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Minimal projections with respect to various norms

by
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and Grzegorz Lewicki (Kraków)

Abstract. A theorem of Rudin permits us to determine minimal projections not
only with respect to the operator norm but with respect to various norms on operator
ideals and with respect to numerical radius. We prove a general result about N -minimal
projections where N is a convex and lower semicontinuous (with respect to the strong
operator topology) function and give specific examples for the cases of norms or seminorms
of p-summing, p-integral and p-nuclear operator ideals.

1. Introduction. LetX be a Banach space over R or C. We write BX(r)
for the closed ball with radius r > 0 and center at 0 (BX if r = 1) and SX
for the unit sphere of X. The dual space is denoted by X∗ and the Banach
algebra of all continuous linear operators going from X into a Banach space
Y is denoted by B(X,Y ) (B(X) if X = Y ).

Definition 1.1. The numerical range of T ∈ B(X) is defined by

W (T ) = {x∗(Tx) : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1}·
The numerical radius of T is then given by

‖T‖w = sup{|λ| : λ ∈W (T )}·
Clearly, ‖ · ‖w is a seminorm on B(X) and ‖T‖w ≤ ‖T‖ for all T ∈ B(X).
The numerical index of X is defined by

n(X) = inf{‖T‖w : T ∈ SB(X)}·
Equivalently, the numerical index n(X) is the greatest constant k ≥ 0 such
that k‖T‖ ≤ ‖T‖w for every T ∈ B(X). Note also that 0 ≤ n(X) ≤ 1, and
n(X) > 0 if and only if ‖ · ‖w and ‖ · ‖ are equivalent norms.

The concept of numerical index was introduced by Lumer [33] in 1968.
Since then much attention has been paid to the constant of equivalence
between the numerical radius and the usual norm in the Banach algebra of
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all bounded linear operators of a Banach space. Two classical books devoted
to numerical range are [6] and [7]. For recent results we refer the reader to
[1], [2], [18], [19], [21], [31], [34].

The following definition, given in [44], presents the general concept of an
operator ideal.

Definition 1.2. We are given an operator ideal U if for each pair of
Banach spaces X and Y we have a class of operators U(X,Y ) (U(X) if
X = Y ) such that:

(a) U(X,Y ) is a linear subspace (not necessarily closed) of B(X,Y ) con-
taining all finite rank operators;

(b) if T ∈ U(X,Y ), A ∈ B(Z,X) and B ∈ B(Y, V ) then BTA ∈ U(Z, V )
for all Banach spaces X,Y, Z, V and all operators A,B.

An operator ideal is a Banach operator ideal if on each U(X,Y ) we have
a norm N such that:

(a) (U(X,Y ), N) is complete for each X,Y ;
(b) N(BTA) ≤ ‖B‖N(T )‖A‖, whenever the composition makes sense,

where the symbol ‖ · ‖ denotes the operator norm;
(c) for every rank-one operator T : X → Y we have N(T ) = ‖x∗‖ ‖y‖,

where T (x) = x∗(x)y.

The theory of Banach operator ideals was founded by A. Grothendieck
and R. Schatten. Basic examples are the ideals of all continuous opera-
tors, compact operators, weakly compact operators, p-absolutely summing,
p-integral and p-nuclear operators. For more details on operator ideals see
[38] and [44].

If X is a Banach space and V is a linear, closed subspace of X, we denote
by P(X,V ) the set of all linear projections continuous with respect to the
operator norm. Recall that an operator P : X → V is called a projection if
P |V = idV . A projection P0 ∈ P(X,V ) is called minimal if

‖P0‖ = inf{‖P‖ : P ∈ P(X,V )} = λ(V,X).

Minimal projections have been extensively studied by many authors in
the context of functional analysis and approximation theory (see, e.g., [1], [5],
[8]–[12], [14]–[17], [20], [22]–[32], [35]–[37], [39], [41]–[43]). Mainly the prob-
lems of existence and uniqueness of minimal projections, finding concrete
formulas for minimal projections and estimates of the constant λ(V,X) were
considered. One of the main tools for finding minimal projections effectively
is Rudin’s Theorem (see [39] or [40]). This theorem plays a fundamental role
in our discussion below.

