1+k. Thus y ∈ kerTn+k = kerT 1+k

and Tx = 0. Hence ‖T 1+nx‖ ‖x‖n ≥ ‖Tx‖1+n for all x ∈ T kH.
(4) Observe that T 1+n

1 z = T 1+nz for z ∈ [T kH]. So T1 is n-paranormal
by (1.1). Let x ∈ kerT ∗k. Then

T kx =

(
T k1

∑k
i=0 T

i
1T2T

k−1−i
3

0 T k3

)
(0⊕ x) ∈ [T kH].

Hence T k3 = 0 and σ(T ) = σ(T1) ∪ {0}.
Later we give an example to show that the class of (k + 1)-quasipara-

normal operators strictly contains the class of k-quasiparanormal operators.

Lemma 2.2. T is (n, k)-quasiparanormal if and only if

(2.2) T ∗kT ∗(1+n)T 1+nT k − (1 + n)µnT ∗kT ∗TT k + nµ1+nT ∗kT k ≥ 0

for any µ > 0.

Proof. The proof is similar to that of [23, Lemma 2.2]. Let T be (n, k)-
quasiparanormal. By the generalized arithmetic-geometric mean inequality,
we have

1

1 + n
(µ−n|T 1+n|2T kx, T kx) +

n

1 + n
(µT kx, T kx)

≥ (µ−n|T 1+n|2T kx, T kx)1/(1+n)(µT kx, T kx)n/(1+n)

= (|T 1+n|2T kx, T kx)1/(1+n)(T kx, T kx)n/(1+n)

≥ (|T |2T kx, T kx) = (T ∗TT kx, T kx).

Conversely, if x ∈ H with (|T 1+n|2T kx, T kx) = 0, multiplying (2.2) by
µ−n and letting µ→ 0 we have (T ∗TT kx, T kx) = 0, thus

‖T 1+n(T kx)‖ ‖T kx‖n ≥ ‖T (T kx)‖1+n.
If x ∈ H with (|T 1+n|2T kx, T kx) > 0, putting

µ =

(
(|T 1+n|2T kx, T kx)

(T kx, T kx)

)1/(1+n)

in (2.2) we have

(|T 1+n|2T kx, T kx)1/(1+n)(T kx, T kx)n/(1+n) ≥ (T ∗TT kx, T kx)

for any x ∈ H, so T is (n, k)-quasiparanormal.
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Example 2.3. Denote by w := (wn)n∈N a bounded sequence of pos-
itive numbers. The corresponding unilateral weighted right shift operator
on l2(N) with the canonical orthogonal basis {en}∞n=0 is defined by Tx =∑∞

n=0wnxnen+1 where x := (xn)n∈N ∈ l2(N). Then the following statements
hold:

(1) T belongs to k-quasiclass A if and only if wk ≤ wk+1 ≤ wk+2 ≤ · · · .
(2) If wk > wk+1 and wk+1 ≤ wk+2 ≤ · · · , then T is a (k+ 1)-quasiclass

A operator but not a k-quasiclass A operator.
(3) T is (p, k)-quasihyponormal if and only if wk−1 ≤ wk ≤ wk+1 ≤ · · · .
(4) If wk−1 > wk and wk ≤ wk+1 ≤ · · · , then T is (k + 1)-quasihypo-

normal but not k-quasihyponormal.
(5) T is k-quasiparanormal if and only if wk ≤ wk+1 ≤ wk+2 ≤ · · · .
(6) If wk > wk+1 and wk+1 ≤ wk+2 ≤ · · · , then T is (k + 1)-quasipara-

normal but not k-quasiparanormal.
(7) If w0 > w1 and w1 ≤ w2 ≤ · · · , then T is quasiparanormal but not

paranormal.
(8) If w0 > w1 and w1 = w2 = · · · , then T is quasiparanormal but not

normaloid.

Examples 2.3(1)–(2) are known ([10, Example 1.3], [13, Example 1.2]).

Proof. Obviously, it is sufficient to prove (3), (5) and (8).

