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A “hidden” characterization of approximatively polyhedral
convex sets in Banach spaces

by

Taras Banakh (Lviv and Kielce) and Ivan Hetman (Lviv)

Abstract. A closed convex subset C of a Banach space X is called approximatively
polyhedral if for each ε > 0 there is a polyhedral (= intersection of finitely many closed
half-spaces) convex set P ⊂ X at Hausdorff distance < ε from C. We characterize ap-
proximatively polyhedral convex sets in Banach spaces and apply the characterization to
show that a connected component H of the space ConvH(X) of closed convex subsets of
X endowed with the Hausdorff metric is separable if and only if H contains a polyhedral
convex set.

1. Introduction. In [1] the authors proved that a closed convex subset
C of a complete linear metric space X is polyhedral in its linear hull if and
only if no infinite subset A ⊂ X \ C is hidden behind C in the sense that
[a, b]∩C 6= ∅ for any distinct points a, b ∈ A. In this paper we shall prove a
similar “hidden” characterization of approximatively polyhedral subsets in
Banach spaces, simultaneously giving a characterization of separable com-
ponents of the space ConvH(X) of non-empty closed convex subsets of a
Banach space X, endowed with the Hausdorff metric

dH(A,B) = max
{

sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)
}
∈ [0,∞].

Here dist(a,B) = infb∈B ‖a− b‖ stands for the distance from a point a ∈ X
to a subset B ⊂ X of the Banach space X.

It is well-known that for each C ∈ ConvH(X) the Hausdorff distance dH
restricted to the set

HC = {A ∈ ConvH(X) : dH(A,C) <∞}
is a metric (see [10, Ch. 2]). The resulting metric space (HC , dH) will be called
the Hausdorff metric component (or just component) of C in ConvH(X).
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In fact, the present investigation was motivated by the problem of cal-
culating the density of components of the space ConvH(X) and detecting
closed convex subsets C ⊂ X with HC separable. In this paper we shall
characterize such sets C in terms of approximative polyhedrality as well as
in “hidden” terms resembling those from [1].

A convex subset C of a Banach space X is called

• a closed half-space if C = f−1([a,∞)) for some non-zero linear contin-
uous functional f : X → R and some a ∈ R;
• polyhedral if C can be written as the intersection of a finite family of

closed half-spaces in X;
• approximatively polyhedral if for every ε > 0 there is a closed polyhe-

dral subset P ⊂ X with dH(C,P ) < ε.

Observe that the whole space X is polyhedral, being the intersection of
the empty family of closed half-spaces (1).

It is well-known that each compact convex subset of a Banach space
is approximatively polyhedral (see [7] for more information on that topic).
This is not necessarily true for non-compact closed convex sets. For example,
the convex parabola

P = {(x, y) ∈ R2 : y ≥ x2}
is not approximatively polyhedral in R2, while the convex hyperbola

H = {(x, y) ∈ R2 : y ≥
√
x2 + 1}

is approximatively polyhedral.
Next, we introduce some “hidden” properties of convex sets. Follow-

ing [1], we say that a subset C of a linear space X hides a set A ⊂ X if for
any two distinct points a, b ∈ A the segment

[a, b] = {ta+ (1− t)b : t ∈ [0, 1]}
meets C.

A convex subset C of a Banach space X is called

• hiding if C hides some infinite set A ⊂ X \ C;
• positively hiding if C hides some infinite set A ⊂ X \ C such that

infa∈A dist(a,C) > 0;
• infinitely hiding if C hides some infinite set A ⊂ X \ C such that

supa∈A dist(a,C) =∞.

It is clear that each infinitely hiding set is positively hiding and each
positively hiding set is hiding.

(1) The polyhedrality of Banach spaces (as closed convex subsets of themselves) should
not be mixed with the classical notion of polyhedrality of Banach spaces studied in the
geometric theory of Banach spaces [4, §6].
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By [1], a closed convex subset C of a complete linear metric space X is
hiding if and only if C is not polyhedral in its closed linear hull. So, both
the parabola and the hyperbola are hiding (being non-polyhedral). Yet, the
parabola is infinitely hiding (but not approximatively polyhedral) while the
hyperbola is not positively hiding (but is approximatively polyhedral).

It turns out that approximative polyhedrality and positive or infinite
hiding properties are mutually exclusive, and can be characterized via prop-
erties of the characteristic cone of a given convex set.

Let us recall that the characteristic cone of a convex subset C in a linear
topological space X is the set VC of all vectors v ∈ X such that for every
point c ∈ C the ray c+ R̄+v = {c+ tv : t ≥ 0} lies in C. Here R̄+ = [0,∞).
The cone VC is closed in X if C is closed or open in X (see Lemma 2.2).

The main result of this paper is the following characterization theorem
that will be used in the paper [2] devoted to recognizing the topological
structure of the space ConvH(X). In the finite-dimensional case, the equiv-
alence of conditions (1)–(3) was proved by Victor Klee [9].

Theorem 1.1. For a closed convex subset C of a Banach space X the
following conditions are equivalent:

(1) C is approximatively polyhedral;
(2) the characteristic cone VC is polyhedral in X and dH(C, VC)<∞;
(3) the component HC contains a polyhedral closed convex set;
(4) HC contains no positively hiding closed convex set;
(5) HC is separable;
(6) dens(HC) < c.

If X is finite-dimensional, then (1)–(6) are equivalent to:

(7) C is not positively hiding;
(8) C is not infinitely hiding.

Let us recall that the density dens(X) of a topological space X is the
smallest cardinality |D| of a dense subset D of X. Topological spaces with
at most countable density are called separable.

Remark 1. Observe that the closed unit ball C = {x ∈ l2 : ‖x‖ ≤ 1} in
the separable Hilbert space l2 is positively hiding but not infinitely hiding,
so (7) and (8) are not equivalent in infinite-dimensional Banach spaces.