Assume that X is a Banach space, V ⊂ X is a closed subspace and
N : B(X,V )→ [0,+∞] is a convex function. Let us define
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λN (V,X) = inf{N(P ) : P ∈ P(X,V )}.
We put λN (V,X) = +∞ if P(X,V ) = ∅ or if N(P ) = +∞ for any P ∈
P(X,V ). A projection P0 ∈ PN (X,V ) is called N-minimal if

N(P0) = λN (V,X).

In the following we will show that under some assumptions on N , Rudin’s
Theorem can be applied to obtain N -minimal projections effectively (see
Theorem 2.2). Then we show that it is possible to apply Theorem 2.2 to
many concrete cases. In particular we take for N the numerical radius ‖ · ‖w
or a norm on a Banach operator ideal (U , N). Although our proofs follow
from Rudin’s result without much difficulty, our purpose is to give concrete
applications, e.g. to Fourier projections. Applications presented in the last
section justify our study of minimal projections in this context. We do not
know of any paper (with the exception of [1] and [3]) concerning minimal
projections with respect to norms different than the operator norm. In fact,
in [1] a characterization of minimal numerical-radius extensions of operators
from a normed linear space X onto its finite-dimensional subspaces and a
comparison with minimal operator-norm extension are given. Furthermore,
in the same paper, it is shown that the projection P : lp3 → [v1, v2], where
v1 = (1, 1, 1) and v2 = (−1, 0, 1), which is minimal with respect to the
operator norm, is not minimal with respect to the numerical radius for 1 <
p <∞ and p 6= 2.

Also, it is worth noticing that even if X is finite-dimensional (in this case
all norms defined on B(X) are equivalent) a minimal projection with respect
to the operator norm is not automatically a minimal projection with respect
to other norms in B(X). Thus, the problems of existence and uniqueness of
minimal projection are valid issues in this context too.

2. Main results. One of the key theorems on minimal projections is due
to W. Rudin ([39] or [40, p. 127]). This theorem was motivated by an earlier
result of Lozinskĭı ([13, p. 216] or [32]) concerning the minimality of the
classical nth Fourier projection in P(C(2π), πn), where C(2π) denotes the
space of all 2π-periodic real-valued functions equipped with the supremum
norm and πn is the space of all trigonometric polynomials of degree less than
or equal to n.

To explain the setting for this theorem and the main technique involved
in its proof, let G be a compact topological group. We say that G acts
by isomorphisms on a Banach space X if there exists a group homomor-
phism g 7→ Φg into the group of (bounded and linear) isomorphisms of X,
which is continuous in the strong operator topology on B(X), that is, the
map (g, x) 7→ Φg(x) is continuous. A subset V of X is called G-invariant if
Φg(V ) ⊂ V for all g ∈ G, and a mapping T : X → X is said to commute
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with G if TΦg = ΦgT for all g ∈ G. In case ‖Φg‖ = 1 for all g ∈ G we say
that g acts on G by isometries. To simplify the notation, in what follows we
identify each g ∈ G with Φg ∈ B(X), and simply view g as an isomorphism
of X.

Theorem 2.1 (Rudin, [39], [40]). Let G be a compact topological group
acting by isomorphisms on a Banach space X, and let V be a complemented
G-invariant subspace of X. Then there exists a bounded linear projection Q
of X onto V which commutes with G.

The idea behind the proof of the above theorem is to obtain Q by aver-
aging the operators g−1Pg with respect to the Haar measure on G, where
P is any bounded projection of X onto V. Let us explain this averaging
procedure, since it will be the key tool in our later results.