(3) By calculation, TT ∗ = 0 ⊕ w2
0 ⊕ w2

1 ⊕ · · · , and for each positive
integer m,

T ∗mTm = (w2
0 · · ·w2

m−1)⊕ (w2
1 · · ·w2

m)(2.3)

⊕ (w2
2 · · ·w2

m+1)⊕ · · · on l2(N).

Hence

T ∗k(T ∗T )pT k = (w2
0 · · ·w2

k−1w
2p
k )⊕ (w2

1 · · ·w2
kw

2p
k+1)(2.4)

⊕ (w2
2 · · ·w2

k+1w
2p
k+2)⊕ · · · on l2(N),

T ∗k(TT ∗)pT k = (w2
0 · · ·w2

k−1w
2p
k−1)⊕ (w2

1 · · ·w2
kw

2p
k )(2.5)

⊕ (w2
2 · · ·w2

k+1w
2p
k+1)⊕ · · · on l2(N),

So (3) holds.

(5) By Lemma 2.2 and (2.3), T is k-quasiparanormal if and only if, for
any real number µ,

(2.6)

w2
kw

2
k+1 − 2µw2

k + µ2 ≥ 0,

w2
k+1w

2
k+2 − 2µw2

k+1 + µ2 ≥ 0,

w2
k+2w

2
k+3 − 2µw2

k+2 + µ2 ≥ 0, etc.

That is, T is k-quasiparanormal if and only if wk ≤ wk+1 ≤ wk+1 ≤ · · · .
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(8) It is clear that ‖T‖ = w0 and

r(T ) = lim
m→∞

‖Tm‖1/m = w1,

therefore T is not normaloid.

3. A matrix representation and SVEP

Theorem 3.1. Let T be (n, k)-quasiparanormal, 0 6= λ ∈ σp(T ) and

T =

(
λ T12

0 T22

)
on ker(T − λ)⊕ (ker(T − λ))⊥.

Then

(3.1) T12

(
T22
λ

+ · · ·+
(
T22
λ

)n
− nI

)
T k22 = 0,

and

(3.2) ‖T 1+n
22 T k22x‖2/(1+n) · ‖T k22x‖2n/(1+n) ≥ ‖T12T k22x‖2 + ‖T22T k22x‖2

for any x ∈ (ker(T −λ))⊥. In particular, T22 is also (n, k)-quasiparanormal.

This is a generalization of [21, Theorem 2.1] and [23, Lemma 2.3].

Proof. Without loss of generality, we may assume that λ = 1. For each
positive integer m,

T 1+m =

(
1 T12(I + T22 + · · ·+ Tm22)

0 T 1+m
22

)
,

T ∗(1+m)T 1+m =

(
1 T12(1 +m)

(T12(1 +m))∗ |T12(1 +m)|2 + |T 1+m
22 |2

)
where T12(1 +m) = T12(I + T22 + · · ·+ Tm22). Then

0 ≤ T ∗kT ∗(1+n)T 1+nT k − (1 + n)µnT ∗kT ∗TT k + nµ1+nT ∗kT k

=

(
X(µ) Z(µ)

(Z(µ))∗ Y (µ)

)
where

X(µ) = 1− (1 + n)µn + nµ1+n,

Z(µ) = T12(n+ k + 1)− (1 + n)µnT12(k + 1) + nµ1+nT12(k),

Y (µ) = |T12(n+ k + 1)|2 + |Tn+k+1
22 |2 − (1 + n)µn(|T12(k + 1)|2 + |T k+1

22 |
2)

+ nµ1+n(|T12(k)|2 + |T k22|2).
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Put µ = 1 in (2.2). Then

0 ≤ T ∗(n+k+1)Tn+k+1 − (1 + n)T ∗(k+1)T k+1 + nT ∗kT k

=

(
0 Z(1)

(Z(1))∗ Y (1)

)
.

Hence Z(1) = T12T
k
22(T22 + · · ·+ Tn22 − nI) = 0, that is, (3.1) holds.