Theorem 1.1 will be proved in Section 7 after long preliminary work in
Sections 2–6.

2. Some properties of characteristic cones. This section is of pre-
liminary character and contains some information on convex cones in Banach
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spaces. All linear (and Banach) spaces considered in this paper are over the
field R of real numbers.

By a convex cone in a linear space X we understand a convex subset
C ⊂ X such that tc ∈ C for any t ∈ R̄+ and c ∈ C. Here R̄+ = [0,∞) stands
for the closure of the open half-line R+ = (0,∞) in R. For two subsets A,B
of X and a real number λ, let A + B = {a + b : a ∈ A, b ∈ B} be the
pointwise sum of A and B, and λA = {λa : a ∈ A} be a homothetic copy
of A.

Each subset F ⊂ X generates the cone

cone(F ) =
{ n∑
i=1

λixi : n ∈ N and (xi)
n
i=1 ∈ Fn, (λi)

n
i=1 ∈ R̄n+

}
,

which contains the convex hull conv(F ) of F .

The following description of polyhedral cones and polyhedral convex sets
in finite-dimensional spaces is classical and can be found in [9], [11, Theorems
1.2, 1.3] or [5, §4.3]:

Lemma 2.1. Let X be a finite-dimensional Banach space.

(1) A convex cone C ⊂ X is polyhedral if and only if

C = cone(F ) for some finite set F ⊂ X.

(2) A convex set C ⊂ X is polyhedral if and only if

C = cone(F ) + conv(E) for some finite sets F,E ⊂ X.

We shall be mainly interested in characteristic cones and dual character-
istic cones of convex sets in Banach spaces. Let us recall that for a convex
subset C of a Banach space X its characteristic cone VC is defined by

VC = {x ∈ X : ∀c ∈ C c+ R̄+x ⊂ C} ⊂ X.
By the dual characteristic cone of C we understand the convex cone

V ∗C = {x∗ ∈ X∗ : supx∗(C) <∞}
in the dual Banach space X∗.

It is clear that V ∗C = V ∗
C̄

, where C̄ is the closure of C in X. The relation
between VC and VC̄ is described in the following simple lemma, whose proof
is left to the reader.

Lemma 2.2. Let C be a convex set in a Banach space X. Then

(1) VC ⊂ VC̄ ;
(2) VC = VC̄ if C is open in X.

Our next aim is to show that the characteristic cones of two closed convex
subsets A,B ⊂ X with dH(A,B) <∞ coincide. For this we shall need:
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Lemma 2.3. For each point c0 of a convex set C in a Banach space X,
each v /∈ VC̄ , and each ε ∈ R+ there is a t ∈ R+ such that dist(c0+tv, C) = ε.

Proof. Since v /∈ VC̄ , there is a t0 > 0 such that c0 + t0v /∈ C̄. Consider
the continuous function

f : R̄+ → R̄+, f : t 7→ dist(c0 + tv, C),

and observe that f(0) = 0 as c0 ∈ C. We claim that limt→∞ f(t) = ∞.
Since c0 + t0v /∈ C̄, we can apply the Hahn–Banach Theorem to find a linear
functional x∗ ∈ X∗ with unit norm such that x∗(c0 + t0v) > supx∗(C̄) ≥
x∗(c0), which implies that x∗(v) > 0. Then for any t > t0 we get

dist(tv, C) = inf
c∈C
‖c0 + tv − c‖

≥ inf
c∈C
|x∗(tv)− x∗(c− c0)| = tx∗(v)− supx∗(C − c0)

and hence limt→∞ dist(c0 + tv, C) = ∞. By the continuity of f , there is a
t > 0 with dist(c0 + tv, C) = f(t) = ε.

Now we can prove the promised

Lemma 2.4. Let A,B be closed convex sets in a Banach space X. If
dH(A,B) <∞, then VA = VB.

Proof. We lose no generality assuming that 0 ∈ A ∩ B. If VA 6= VB,
then we can find a vector v ∈ X that lies (say) in VB \ VA. By Lemma 2.3,
there is a t > 0 such that dist(tv, A) > dH(A,B), which is not possible as
tv ∈ VB ⊂ B.

Observe that for a convex set C ⊂ X containing zero, the inclusion
VC ⊂ C implies V ∗C ⊂ V ∗VC .

Lemma 2.5. For any closed convex set C in a Banach space the dual
characteristic cone V ∗VC coincides with the weak∗ closure cl∗(VC) of VC .

Proof. We lose no generality assuming that 0 ∈ C. Observe that the
cone

V ∗VC = {x∗ ∈ X∗ : supx∗(VC) <∞}

= {x∗ ∈ X∗ : supx∗(VC) = 0} =
⋂
v∈VC

{x∗ ∈ X∗ : x∗(v) ≤ 0}

is weak∗ closed in X∗, being an intersection of weak∗ closed half-spaces
in X∗. So, V ∗C ⊂ V ∗VC implies cl∗(V ∗C) ⊂ V ∗VC . To prove the reverse inclusion
V ∗VC ⊂ cl∗(V ∗C), assume that, on the contrary, there is an x∗ ∈ V ∗VC \ cl∗(V ∗C).
By the Hahn–Banach Theorem applied to the weak∗ topology of X∗, there
is an x ∈ X that separates x∗ from cl∗(V ∗C) in the sense that

x∗(x) > sup{v∗(x) : v∗ ∈ cl∗(V ∗C)} ≥ sup{v∗(x) : v∗ ∈ V ∗C}.
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We claim that v∗(x) ≤ 0 for all v∗ ∈ V ∗C . Assuming that v∗(x) > 0, we can
find a λ > 0 so large that λv∗(x) > x∗(x), which contradicts the choice of x
(because λv∗ ∈ V ∗C). So, v∗(x) ≤ 0 for all v∗ ∈ V ∗C . We claim that x ∈ VC .