Given an operator T ∈ B(X), the mapping g 7→ g−1Tg is continuous
and therefore integrable against the normalized Haar measure µ on G. This
provides a bounded linear operator

TG =
�

G

(g−1Tg) dµ(g)

which belongs to the closed convex hull of the set {g−1Tg : g ∈ G}. Here,
the closure is taken in the strong operator topology ([40, Theorem 3.27]) and
the above operator-valued integral should be understood in the Pettis sense.
Thus, we have

Λ(TG) =
�

G

Λ(g−1Tg) dµ(g)

for every linear functional Λ on B(X) which is continuous in the strong
operator topology of B(X) ([40, Definition 3.26]). Given x ∈ X and x∗ ∈ X∗
we may take Λ(S) = x∗(Sx) for all S ∈ B(X) to get

TGx =
�

G

(g−1Tg)x dµ(g).

It follows from the translation invariance of µ that the operator TG commutes
with G. Moreover, if P is a bounded linear projection of X onto a closed
subspace V, then PG is also a bounded linear projection onto V (see [40,
Theorem 5.18]). This accounts for Rudin’s proof of Theorem 2.1.

We point out for later use that the mapping T 7→ TG is linear and that
TG = T whenever T commutes with G. Therefore we have (IX − T )G =
IX − TG, where IX denotes the identity operator on X.

Now we are ready for our main results. Provided that G acts by isometries
on X, we will show that the mapping T 7→ TG is non-expansive, in a quite
general sense.
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Main Theorem 2.2. Let G be a compact topological group acting by
isometries on a Banach space X, and let N : B(X) → [0,+∞] be a convex
function which is lower semicontinuous in the strong operator topology of
B(X). Assume furthermore that

(2.1) N(g−1 ◦ T ◦ g) ≤ N(T ) for any T ∈ B(X) and g ∈ G.

Then
N(TG) ≤ N(T ) for all T ∈ B(X).

Therefore, if V is a closed subspace of X and there is a unique projection Q of
X onto V which commutes with G, then Q is N -minimal and N -cominimal,
that is, N(Q) ≤ N(P ) and N(IX −Q) ≤ N(IX − P ) for any other bounded
linear projection P of X onto V.

Proof. Given T ∈ B(X), by the convexity and lower semicontinuity of N,
the set E = {S ∈ B(X) : N(S) ≤ N(T )} is convex and closed in the strong
operator topology. It then follows from (2.1) that the closed convex hull of
the set {g−1Tg : g ∈ G} is contained in E, so TG ∈ E, as required.

For the second part of the theorem, if P is a bounded, linear projec-
tion onto V, we must have PG = Q, so N(Q) ≤ N(P ) and N(IX − Q) ≤
N(IX − P ).

Now we show that Theorem 2.2 can be applied in a wide collection of
examples.

Remark 2.3. If N is equal to the operator norm ‖ · ‖ on B(X), then N
is convex, lower semicontinuous in the strong operator topology and (2.1) is
satisfied. Hence Theorem 2.2 can be applied. For the proof of Theorem 2.2
in the case of the operator norm see e.g. [16, Chapter 9].

Remark 2.4. Assume that X is finite-dimensional and N is any norm
on B(X) satisfying (2.1). Then N is continuous with respect to the strong
operator topology and hence satisfies the requirements of Theorem 2.2.

Example 2.5. Let N denote the numerical radius on B(X). It is clear
that N is a convex function. To show that (2.1) is satisfied, fix L ∈ B(X),
g ∈ G and (x∗, x) ∈ SX∗ × SX satisfying x∗(x) = 1. Since g is a linear
isometry, (x∗ ◦ g−1, g(x)) ∈ SX∗ × SX and (x∗ ◦ g−1)(g(x)) = 1. By the
definition of numerical radius,

(x∗ ◦ g−1)L(g(x)) ≤ N(L),

and consequently N(g−1LTg) ≤ N(L). It is also easy to see that N is lower
semicontinuous with respect to the strong operator topology on B(X).

Now assume that we have W ⊂ S(X∗) × S(X), W 6= ∅, such that for
any g ∈ G, if (x, x∗) ∈W then (x∗g−1, gx) ∈W . Define for any L ∈ L(X) a
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seminorm ‖ · ‖W by

‖L‖W = sup{|x∗Lx| : (x∗, x) ∈W}.
Observe that for

W = {(x∗, x) ∈ SX∗ × SX : x∗(x) = 1},
‖L‖W is equal to the numerical radius of L. Then the seminorm ‖ · ‖W also
satisfies the requirements of Theorem 2.2.