Next we prove (3.2). For each µ 6= 1 there exists a contraction D(µ) such
that Z(µ) = (X(µ))1/2D(µ)(Y (µ))1/2 (see [24, Lemma 1.4] and [7]). Thus

X(µ)Y (µ) ≥ X(µ)(Y (µ))1/2(D(µ))∗D(µ)(Y (µ))1/2 = |Z(µ)|2.
This together with (3.1) implies that

Y (µ) ≥ 1

X(µ)
|Z(µ)|2 =

1

X(µ)
|X(µ)T12(k) + (1 + n)(1− µn)T12T

k
22|2

= X(µ)|T12(k)|2 + (1 + n)(1− µn)(T12(k)∗T12T
k
22 + (T12T

k
22)
∗T12(k))

+
1

X(µ)
(1 + n)2(1− µn)2|T12T k22|2.

That is, for µ 6= 1,

(3.3) |Tn+k+1
22 |2 − (1 + n)µn(|T12T k22|2 + |T k+1

22 |
2) + nµ1+n|T k22|2

≥ (1− µn)2 −X(µ)

X(µ)
(1 + n)2|T12T k22|2.

As in [23, Lemma 2.3], let f(µ) = (1 − µn)2 − X(µ) on (0,∞). If n = 1
then f(µ) ≥ 0 is clear. If n ≥ 2, then f(1) = 0, f ′(1) = 0 and f ′′(1) > 0.
Therefore f(µ) ≥ 0 on (0,∞) and

(3.4) |Tn+k+1
22 |2 − (1 + n)µn(|T12T k22|2 + |T k+1

22 |
2) + nµ1+n|T k22|2 ≥ 0

for µ 6= 1 by (3.3). It is clear that (3.3) holds for each real number µ by the
continuity of µ. Similar to the proof that (2.2) implies the (n, k)-quasipara-
normality of T in the proof of Lemma 2.2, (3.2) follows from (3.4).

Corollary 3.2. If T is (n, k)-quasiparanormal and λ 6= 0, then
ker(T22 − λ) = {0} where T22 is as in Theorem 3.1.

Proof. Let x ∈ ker(T22 − λ). Then ‖(T − λ)x‖2 = ‖T12x‖2 ≤ 0 by (3.2).
Hence x ∈ ker(T − λ) ∩ (ker(T − λ))⊥ = {0} and ker(T22 − λ) = {0}.

Corollary 3.3. If T is (n, k)-quasiparanormal and λµ 6= 0, then
ker(T − λ) ⊥ ker(T − µ) for λ 6= µ.

Proof. Let

T =

(
λ T12

0 T22

)
on ker(T − λ)⊕ (ker(T − λ))⊥
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and x = x1 ⊕ x2 ∈ ker(T − µ). Then

0 = (T − µ)x = [(λ− µ)x1 + T12x2]⊕ (T22 − µ)x2.

By (T22 − µ)x2 = 0 and (3.2), we have ‖T12x2‖2 = 0. So x1 = 0 for λ 6= µ,
which implies x ∈ (ker(T − λ))⊥ and so ker(T − λ) ⊥ ker(T − µ).

Corollary 3.4. If T is (n, k)-quasiparanormal, then T has SVEP.

Corollary 3.4 follows easily from Corollary 3.3 and the result below.

Lemma 3.5. If ker(T − λ) ⊥ ker(T − µ) for any two different nonzero
eigenvalues λ and µ of T , then T has SVEP.

Lemma 3.5 is a generalization of [22, Proposition 3.1].

Proof. Let f be an analytic function such that (T − λ)f(λ) = 0 on
an open set D. By assumption, f(λ) ∈ ker(T − λ) for each λ ∈ D. Thus
f(λ) ⊥ f(µ) for any two different nonzero complex numbers λ and µ in D.
Hence, for any sequence {µn} of nonzero complex numbers such that µn → λ,

‖f(λ)‖2 = lim
µn→λ

(f(λ), f(µn)) = 0.

4. Ascent and Bishop’s property (β). An operator T is said to have
totally finite ascent if T − λ has finite ascent for every λ ∈ C.

Theorem 4.1. Let T be an (n, k)-quasiparanormal operator.

(1) kerT 1+k = kerT 2+k and ker(T − λ) = ker (T − λ)2 where λ 6= 0. In
particular, T has totally finite ascent and SVEP.

(2) T has Bishop’s property (β).