In the opposite case, we could find a t > 0 such that tx /∈ C (recall that
0 ∈ C). Applying the Hahn–Banach Theorem, we find v∗ ∈ X∗ such that
v∗(tx) > sup v∗(C) ≥ 0. Then v∗ ∈ V ∗C and v∗(x) > 0, which contradicts
the preceding paragraph. Thus x ∈ VC and then x∗(x) > 0 implies that
supx∗(VC) = ∞, which contradicts the choice of x∗ ∈ V ∗VC . This completes
the proof of the inclusion V ∗VC ⊂ cl∗(V ∗C).

The following lemma implies that polyhedral convex sets in Banach
spaces lie at positive Hausdorff distance from their characteristic cones.

Lemma 2.6. For a normed space X, linear continuous functionals
f1, . . . , fn : X → R, a vector a = (a1, . . . , an) ∈ Rn with non-negative
coordinates, and the polyhedral convex set

Pa =
n⋂
i=1

f−1
i ((−∞, ai])

we have:

(1) VPa = P0;
(2) dH(Pa, P0) ≤ dH(P0, P1) ·max1≤i≤n ai,

where 0 = (0, . . . , 0) and 1 = (1, . . . , 1).

Proof. We consider Rn as a Banach lattice with coordinatewise opera-
tions of minimum and maximum.

(1) The first statement is easy and is left to the reader as an exercise.

(2) To prove the second statement, we first check that dH(P0, P1) <∞.
By Lemma 2.1(2), P1 = conv(F ) + cone(E) for some finite sets F,E ⊂ X.
It follows that cone(E) coincides with the characteristic cone P0 of P1 and
hence P1 = conv(F ) + P0. Then

dH(P1, P0) ≤ dH(conv(F ) + P0, P0) ≤ dH(conv(F ), {0}) <∞.
Let a = max1≤i≤n ai. Since the norm of X is homogeneous and P0 ⊂ Pa

⊂ Pa1, we get the required inequality

dH(Pa, P0) ≤ dH(Pa1, P0) = a · dH(P1, P0) = dH(P1, P0) · max
1≤i≤n

ai <∞.

3. Recognizing separable components of ConvH(X). In this section
we shall prove some lemmas that will help us to recognize closed convex sets
C ⊂ X with HC separable. First we consider the finite-dimensional case.
The following lemma was proved by V. Klee [9]. We give an alternative
proof based on a Ramsey-theoretic argument.
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Lemma 3.1. If the component HC of a closed convex subset C of a finite-
dimensional Banach space X contains a polyhedral convex set, then HC
contains a countable dense family of polyhedral convex sets.

Proof. The case C = X is trivial because HC then contains a unique
convex set X, which is polyhedral as the intersection of the empty family of
closed half-spaces. So, we assume that HC contains some polyhedral convex
set P 6= X. We can assume that 0 ∈ P . By Lemma 2.4, dH(C,P ) < ∞
implies VC = VP 6= X.

Write P as a finite intersection of closed half-spaces

P =

k⋂
i=1

f−1
i ((−∞, ai])

where f1, . . . , fk : X → R are linear continuous functionals with unit norm
and a1, . . . , ak are real numbers (non-negative as 0 ∈ P ). According to
Lemma 2.6, we can assume that a1 = · · · = ak = 0, which implies that
P is a polyhedral cone that coincides with its characteristic cone VP = VC .
By Lemma 2.1, P = cone(B) for some finite subset B ⊂ X.

By assumption, the Banach space X is finite-dimensional and hence sep-
arable. So, we can fix a countable dense subset D ⊂ X. Next, for every finite
subset F ⊂ D consider the polyhedral convex set

CF = conv(F ) + VC = conv(F ) + cone(B).

It remains to check that the countable family

C = {CF : F is a finite subset of D}
is dense in HC .

Given A ∈ HC and ε > 0, we shall find a finite subset F ⊂ D with
dH(CF , A) < 2ε. Denote by B̄ the closed unit ball of X. Then clearly rB̄ =
{r · x : x ∈ B̄} = {x ∈ X : ‖x‖ ≤ r} for every r > 0.

Claim 3.2. There exists an r ∈ R+ so large that the convex set Ar =
(A ∩ rB̄) + P is not empty and dH(Ar, A) ≤ ε.

Proof. It follows from dH(A,C) <∞ that VA = VC = P (see Lemma 2.4).
Then for each r ∈ R+ we get

Ar = (A ∩ rB̄) + P ⊂ A+ P = A+ VA = A.

Assuming that dH(Ar, A) > ε for all r ∈ R+, we can construct an increas-
ing sequence (rn)n∈ω of positive real numbers and a sequence (xn)n∈ω of
points in A such that ‖xn‖ ≤ rn and dist(xn+1, Arn) > ε for all n ∈ ω.
Consequently, for every n < m we get

(xm + εB̄) ∩ (xn + P ) ⊂ (xm + εB̄) ∩ (Arn + P ) = ∅,
which implies xm − xn /∈ εB̄ + P .
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Recall that P =
⋂k
i=1Hi where Hi = f−1

i ((−∞, 0]) for i ≤ k. Using

Lemma 2.6, we can choose δ > 0 such that
⋂k
i=1 f

−1
i ((−∞, δ]) ⊂ P + εB.

It follows that for any n < m we get xm − xn /∈
⋂n
i=1 f

−1
i

(
(−∞, δ]

)
and

hence there is an i = i(n,m) ∈ {1, . . . , k} such that xm−xn /∈ f−1
i

(
(−∞, δ]

)
and thus fi(xm) > fi(xn) + δ.