Now let X be a Banach space and (U(X), N) ⊂ B(X) a Banach operator
ideal (see Definition 1.2). Extending N to B(X) by N(L) = +∞ for L ∈
B(X) \ U(X) we see that N is convex and, by Definition 1.2, N satisfies
(2.1). Hence to apply Theorem 2.2 in the case of operator ideals we only
need to check the lower semicontinuity of N. This will be done in the next
three examples.

Example 2.6. Let X be a Banach space and let V ⊂ X be a closed
subspace. Let U(X,V ) denote the set of all p-summing operators for 1 ≤
p <∞. Notice that by [44, p. 200], an operator T ∈ B(X,V ) is p-summing
(1 ≤ p < ∞) if there exists D > 0 such that for any n ∈ N, x1, . . . , xn ∈ X
we have

(2.2)
( n∑
j=1

‖Txj‖p
)1/p

≤ D sup
{( n∑

j=1

|x∗(xj)|p
)1/p

: x∗ ∈ X∗, ‖x∗‖ = 1
}
.

Consequently,

N(T ) = inf{D > 0 : (2.2) is satisfied with D}

= sup
{( n∑

j=1

‖Txj‖p
)1/p

: n ∈ N, x1, . . . , xn∈X,x∗∈SX∗ ,
n∑
j=1

|x∗(xj)|p≤1
}
,

and it follows that N is lower semicontinuous as the supremum of a family
of continuous functions T 7→ (

∑n
j=1 ‖Txj‖p)1/p.

Example 2.7. Now we consider the case of p-integral operators. Recall
that an operator L ∈ B(X,V ) is called p-integral for 1 ≤ p ≤ ∞ if there
exist a compact set K and a probability measure µ on K such that L admits
a factorization

(2.3) L = D ◦ id ◦A,
where A ∈ B(X,C(K)), id : C(K)→ Lp(K,µ) and D ∈ B(Lp(K,µ), V ). In
this case,

N(L) = inf{‖A‖ ‖D‖ : L has factorization (2.3)}.
Let X be a Banach space and let V ⊂ X be a closed subspace. Assume fur-
thermore that V is reflexive. Let U(X,V ) denote the space of all p-integral
operators for 1 ≤ p < ∞. To show that N is lower semicontinuous with
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respect to the strong operator topology, without loss of generality we can
assume that a net {Lc}c∈C ⊂ B(X) converges to L ∈ B(X) in the strong op-
erator topology and limcN(Lc) = F <∞. Let i be an isometric embedding
of X into C(S), where S = BX∗ with the weak∗ topology. By [44, p. 218,
Th. 23] and the proof of the Pietsch factorization theorem (see [44, p. 203]),
for any ε > 0 there exists a probability measure µ on S (independent of
c ∈ C) and Dc ∈ B(Lp(S, µ), V ) such that

(2.4) Lc = Dc ◦ id ◦ i,

where id : C(S)→ Lp(S, µ) and

(2.5) ‖Dc‖ ≤ F + ε.

Notice that by reflexivity of V for any c ∈ C,

Dc ∈ Fε =
∏

x∈Lp(S,µ)

BV (‖x‖(F + ε)).

If for any x ∈ Lp(S, µ) we equip BV (‖x‖(N(P )+ ε)) with the weak topology
and Fε with the Tikhonov topology, then by the Eberlein Theorem and the
Tikhonov Theorem, Fε is a compact set. Hence the net {Dc}c∈C has a cluster
point D ∈ Fε. It is easy to see that D ∈ B(Lp(S, µ), V ) and ‖D‖ ≤ F + ε.
Since Lc → L in the strong operator topology,

L = D ◦ id ◦ i,

and consequently N(L) ≤ F + ε. Since ε > 0 was arbitrary, N(L) ≤ F as
required.