Theorem 4.1 is a generalization of [8, Theorem 2.5] and [16, Theorem
2.6]. To prove it, we need the following lemmas.

Lemma 4.2 ([21, 23]). Let T be n-paranormal, 0 6= λ ∈ σp(T ) and

T =

(
λ T12

0 T22

)
on ker(T − λ)⊕ (ker(T − λ))⊥.

Then ker(T22 − λ) = {0},

T12

(
T22
λ

+ · · ·+
(
T22
λ

)n)
= nT12,

‖T 1+n
22 x‖2/(1+n)‖x‖2n/(1+n) ≥ ‖T12x‖2 + ‖T22x‖2

for any x ∈ (ker(T − λ))⊥. In particular, T22 is also n-paranormal.

Lemma 4.3 ([8]). If T is n-paranormal, then ker(T − λ) = ker (T − λ)2

for each λ ∈ C.
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This is [8, Lemma 2.3]; we give a proof for convenience.

Proof. Assume 0 6= λ ∈ σp(T ) because the cases of λ = 0 and of λ 6∈
σp(T ) are clear. Let 0 6= x ∈ ker (T − λ)2 and x = x1 ⊕ x2 ∈ ker(T − λ) ⊕
(ker(T − λ))⊥. Then

0 = (T − λ)2x =

(
0 T12(T22 − λ)

0 (T22 − λ)2

)
x = T12(T22 − λ)x2 ⊕ (T22 − λ)2x2.

Since ker(T22−λ) = {0} by Lemma 4.2, it follows that x2 = 0 and x = x1 ∈
ker(T − λ).

Lemma 4.4. Let

T =

(
T1 T2

0 T3

)
on M ⊕M⊥.

If T1 and T2 have Bishop’s property (β), then so does T .

[19, Lemma 11] and [16, Theorem 2.6] give this result for k-quasiclass A
and k-quasiparanormal operators. The proof of Lemma 4.4 is similar to [19,
Lemma 4] or [16, Theorem 2.6], so we omit it here.

Proof of Theorem 4.1. (1) By definition, kerT 1+n+k = kerT 1+k, so that
kerT 2+k = kerT 1+k. Assume 0 6= λ ∈ σp(T ) because the case λ 6∈ σp(T ) is
obvious. Let 0 6= x ∈ ker (T − λ)2, x = x1 ⊕ x2 ∈ [T kH]⊕ kerT ∗k and

T =

(
T1 T2

0 T3

)
on [T kH]⊕ kerT ∗k.

Then

0 = (T − λ)2x =

(
T1 − λ T2

0 T3 − λ

)2

x

=

(
(T1 − λ)2x1 + ((T1 − λ)T2 + T2(T3 − λ))x2

(T3 − λ)2x2

)
.

Consequently, x2 = 0 because T3 − λ is invertible by Theorem 2.1(4). Thus
(T1 − λ)2x1 = 0 and (T1 − λ)x1 = 0 by Lemma 4.3. Therefore (T − λ)x =
(T − λ)(x1 ⊕ 0) = (T1 − λ)x1 = 0.

(2) Since quasinilpotent and n-paranormal operators have Bishop’s prop-
erty (β) [8, Theorem 2.5], the assertion follows by Theorem 2.1(4).

5. Quasinilpotent part and Riesz idempotents of k-quasipara-
normal operators. The quasinilpotent part of T is defined by H0(T ) =
{x ∈ H : limn→∞ ‖Tnx‖1/n = 0}. In general, H0(T ) is not closed [1, p. 43].
Let ρ(T ) and p0(T ) denote the resolvent set and the set of poles of the
resolvent of T respectively. For an isolated spectral point λ ∈ isoσ(T ), let
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Eλ(T ) be the Riesz idempotent for λ, denoted by E for short. The operator
T is called isoloid if isoσ(T ) ⊂ σp(T ), and polaroid if isoσ(T ) ⊂ p0(T ).

It is known that EH = H0(T − λ), so H0(T − λ) is closed [1, p. 157].

Theorem 5.1. Let T be a k-quasiparanormal operator and λ ∈ C.