The correspondence i : (n,m) 7→ i(n,m) can be thought of as a finite
coloring of the set [ω]2 = {(n,m) ∈ ω2 : n < m} of pairs of positive
integers. The Ramsey Theorem 5 of [6] yields an infinite subset Ω ⊂ ω
and i ∈ {1, . . . , k} such that i(n,m) = i and hence fi(xm) > fi(xn) + δ for
all n < m in Ω. This implies supc∈C fi(c) ≥ supn∈Ω fi(xn) = ∞, which is
not possible as sup fi(C) ≤ (sup fi(P )) + dH(C,P ) = dH(C,P ) <∞.

Claim 3.2 yields an r ∈ R+ such that A ∩ rB̄ 6= ∅ and dist(Ar, A) < ε
where Ar = (A ∩ rB̄) + P . By [7], the compact convex set A ∩ rB̄ can be
approximated by a finite subset F ⊂ D such that dH(conv(F ), A ∩ rB̄) < ε.
Then the polyhedral convex set CF = conv(F ) + P satisfies dH(CF , Ar) < ε
and hence dH(CF , A) ≤ dH(CF , Ar) + dH(Ar, A) < 2ε.

To generalize Lemma 3.1 to infinite-dimensional Banach spaces X, we
now establish some simple properties of maps between spaces of closed con-
vex sets, induced by quotient operators.

Recall that for a Banach space (X, ‖ · ‖X) and a closed linear subspace
Z ⊂ X, the quotient Banach space Y = X/Z is endowed with the norm

‖y‖Y = inf{‖x‖X : x ∈ q−1(y)},

where q : X → Y , q : x 7→ x+ Z, stands for the quotient operator.

The quotient operator q : X → Y induces an operator q̄ : ConvH(X)→
ConvH(Y ) assigning to each closed convex set C ⊂ X the closure q̄C of
its image qC in Y . The following simple lemma is left to the reader as an
exercise.

Lemma 3.3. Let Z be a closed linear subspace of a Banach space X,
Y = X/Z, and q : X → Y be the quotient operator.

(1) A convex set C ⊂ X with Z ⊂ VC is closed in X if and only if the
image qC is closed in Y .

(2) A convex set C ⊂ X with Z ⊂ VC is polyhedral in X if and only if
its image qC is polyhedral in Y .

(3) For any non-empty convex sets A,B ⊂ X with Z ⊂ VA ∩ VB we get
dH(A,B) = dH(qA, qB).

Now we are able to prove an (infinite-dimensional) generalization of
Lemma 3.1, which will be used in the proof of the implications (3)⇒(1, 5)
in Theorem 1.1.
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Lemma 3.4. If the component HC of a non-empty closed convex subset
C of a Banach space X contains a polyhedral convex set, then HC contains a
countable dense family of polyhedral closed sets, which implies that the space
HC is separable and the convex set C is approximatively polyhedral.

Proof. The statement is trivial if C = X. So, we assume that C 6= X
and HC contains a polyhedral convex set P . Replacing P by its shift, we
can assume that 0 ∈ P . Write

P =

k⋂
i=1

f−1
i ((−∞, ai]),

where f1, . . . , fk : X → R are linear continuous functionals and a1, . . . , ak
are non-negative real numbers. It follows from dH(C,P ) <∞ that the char-
acteristic cone

VC = VP =
k⋂
i=1

f−1
i ((−∞, 0])

is polyhedral and the closed linear subspace

Z = −VC ∩ VC =
k⋂
i=1

f−1
i (0)

has finite codimension in X.
Then the quotient Banach space Y = X/Z is finite-dimensional. Taking

into account that Z ⊂ VP ∩ VC and applying Lemma 3.3(1, 3), we conclude
that qC and qP are closed convex sets in Y with dH(qC, qP ) <∞. Moreover,
qP is polyhedral in Y . Since Y is finite-dimensional, we can apply Lemma 3.1
to find a dense countable subset DY ∈ HqC that consists of polyhedral con-
vex sets. By Lemma 3.3(2), the countable family DX = {q−1(D) : D ∈ DX}
consists of polyhedral convex subsets of X and by Lemma 3.3(3) it is dense
in HC .

4. Recognizing non-separable components of ConvH(X). In this
section we develop some tools for recognizing non-separable components of
the space ConvH(X).

Lemma 4.1. Let C be a convex subset of a linear space X and a, b ∈ X
be such that [a, b] ∩ C 6= ∅. Then for any points x ∈ conv(C ∪ {a}) and
y ∈ conv(X ∪ {b}) we have [x, y] ∩ C 6= ∅.

Proof. The conclusion trivially holds if x or y belongs to C. So, we as-
sume that x, y /∈ C. It follows that x = txa+ (1− tx)cx for some tx ∈ (0, 1]
and cx ∈ C, and similarly y = tyb+(1−ty)cy for some ty ∈ (0, 1] and cy ∈ C.

By assumption, [a, b] ∩ C contains some point c = ta + (1 − t)b with
t ∈ [0, 1].



146 T. Banakh and I. Hetman

The lemma will be proved as soon as we check that [x, y] meets
conv({c, cx, cy}) ⊂ C, and this will follow as soon as we find u, α, αx, αy ∈
[0, 1] such that α+ αx + αy = 1 and

αc+αxcx+αycy = ux+(1−u)y = u(txa+(1−tx)cx)+(1−u)(tyb+(1−ty)cy).
The numbers u and α can be found from the equation

utxa+ (1− u)tyb = αc = α(ta+ (1− t)b),
which has a well-defined solution

u =
t · ty

t · ty + (1− t)tx
and α =

txty
t · ty + (1− t)tx

.