Example 2.8. Now we consider the case of p-nuclear operators. Notice
that by [44, p. 216], an operator T ∈ B(X,V ) is p-nuclear (1 ≤ p <∞) if it
can be written in the form

(2.6) Tx =

∞∑
j=1

x∗j (x)vj ,

where x∗j ∈ X∗, vj ∈ V,

(2.7)
( ∞∑
j=1

‖x∗j‖p
)1/p

sup
{( ∞∑

j=1

|v∗(vj)|q
)1/q

: v∗ ∈ V ∗, ‖v∗‖ = 1
}
<∞

and 1/p + 1/q = 1. Then the p-nuclear norm N(T ) is understood as the
infimum of the quantities (2.7) over all representations given by (2.6). Let
X be a Banach space and let V ⊂ X be a finite-dimensional subspace. Let
U(X,V ) denote the set of all p-nuclear operators for 1 ≤ p <∞.We show as
in the previous example that if a net {Lc}c∈C converges to L in the strong
operator topology and limcN(Lc) = D <∞ then N(L) ≤ D. To do this, fix
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ε > 0 and assume that for any c ∈ C,

Lc =
∞∑
j=1

x∗j,c(·)vj,c

and( ∞∑
j=1

‖x∗j,c‖p
)1/p

sup
{( ∞∑

j=1

|v∗(vj,c)|q
)1/q

: v∗ ∈ V ∗, ‖v∗‖ = 1
}
< D + ε.

Without loss of generality we can assume that( ∞∑
j=1

‖x∗j,c‖p
)1/p

≤ 1

and

sup
{( ∞∑

j=1

|v∗(vj,c)|q
)1/q

: v∗ ∈ V ∗, ‖v∗‖ = 1
}
< D + ε.

Note that for any c ∈ C,

uc = (x∗j,c)j∈N ∈ Fε =
∏
n∈N

BX∗ .

If we equip BX∗ with the weak∗ topology and Fε with the Tikhonov topol-
ogy, by the Banach–Alaoglu Theorem and the Tikhonov Theorem, Fε is a
compact set. Hence the net {uc}c∈C has a cluster point u = (x∗1, x

∗
2, . . .) ∈ Fε.

It is easy to see that ‖x∗j‖ ≤ 1 for any j ∈ N. Moreover, since for any j ∈ N,
‖x∗j‖ ≤ lim infc ‖x∗j,c‖, for any n ∈ N we have( n∑

j=1

‖x∗j‖p
)1/p

≤
( n∑
j=1

(
lim inf

c
‖x∗j,c‖

)p)1/p
≤ lim inf

c

( n∑
j=1

‖x∗j,c‖p
)1/p

≤ lim inf
c

( ∞∑
j=1

‖x∗j,c‖p
)1/p

≤ 1.

Hence ( ∞∑
j=1

‖x∗j‖p
)1/p

≤ 1.

Since V is finite-dimensional, for any c ∈ C,

wc = (vj,c)j∈N ∈ Wε =
∏
n∈N

BV (D + ε).

If we equip BV (D + ε) with the norm topology and Wε with the Tikhonov
topology, reasoning as above we find that {wc}c∈C has a cluster point
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(v1, v2, . . .) ∈ Wε satisfying

sup
{( ∞∑

j=1

|v∗(vj)|q
)1/q

: v∗ ∈ V ∗, ‖v∗‖ = 1
}
< D + ε.

Hence passing to a convergent subnet if necessary, by the above estimates
and the Hölder inequality we can assume that for any x ∈ X,

Lcx→
∞∑
j=1

x∗j (x)vj

weakly in X. Since Lc converges to L in the strong operator topology, we
obtain

Lx =

∞∑
j=1

x∗j (x)vj ,

and N(L) ≤ D + ε for any ε > 0, which completes our proof.

Remark 2.9. Notice that applications of Theorem 2.2 are interesting
only under the condition that there exists P ∈ P(X,V ) such that N(P )<∞.
Since every p-integral operator is weakly compact, N(P ) = ∞ for any P ∈
P(X,V ) if V is nonreflexive. Analogously, since any p-nuclear operator is
compact, N(P ) = +∞ for any P ∈ P(X,V ) if V is of infinite dimension.
This explains our assumptions in Examples 2.7 and 2.8.