(1) H0(T ) = kerT k+1, and if λ 6= 0, then H0(T − λ) = ker(T − λ).
(2) Let

T =

(
λ T12

0 T22

)
on ker(T − λ)⊕ [(T − λ)∗H].

If 0 6= λ ∈ isoσ(T ) and ker (T22)
∗ = 0, then E = E∗.

Lemma 5.2. Let m be a positive integer and λ ∈ isoσ(T ).

(1) The following assertions are equivalent:

(a) EH = ker (T − λ)m.
(b) kerE = (T − λ)mH.

(2) If λ ∈ p0(T ) and the order of λ is m, the following assertions are
equivalent:

(a) E is self-adjoint.
(b) ker (T − λ)m = ker (T − λ)∗m.
(c) ker (T − λ)m ⊆ ker (T − λ)∗m.

Proof. Let H = EH+ kerE, a topological direct sum. Then σ(T |EH) =
{λ} and λ 6∈ σ(T |kerE) (see [5, Chapter VII] and [14]).

(1) (a)⇒(b): We have

(T − λ)mH = (T − λ)m(EH+ kerE) = (T − λ)m kerE = kerE.

(b)⇒(a): We have

ker (T − λ)m = ker (T |EH − λ)m + ker (T |kerE − λ)m = ker (T |EH − λ)m.

On the other hand,

kerE = (T − λ)mH = (T − λ)m(EH+ kerE)(5.1)

= (T |EH − λ)mEH+ (T |kerE − λ)m kerE

= (T |EH − λ)mEH+ kerE.

Hence (T |EH − λ)mEH = {0} and EH = ker (T − λ)m.
(2) (a)⇒(b): By (1),

ker (T − λ)m = EH = (kerE)⊥ = ((T − λ)mH)⊥ = ker (T − λ)∗m.

(b)⇒(c) is obvious.
(c)⇒(a): (c) ensures ker (T − λ)m⊥(T − λ)mH, that is, EH⊥ kerE.

If T is hyponormal and λ ∈ isoσ(T ), then EH = ker(T − λ) ([17,
Theorem 2]) and ker(T − λ) is a reducing space of T by definition. Thus
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ker(T − λ) = ker (T − λ)∗ and E is self-adjoint by Lemma 5.2. This can be
regarded as an alternative proof of [18, Theorem C] without using condi-
tion G1.

Lemma 5.3. Let T be k-quasiparanormal.

(1) If σ(T ) = {λ}, then T 1+k = 0 when λ = 0, and T = λ when λ 6= 0.
(2) If λ ∈ isoσ(T ), then λ ∈ p0(T ), and the order of λ is no more than

1 + k when λ = 0, and 1 when λ 6= 0.

Lemma 5.3 implies that k-quasiparanormal operators are polaroid and
isoloid. Paranormal operators can be regarded as 0-quasiparanormal oper-
ators. Lemma 5.3 holds for paranormal operators ([6, Lemma 2.1], [12], [4,
Theorem 2.1]). [16, Lemma 2.8] yields the case λ 6= 0 of Lemma 5.3.

Proof. (1) If T kH is dense, then T is paranormal and the assertion holds
by [6, Lemma 2.1]. Assume T kH is not dense. Then σ(T ) = {λ} implies
λ = 0 by Theorem 2.1. So σ(T1) = {0} and T1 = 0 (T1 is as in Theorem 2.1).
Thus

T 1+k =

(
0 T2T

k
3

0 T 1+k
3

)
= 0

by Theorem 2.1.
(2) By Theorem 2.1(2), T |EH is k-quasiparanormal and σ(T |EH) = {λ}.

So (T |EH)1+k = 0 when λ = 0, and T |EH = λ when λ 6= 0. That is,
EH = kerT 1+k when λ = 0, and EH = ker(T − λ) when λ 6= 0. The
assertion follows from Lemma 5.2(1) immediately.

Proof of Theorem 5.1. (1) By Theorem 4.1, T has Dunford’s property C
[15, Proposition 1.2.19], that is, the local spectral subspace XT (F ) of T is
closed for every closed set F ⊆ C. Thus H0(T − λ) = XT−λ({0}) is closed
[1, Theorem 2.20] and σ(S) ⊆ {λ} where S = T |H0(T−λ) [15, Proposition
1.2.20]. Moreover, S is k-quasiparanormal by Theorem 2.1.