The remaining numbers αx and αy are

αx = u(1− tx), αy = (1− u)(1− ty).
The following lemma will be used for the proof of the implication (6)⇒(4)

of Theorem 1.1.

Lemma 4.2. The component HC ⊂ ConvH(X) of a closed convex subset
C of a Banach space X has dens(HC) ≥ c provided HC contains a positively
hiding closed convex subset P of X.

Proof. Since HC = HP , we lose no generality assuming that C itself is
positively hiding, which means that there is an infinite subset A ⊂ X \ C
with ε = infa∈A dist(a,C) > 0, which is hidden behind C in the sense that
for any distinct a, b ∈ A the segment [a, b] meets C.

Fix any c0 ∈ C and for every a ∈ A choose ba ∈ [c0, a] with dist(ba, C)
= ε. This is possible as dist(a,C) ≥ ε. Lemma 4.1 guarantees that the set
B = {ba : a ∈ A} is infinite and hidden behind C. Moreover, B lies in the
2ε-neighborhood C + 2εB of C, where B = {x ∈ X : ‖x‖ < 1}.

Now for any subset β ⊂ B consider the convex set Cβ = conv(C ∪ β).
Applying Lemma 4.1 one can show that this set is closed in X and Cβ =⋃
b∈β conv(C ∪ {b}). Taking into account that C ⊂ Cβ ⊂ C + 2εB, we see

that dH(C,Cβ) ≤ 2ε and hence Cβ ∈ HC .
We claim that dH(Cα, Cβ) ≥ ε for any distinct α, β ⊂ B. Since α 6= β,

there is (say) a point b ∈ β \ α. Then b ∈ Cβ and dist(b, Cα) ≥ ε. Indeed,
assuming that dist(b, Cα) < ε, we conclude that the open ε-ball b + εB
meets Cα = conv(C ∪ α) =

⋃
a∈α conv(C ∪ {a}) at some x that belongs to

conv(C ∪ {a}) for some a ∈ α. Since the set B 3 a, b is hidden behind C,
the segment [a, b] meets C. By Lemma 4.1, the segment [x, b] also meets C,
which is not possible as [x, b] lies in the ε-ball b+ εB, which does not meet
C as dist(b, C) = ε. Thus dist(b, Cα) ≥ ε and hence dH(Cβ, Cα) ≥ ε.

Now we see that HC contains the subset C = {Cβ : β ⊂ B} of cardinality

|C| ≥ 2|B| ≥ c, consisting of points at mutual distance ≥ ε. This implies that
dens(HC) ≥ |C| ≥ c.
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5. Recognizing infinitely hiding convex sets. In this section we
develop some tools for recognizing infinitely hiding convex sets. In fact, we
shall work with the following relative version of this property.

Let C0, C be two convex sets in a Banach space X. We shall say that
C0 is C-infinitely hiding if C0 hides some infinite set A ⊂ aff(C0) such that
supa∈A dist(a,C) =∞.

It is easy to see that a convex set C ⊂ X is infinitely hiding if and only
if it is C-infinitely hiding.

We start with the following elementary lemma.

Lemma 5.1. Let C 3 0 be a convex set in a Banach space and VC̄ be
the characteristic cone of its closure. For a linear subspace Z ⊂ X, the
intersection Z ∩ VC̄ is C-infinitely hiding if the cone Z ∩ VC̄ is a hiding
convex set in Z.

Proof. Assume that Z ∩ VC̄ hides some infinite injectively enumerated
set {an}n∈ω ⊂ Z \ VC̄ . By Lemma 2.3, for every n ∈ ω, there is a tn > 0
such that dist(tnan, C) > n. It is clear that for the set A = {tnan}n∈ω we
get

sup
a∈A

dist(a,C) = lim
n→∞

dist(tnan, C) =∞.

It remains to show that for any distinct n,m ∈ ω the segment [tnan, tmbm]
intersects Z ∩ VC̄ .

Since the set {an, am} ⊂ A ⊂ Z is hidden behind Z ∩ VC̄ , the segment
[an, am] meets Z ∩ VC̄ at some c = τan + (1 − τ)am where τ ∈ [0, 1]. Then
for the number

u =
τtm

τtm + (1− τ)tn
∈ [0, 1]

we get

utnan + (1− u)tmam =
tntn

τtm + (1− τ)tn
(τan + (1− τ)am)

=
tntm

τtm + (1− τ)tn
c ∈ [tnan, tmam] ∩ VC̄

and hence the intersection Z ∩ VC̄ ∩ [tnan, tmam] 3 utnan + (1− u)tmam is
not empty.

By [1], a closed convex subset C of a complete linear metric space X
is hiding if and only if C is not polyhedral in its closed linear hull. This
characterization combined with Lemma 5.1 implies:

Lemma 5.2. Let C 3 0 be a convex set in a Banach space and VC̄ be the
characteristic cone of its closure. For a closed linear subspace Z ⊂ X the
intersection V = Z∩VC̄ is infinitely C-hiding if the cone V is not polyhedral
in its closed linear hull V ± = cl(V − V ).

This lemma implies its absolute version:
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Lemma 5.3. A closed convex subset C of a Banach space is infinitely
hiding if its characteristic cone VC is not polyhedral in its closed linear hull
V ±C = cl(VC − VC).

Next, we derive the infinite hiding property of a convex set from the
same property of its projections. We start with the following algebraic fact.

Lemma 5.4. Let q : X → X̃ be a linear operator between linear spaces,
E = q−1(0) be its kernel, and C ⊂ X be a convex set such that VC∩E −
VC∩E = E. If the image C̃ = q(C) hides some countable set Ã ⊂ aff(C̃),
then C hides some set A ⊂ aff(C) with q(A) = Ã.