3. Applications. In this section we present some examples of X, V
and N satisfying the requirements of Theorem 2.2 such that N(P ) < ∞
for some P ∈ P(X,V ). Notice that if N denotes the numerical radius and
P(X,V ) 6= ∅, then N(P ) ≤ ‖P‖ < ∞ for any P ∈ P(X,V ), where ‖ · ‖
denotes the operator norm. If N denotes a norm in a Banach operator ideal
and V is finite-dimensional then P(X,V ) 6= ∅ and by Definition 1.2 also
N(P ) <∞ for any P ∈ P(X,V ).

We start with a classical example which explains the origin of Rudin’s
Theorem.

Example 3.1. Let C(2π) denote the set of all continuous 2π-periodic
functions and πn be the space of all trigonometric polynomials of order ≤ n
(n ≥ 1). The Fourier projection Fn : C(2π)→ πn is defined by

Fn(f) =

2n∑
k=0

( 2π�

0

f(t)gn(t) dt
)
gk

where (gk)
2n
k=0 is an orthonormal basis in πn with respect to the scalar prod-

uct
〈f, g〉 =

�

[0,2π]

f(t)g(t) dt.
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In [32] it is shown that Fn is a minimal projection in P(C(2π), πn). The
method of proof is based on the Marcinkiewicz equality (see [13, p. 233]),
which says that for any P ∈ P(C(2π), πn), f ∈ C(2π) and t ∈ [0, 2π],

Fnf(t) =
1

2π

�

[0,2π]

(Tg−1PTgf)t dµ(g).

Here µ is the Lebesgue measure and (Tgf)t = f(t+ g) for any g ∈ R. Notice
that Fn is the only projection which commutes with G, where G = [0, 2π)
with addition mod 2π. Hence in particular, Fn is an N -minimal projection
for N as considered in Examples 2.5–2.8. Furthermore, it is known (see [13,
p. 212]) that the operator norm of Fn satisfies

4

π2
ln(n) ≤ ‖Fn‖ ≤ ln(n) + 3.

In [1], it is shown that in cases of Lp, p = 1,∞, numerical radius extensions
and minimal norm extensions are equal. Since C(2π) ⊂ L∞, we also have

4

π2
ln(n) ≤ ‖Fn‖w ≤ ln(n) + 3.

The Marcinkiewicz equality holds true if we replace C(2π) by Lp[0, 2π] for
1 ≤ p ≤ ∞ or by the Orlicz space Lφ[0, 2π] equipped with the Luxemburg or
the Orlicz norm provided that φ satisfies the suitable ∆2 condition. Hence,
Theorem 2.2 can be applied to the numerical radius and norms in Banach
operator ideals of p-summing, p-integral and p-nuclear operators generated
by the Lp norm or the Luxemburg or the Orlicz norm.

Now we consider a more general situation.

Example 3.2. Let m,n ∈ N, n < m. Let

V = span[sin(ki ·), cos(ki ·) : i = 1, . . . , n],

X = span[sin(ki ·), cos(ki ·) : i = 1, . . . ,m],

where ki ∈ N and k1 < · · · < km. Assume that G is as in Example 3.1. It is
easy to see that the only projection from X onto V which commutes with G
is given by

Q(sin(ki ·)) = 0, Q(cos(ki·)) = 0

for i > n. Assume that ‖ · ‖X is any norm on X such that the mapping

Tg : (X, ‖ · ‖X)→ (X, ‖ · ‖X)

is a linear isometry for any g ∈ G. Hence, in particular, Q is an N -minimal
projection for N as considered in Examples 2.5–2.8. Typical examples of
‖ · ‖X are the Lp-norms, the Luxemburg and the Orlicz norms. The same
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situation holds true in the complex case with
X = span[eikjt : i = 1, . . . ,m],

V = span[eikjt : i = 1, . . . , n] and G = {eit : t ∈ [0, 2π]}.
Notice that it is possible to replace X by Lp[0, 2π] for 1 ≤ p ≤ ∞ or by
an Orlicz space Lφ[0, 2π] equipped with the Luxemburg norm or the Orlicz
norm provided that φ satisfies the suitable ∆2 condition. Also we can apply
Theorem 2.2 in multi-dimensional settings (see, e.g., [27]).