If σ(S) is empty, then H0(T − λ) = {0} and ker(T − λ) = {0}. If σ(S)
is not empty, then σ(S) = {λ}. By Lemma 5.3, S1+k = 0 when λ = 0, and
S = λ when λ 6= 0. So the assertion follows.

(2) By Lemmas 5.2 and 5.3, λ is a simple pole of the resolvent of T and
it is sufficient to prove ker(T − λ) ⊆ ker (T − λ)∗, that is, T12 = 0.

In fact, λ ∈ isoσ(T ) ⊂ ρ(T22)∪ isoσ(T22). Since T22 is k-quasiparanormal
and isoloid by Theorem 3.1 and Lemma 5.3, this together with ker(T22−λ)
= 0 (Corollary 3.2) implies that λ ∈ ρ(T22). Hence T12T

k
22 = 0 by Theorem

3.1, and T12 = 0 by the assumption ker (T22)
∗ = 0. Therefore ker(T − λ) ⊆

ker (T − λ)∗.

An operator T is called algebraically (n, k)-quasiparanormal if there ex-
ists a nonconstant complex polynomial h such that h(T ) is (n, k)-quasipara-
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normal. For λ ∈ σ(T ), let

(5.2) h(T )− h(λ) = c(T − λ)m(T − λ1)m1 · · · (T − λl)ml

where c 6= 0, {mi : i = 1, . . . , l} is a subset of nonnegative integers, and
λ, λ1, . . . , λl are different complex numbers.

The following assertions follow easily from the properties of (n, k)-quasi-
paranormal operators and polynomials (cf. [3]).

(1) If T is algebraically (n, k)-quasiparanormal then so is T−λ for λ ∈ C.
(2) If T is algebraically (n, k)-quasiparanormal then the restriction T |M

is also algebraically (n, k)-quasiparanormal.

Corollary 5.4. Let T be algebraically k-quasiparanormal.

(1) If σ(T ) = {λ}, then (T −λ)m(1+k) = 0 when h(λ) = 0, and (T −λ)m

= 0 when h(λ) 6= 0.
(2) If λ ∈ isoσ(T ), then λ ∈ p0(T ), and the order of λ is no more than

m(1 + k) when h(λ) = 0, and m when h(λ) 6= 0.

Corollary 5.4 says that k-quasiparanormal operators are polaroid and
isoloid.

Proof. (1) Since σ(T ) = {λ}, we have σ(h(T )) = {h(λ)} and {λi :
i = 1, . . . , l} ⊆ ρ(T ). This together with (5.2) and Lemma 5.3 implies that
(T − λ)m(1+k) = 0 when h(λ) = 0, and (T − λ)m = 0 when h(λ) 6= 0.

(2) By assumption, h(T |EH) = h(T )|EH is k-quasiparanormal, that is,
T |EH is algebraically k-quasiparanormal. Moreover σ(T |EH) = {λ}, hence
by (1) we have (T |EH − λ)m(1+k) = 0 when h(λ) = 0, and (T |EH − λ)m = 0
when h(λ) 6= 0. So EH = ker (T − λ)m(1+k) when h(λ) = 0, and EH =
ker (T −λ)m when h(λ) 6= 0. Therefore the assertion holds by Lemma 5.2.

Let H(σ(T )) be the set of all functions analytic on some open neighbor-
hood U of σ(T ). It is well-known that if h is a nonconstant polynomial and
h(T ) has SVEP, then T has SVEP [1, Theorem 2.40]. Thus algebraically
k-quasiparanormal operators have SVEP by Corollary 3.4 or Theorem 4.1.
The following result follows from Corollary 5.4 and [2, Theorems 3.12 and
3.14].

Corollary 5.5. Let f ∈ H(σ(T )).

(1) If T is algebraically k-quasiparanormal, then Weyl type theorem
(gW ) holds for f(T ).

(2) If T ∗ is algebraically k-quasiparanormal, then Weyl type theorems
(gW ), (gaW ), (gw) hold for f(T ) where f is nonconstant on each
connected component of U .
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