Proof. Let {ãn : n ∈ ω} be an injective enumeration of Ã. By induction,
for every n ∈ ω we shall choose an ∈ q−1(ãn)∩aff(C) so that [an, am]∩C 6= ∅
for any n < m, and an ∈ C if ãn ∈ C̃.

We start by choosing any a0 ∈ q−1(ã0)∩aff(C). Such a point exists since
q(aff(C)) = aff(C̃). If ã0 ∈ C̃, then we can additionally assume that a0 ∈ C.
Assume that for some n ≥ 1 the points a0, . . . , an−1 have been constructed.
We need to choose an ∈ q−1(ãn) ∩ aff(C) so that [ai, an] ∩ C 6= ∅ for all
i < n. If ãn ∈ C̃, then let an ∈ C be any point with q(an) = ãn. So, assume
that ãn /∈ C̃. Let In = {i ∈ ω : i < n, ãi /∈ C̃}.

Since the set Ã ⊂ X̃ is hidden behind C̃, for every i ∈ In the intersection
[ãi, ãn] ∩ C̃ contains a convex combination c̃i = uiãi + (1 − ui)ãn for some
ui ∈ (0, 1). Since c̃i ∈ C̃, there is a point ci ∈ C with q(ci) = c̃i. It follows
from ãn = (c̃i−uiãi)/(1−ui) that the point a′i = (ci−uiai)/(1−ui) belongs
to q−1(ãn).

As E = VE∩C − VE∩C , the intersection
⋂
i∈In(a′i + VE∩C) contains some

point an. Then uiai + (1 − ui)an ∈ ci + VC ⊂ C and hence [ai, an] ∩ C 6= ∅
for all i < n, which completes the inductive step.

This inductive construction gives a countable set A = {an}n∈ω that has
the required property.

Lemma 5.4 implies its C-infinitely hiding version.

Lemma 5.5. Let X be a Banach space, E be a closed linear subspace of
X, X̃ = X/E and q : X → X̃ be the quotient operator. Let C0, C be two
convex sets in X and C̃0 = q(C0), C̃ = q(C). Then C0 is C-infinitely hiding
X if C̃0 is C̃-infinitely hiding and E = VE∩C0 − VE∩C0.

Proof. If C̃0 is C̃-infinitely hiding, then it hides some infinite set Ã ⊂
aff(C̃0) such that supã∈Ã dist(ã, C̃) = ∞. By Lemma 5.4, there is a set

A ⊂ aff(C0) with q(A) = Ã, hidden behind C.

Since ‖q‖ ≤ 1, for every a ∈ A and its image ã = q(a) we get dist(ã, C̃) ≤
dist(a,C). Consequently, supa∈A dist(a,C) ≥ supã∈Ã dist(ã, C̃) = ∞, which
means that C0 is C-infinitely hiding.
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The preceding lemma allows us to derive the C-infinite hiding property of
a convex set from that property of its projection. Our next lemma will help
us to do the same using the C-infinite hiding property of two-dimensional
sections of the convex set.

Lemma 5.6. Let C be a closed convex subset of a Banach space X and
Z be a two-dimensional linear subspace of X such that the convex set C ∩Z
has non-empty interior C0 in Z, which contains zero. If dH(C0, VC0) = ∞,
then C0 is C-infinitely hiding.

Proof. Since dH(C0, VC0) = ∞, the open convex subset C0 of the plane
Z is not bounded. Consequently, its characteristic cone VC0 = VC̄0

= Z ∩VC
is unbounded too. Moreover, VC0 is not a plane, nor a half-plane, nor a line
(otherwise C0 would be at finite Hausdorff distance from VC0). Consequently,
we can choose two linearly independent vectors e1, e2 ∈ Z such that VC0 is
equal to cone({e1}) or to cone({e1, e2}). Let e∗1, e

∗
2 ∈ Z∗ be the coordinate

functionals corresponding to the base e1, e2 of Z. This means that z =
e∗1(z)e1 + e∗2(z)e2 for each z ∈ Z.

If VC0 = cone({e1, e2}), then dH(C0, VC0) = ∞ implies that inf e∗1(C0)
= −∞ or inf e∗2(C0) = −∞. We lose no generality assuming that inf e∗2(C0)
= −∞.

If VC0 = cone({e1}), then dH(C0, VC0) =∞ implies that inf e∗2(C0) = −∞
or sup e∗2(C0) = ∞. Changing e2 to −e2 if necessary, we can assume that
inf e∗2(C0) = −∞.

So, in both cases we can assume that inf e∗2(C0) = −∞.

By induction, we shall construct a sequence (an)n∈ω of points in
cone({e1,−e2}) such that for every n ∈ ω the following conditions are sat-
isfied:

(1) dist(an, C) > n;

(2) e∗1(an) > e∗1(an−1) > 0, e∗2(an) < e∗2(an−1) < 0,
|e∗2(an)|
e∗1(an)

<
|e∗2(an−1)|
e∗1(an−1)

;

(3) [an, ak] ∩ C0 6= ∅ for all k < n.

We start by selecting a0 ∈ R+ · (e1 − e2) with dist(a0, C) > 0. Such a
point exists because e1 − e2 /∈ VC0 = Z ∩ VC . Now assume that for some
n ∈ N we have constructed a0, . . . , an ∈ cone({e1,−e2}) satisfying (1)–(3).
It follows from inf e∗2(C0) = −∞ and e1 ∈ VC0 \ (−VC0) that there exists
c ∈ C0 such that

e∗1(c) > c∗1(an), e∗2(c) < e∗2(an) and
|e∗2(c)|
e∗1(c)

<
|e∗2(an)|
e∗1(an)

.