Example 3.3. Let X = Lp[0, 2π] and let V = Hp[0, 2π] be the Hardy
space for 1 < p <∞. By the M. Riesz Theorem (see [40, p. 152]), it follows
that P(Lp[0, 2π], Hp[0, 2π]) 6= ∅ and the projection Q given by

Q(eikj ·) = 0

for j < 0 is the only projection which commutes with G = {eit : t ∈ [0, 2π]}.
Hence, in particular, Q is an N -minimal projection as considered in Ex-
ample 2.5.

Example 3.4. Let M(n,m) be the space of all (real or complex) n×m
matrices. Denote by M(n, 1) (M(1,m) respectively) the space of matrices
from M(n,m) with constant rows (constant columns respectively). Let Sn
be the group of permutations of {1, . . . , n}. Let G = Sn × Sm. For any
g = σ × γ ∈ G define a mapping Tg : M(n,m)→M(n,m) by

Tg(A)(i, j) = A(σ(i), γ(j))

for any A ∈M(n,m), i = 1, . . . , n and j = 1, . . . ,m. Let
W = M(n, 1) +M(1,m).

It is easy to see that Tg(W ) ⊂W for any g ∈ G. Now assume that
X = (M(n,m), ‖ · ‖)

where ‖ · ‖ is any norm such that the mappings Tg are isometries on G.
Typical examples of such norms are Lp-norms and the Luxemburg and Orlicz
norms. In [16, Chapter 9] it has been shown that there is a unique projection
Q which commutes with G that is given by the formula

Qers(i, j) =



n+m+ 1

nm
, i = r, j = s,

m− 1

nm
, i 6= r, j = s,

n− 1

nm
, i = r, j 6= s,

−1

nm
, i 6= r, j 6= s,

where ers(i, j) = δriδrj . Hence, in particular, Q is an N -minimal projection
for N as considered in Examples 2.5–2.8.
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Example 3.5. Let [x] denote the integer part of x ∈ R. The well-known
Rademacher functions r0, r1, . . . defined by rj(t) = (−1)[2

jt] for 0 ≤ t ≤ 1
play an important role in many areas of analysis. Let

Radn = span[r0, . . . , rn].

Fix m,n ∈ N, n < m. Let us consider X = Radm as a subspace of Lp[0, 1],
1 ≤ p < ∞, where [0, 1] is equipped with the Lebesgue measure. We will
find an N -minimal projection from X = Radm onto V = Radn for N as
considered in Examples 2.5–2.8. To do this, we need to define so-called dyadic
addition on the interval [0, 1]. Let Q denote the set of all dyadic rationals
from the interval [0, 1), i.e.,

Q = {x ∈ R : x = p/2n, p ∈ N, 0 ≤ p < 2n}.

Note that any x ∈ [0, 1] can be written in the form

x =

∞∑
k=0

xk2
−(k+1),

where each xk is 0 or 1. For each x ∈ [0, 1]\Q there is only one expression of
this form. When x ∈ Q there are two expressions, one which terminates in
0’s and the other which terminates in 1’s. By the dyadic expansion of x ∈ Q
we shall mean the one which terminates in 0’s. Now we can define the dyadic
sum of x, y ∈ [0, 1] by

x⊕ y =

∞∑
k=0

|xk − yk|2−(k+1).

Notice that G = ([0, 1],⊕) is a group. Indeed, x⊕ 0 = x and x⊕x = 0. Also
it is easy to see that for any n ∈ N and x ∈ [0, 1],

(3.1) rn(x⊕ y) = rn(x)rn(y)

provided that x ⊕ y /∈ Q. Moreover, for any g ∈ [0, 1] the operator Tg :
Lp[0, 1]→ Lp[0, 1] given by

(Tgf)(x) = f(x⊕ g)

is a linear surjective isometry.
Now we will show that if fn, f ∈ Lp[0, 1], ‖fn−f‖p → 0 and |gn−g| → 0,

then

(3.2) ‖Tgn(fn)− Tg(f)‖p → 0.

To do this note that

‖Tgn(fn)− Tg(f)‖p ≤ ‖Tgn(fn)− Tgn(f)‖p + ‖Tgn(f)− Tg(f)‖p.
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Observe that by changing variables from x to x⊕ gn we get

‖Tgn(fn)− Tg(f)‖pp =
�

[0,1]

|fn(x⊕ gn)− f(x⊕ gn)|p dµ(x)

=
�

[0,1]

|fn(x)− f(x)|p dµ(x) = ‖fn − f‖pp → 0.

Notice that, if f is a continuous function (and hence uniformly continuous on
[0, 1]), since gn → g, for any ε > 0 there exists n0 ∈ N such that for any x ∈
[0, 1] and n ≥ n0, |f(x⊕gn)−f(x⊕g)| ≤ ε. Consequently, ‖Tgnf−Tgf‖p → 0
for any f ∈ C[0, 1]. By the Banach–Steinhaus Theorem, since 1 ≤ p <∞, it
follows that ‖Tgnf − Tgf‖p → 0, which proves (3.2).

Note that, since Radn is a finite-dimensional subspace, P(Radm,Radn)
6= ∅. By (3.1), Tg(Radn) ⊂ Radn for any n ∈ N. Consequently, applying the
fact that g−1 = g for any g ∈ G, for any P ∈ P(X,Radn), the projection

Qpf =
�

[0,1]

(TgPTg)f dµ(g) ∈ P(X,Radn)

commutes with G.
Now we show that there is exactly one projection from X onto Radn

which commutes with G. To do this, we show that for any P ∈ P(X,Radn)
Qp(rk) = 0 for m ≥ k > n. So fix x ∈ [0, 1] and g ∈ G with x⊕ g /∈ Q. Note
that

(TgPTgrk)x = rk(g)(TgPTgrk)x = rk(g)
(
Tg

( n∑
j=0

ajrj

))
x

= rk(g)

n∑
j=0

ajrj(x)rj(g).

Observe that
	
[0,1] rj(g)rk(g) dµ(g) = 0 if k 6= j. Since for any x ∈ [0, 1],

µ({g ∈ G : x⊕ g ∈ Q}) = 0,

it follows that

(Qprk)x =
�

[0,1]

rk(g)
( n∑
j=0

ajrj(x)rj(g)
)
dµ(g) = 0,

which demonstrates our claim.
Consequently, for any P ∈ P(Radm,Radn) and f ∈ Radm,

Rnf = Qpf =
n∑
j=0

( �

[0,1]

rj(t)f(t) dµ(t)
)
rj

is an N -minimal projection for N as considered in Examples 2.5–2.8. For
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more information about the nth Rademacher projection Rn the reader is
referred to [29].

Example 3.6. For all n ∈ N, let Xn = L(Rn). Set

Yn = {L ∈ Xn : L = LT }.
Let us equip Xn with the operator norm determined by any symmetric norm
‖ · ‖ on Rn. (We say that ‖ · ‖ is symmetric if∥∥∥ n∑

j=1

ajej

∥∥∥ =
∥∥∥ n∑
j=1

εjaσ(j)ej

∥∥∥
for any a1, . . . , an ∈ R, εj ∈ {−1, 1} and any permutation σ of {1, . . . , n}.)
For L ∈ Xn set

P (L) = (L+ LT )/2.

It is clear that P ∈ P(Xn, Yn). Moreover, in [35] and [36] it was shown,
applying Theorem 2.1, that P is a minimal projection in P(Xn, Yn). Hence
P is an N -minimal projection for N as considered in Examples 2.5–2.8.

Problem 3.7. Notice that in the above examples the N -minimal projec-
tions determined by Theorem 2.2 are, in general, not the unique N -minimal
projection (see, e.g., [42] in the case of operator norm). However, it has been
proven in [15] that the Fourier projection Fn is the unique minimal projec-
tion with respect to the operator norm determined by the supremum norm
in C0(2π). Hence, we pose the following question:

Which N -minimal projections determined in the above examples are the
only N -minimal projections?
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