Now observe that the vector v = c− an is not in VC0 = VC̄0
. Consequently,
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c+ R+v 6⊂ C̄0, which allows us to find an+1 ∈ c+ R+v with dist(an+1, C) >
n+ 1 (using Lemma 2.3). It can be shown that an+1 satisfies condition (2).
Since the segment [an, an+1] contains c, it meets C ∩ Z.

It remains to check that [ak, an+1] ∩ C0 6= ∅ for every k < n. By the
inductive assumption, [ak, an] meets C0 at some c′.
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By an elementary plane geometry argument, the segment [ak, an+1] meets
the triangle conv({0, c′, c}) ⊂ C0 and hence meets C0. This completes the
inductive step.

We thus obtain an infinite set A = {an}n∈ω with supa∈A dist(a,C) =∞
which is hidden behind C0. This means that C0 is C-infinitely hiding.

Lemma 5.7. Let C be a convex subset of a Banach space X and Z be a
finite-dimensional linear subspace of X such that the convex set C ∩ Z has
non-empty interior C0 in Z and 0 ∈ C0. If dH(C0, VC0) = ∞, then C0 is
C-infinitely hiding.

Proof. We use induction on dim(Z). The conclusion is trivially true if
dim(Z) ≤ 1. Assume that it has been proved for all triples (X,C,Z) with
dim(Z) < n. Now suppose dim(Z) = n. Assuming that dH(C0, VC0) = ∞,
we need to prove that C0 is C-infinitely hiding. Assume it is not. Then
Lemma 5.6 implies the following fact, which will be used several times in
the subsequent proof.

Claim 5.8. For each two-dimensional linear subspace Z2 ⊂ Z,

dH(Z2 ∩ C0, VZ2∩C0) <∞.

Now consider the characteristic cone VC0 = VC̄0
of the open convex set

C0 in Z.

Claim 5.9. The linear subspace −VC0 ∩ VC0 is trivial.
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Proof. Assume that E = −VC0 ∩ VC0 6= {0}. Consider X̃ = X/E, the
quotient operator q : X → X̃, the convex set C̃ = q(C), and the finite-
dimensional subspace Z̃ = q(Z) of dimension dim(Z̃) < dim(Z) = n. Since
q|Z : Z → Z̃ is open, the convex set C̃0 = q(C0) is open in Z̃ and hence
the convex set Z̃ ∩ C̃ has non-empty interior in Z̃. Since E ⊂ VC , the set C̃
is closed in X̃ by Lemma 3.3(1). Now we can see that the triple (X̃, C̃, Z̃)
satisfies the requirements of Lemma 5.7 with dim(Z̃) < dim(Z) = n. So, by
the inductive assumption, C̃0 is C̃-infinitely hiding.

Since E = VE∩C0 = VE∩C0−VE∩C0 , we can apply Lemma 5.4 to conclude
that C0 is C-infinitely hiding in X, contrary to assumption.

Claim 5.10. dim(VC0) ≥ 2.

Proof. Assume that dim(VC0) ≤ 1. Since dH(C0, VC0) = ∞, the open
convex subset C0 is unbounded in the finite-dimensional linear space Z ∩C0

and consequently VC0 6= {0}. Since −VC0 ∩ VC0 = {0}, we conclude that
VC0 = R̄+e for some non-zero e ∈ VC0 . Now consider E = Re ⊂ Z, X̃ =
X/E, the finite-dimensional linear subspace Z̃ = q(Z), the convex sets C̃ =
q(C), and the open convex set C̃0 = q(C0), which is dense in C̃. Claim 5.8
guarantees that C̃0 has trivial characteristic cone and hence is bounded in
Z̃. This implies that dH(C0, VC0) <∞, which is the desired contradiction.

Since C0 is not C-infinitely hiding, Lemma 5.2 guarantees that the char-
acteristic cone VC0 is polyhedral in Z and hence

VC0 =

k⋂
i=1

f−1
i ((−∞, 0])

for some linear functionals f1, . . . , fk : Z → R. We shall assume that the
number k in this representation is the smallest possible.

It follows from dH(C0, VC0) = ∞ and Lemma 2.6 that sup fi(C0) = ∞
for some i ≤ k.

Claim 5.11. The face f−1
i (0)∩VC0 of VC0 contains a non-zero vector e.

Proof. By the minimality of k, the cone

V =
⋂
{f−1
j ((−∞, 0]) : 1 ≤ j ≤ k, j 6= i}

is strictly larger than VC0 ; choose x ∈ V \ VC0 . Then fj(x) ≤ 0 for all j 6= i,
and fi(x) > 0.

Since dim(VC0) ≥ 2, there exists y ∈ VC0 \Rx. The choice of x guarantees
that 0 /∈ [x, y]. Since fi(y) ≤ 0 and fi(x) > 0, there is an e ∈ [x, y] with
fi(e) = 0. For every j 6= i, the inequalities fj(x) ≤ 0 and fj(y) ≤ 0 imply
fj(e) ≤ 0. Consequently, e is as required.

Consider now the 1-dimensional linear subspace E = Re of X and let
X̃ = X/E. Observe that X̃ contains the linear subspace Z̃ = Z/E with
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dim(Z̃) = dim(Z) − 1 < n. Let q : X → X̃ be the quotient operator, and
C̃0 = q(C0), C̃ = q(C). It follows from E = q−1(0) ⊂ Z that Z̃∩C̃ = q(Z∩C)
and C̃0 = q(C0) coincides with the interior of q(Z ∩ C) = Z̃ ∩ C̃ in Z̃. So,
the triple (X̃, Z̃, C̃) satisfies the assumptions of the lemma.

We claim that dH(C̃0, VC̃0
) = ∞. Since E ⊂ f−1

i (0), there is a linear

functional f̃i : Z̃ → R such that fi = f̃i ◦ q|Z.

Claim 5.12. VC̃0
⊂ f̃−1

i ((−∞, 0]).

Proof. Assume that VC̃0
contains some w ∈ Z̃ with f̃i(w) > 0. Then

R+w ⊂ Z̃. Pick v ∈ q−1(w) ⊂ Z and consider the two-dimensional subspace
Z2 = lin({v, e}). Observe that for every t ∈ R we have fi(v+te) = f̃i(w) > 0,
which implies that (v + tR) ∩ VZ2∩C = ∅. Then VZ2∩C ⊂ Re − R̄+v and
q(VZ2∩C) ⊂ −R̄+w. On the other hand, the projection q(Z2 ∩ C) contains
the half-line R+w, which implies that dH(Z2 ∩ C, VZ2∩C) = ∞. But this
contradicts Claim 5.8.

Taking into account that∞ = sup fi(C0) = sup f̃i(C̃0), we conclude that
dH(C̃0, VC̃0

) =∞ and by the inductive assumption, the open convex set C̃0

is C̃-infinitely hiding (as dim(Z̃) < dim(Z) = n). Since E = R+e − R+e =
VE∩C0 −VE∩C0 , we can apply Lemma 5.4 to conclude that C0 is C-infinitely
hiding in X. This contradiction completes the proof of Lemma 5.7.

Lemma 5.7 implies the final (and main) lemma of this section.

Lemma 5.13. A closed convex subset C of a Banach space X is infinitely
hiding if dH(A∩C,A∩VC) =∞ for some finite-dimensional affine subspace
A ⊂ X.

Proof. It is well-known that C∩A has non-empty interior C0 in its affine
hull aff(C ∩ A). Moreover, C ∩ A coincides with the closure C̄0 of C0 in A.
Shifting the set C if necessary, we can assume that 0 ∈ C0. Then Z = aff(C0)
is a finite-dimensional linear subspace of X such that C ∩ Z = C ∩ A has
non-empty interior C0 which contains zero and is dense in C ∩Z. It follows
that dH(C0, VC0) = dH(Z∩C, VZ∩C) =∞ and hence C0 is C-infinitely hiding
by Lemma 5.7, and C is infinitely hiding as C0 ⊂ C.

6. Approximating by positively hiding convex sets. In this section
we search for conditions guaranteeing that a closed convex subset C of a
Banach space can be approximated by positively hiding convex subsets of X.

First we construct biorthogonal sequences which are related to convex
sets with trivial characteristic cone.

We recall that a sequence {(xn, x∗n)}n∈ω ⊂ X × X∗ is biorthogonal if
x∗n(xn) = 1 and x∗n(xk) = 0 for all n 6= k (see [8, 1.1]).
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Lemma 6.1. Assume that a closed convex subset C of an infinite-dimen-
sional Banach space X satisfies VC = {0}. Then there exists a biorthogonal
sequence {(xn, x∗n)}n∈ω ⊂ X × V ∗C such that ‖x∗n‖ = 1 ≤ ‖xn‖ < 4 for all
n ∈ ω.

Proof. Replacing C by a shift of its closed neighborhood, we can assume
that C has non-empty interior C0, which contains zero. Such a replacement
does not affect the cones VC and V ∗C (see Lemma 2.4).

The biorthogonal sequence {(xn, x∗n)}n∈ω will be constructed by induc-
tion. We start by choosing arbitrary x∗0 ∈ V ∗C and x0 ∈ X with 1 = ‖x∗0‖ =
x∗0(x0) ≤ ‖x0‖ < 4. Assume that for some k ∈ ω a finite biorthogonal se-
quence {(xn, x∗n)}n<k ⊂ X × V ∗C has been constructed so that 1 = ‖x∗n‖ ≤
‖xn‖ < 4 for all n < k. Let L∗ be the linear hull of {x∗0, . . . , x∗k−1} in X∗. In
the compact set L∗2 = {x∗ ∈ L∗ : ‖x∗‖ ≤ 2}, choose a finite subset F ∗2 ⊂ L∗2
such that for each x∗ ∈ L∗2 there is a y∗ ∈ F ∗2 with ‖x∗ − y∗‖ < 1/8. For
every f ∈ F ∗2 choose an xf ∈ X such that ‖xf‖ = 1 and f(xf ) > ‖f‖− 1/8.

Let E be the linear hull of the finite set {xi : i < k} ∪ {xf : f ∈ F ∗2 }
in X. Let X̃ = X/E, q : X → X̃ be the quotient operator, and C̃ = q(C).
Since q is open, C̃0 = q(C0) coincides with the interior of C̃ in X̃. We
claim that VC̃0

= {0}. Assuming otherwise, pick a non-zero ṽ ∈ VC̃0
, choose

any v ∈ q−1(ṽ) and consider the finite-dimensional linear subspace Ev =
lin(E ∪ {v}). Then VC = {0} implies that Ev ∩ C0 is bounded and hence
q(Ev ∩ C0) = Rṽ ∩ C̃0 is also bounded. So, R̄+ṽ 6⊂ C0, which contradicts
ṽ ∈ VC̃0

\ {0}.
As VC̃0

= {0} implies that C̃ 6= X̃, we can find x̃∗k ∈ V ∗C̃0
with ‖x̃∗k‖ = 1.

Now set x∗k = x̃∗k ◦ q and observe that ‖x∗k‖ = ‖x̃∗k‖ = 1 and x∗k(xi) = 0 for
all i < k and x∗k(xf ) = 0 for all f ∈ F ∗2 . We claim that dist(x∗k, L

∗) > 1/4.
Assuming otherwise, pick l∗ ∈ L∗ with ‖x∗k − l∗‖ ≤ 1/4. Then ‖l∗‖ ≤ ‖x∗k‖
+ 1/4, so l∗ ∈ L∗2 and by the choice of F ∗2 , we can find f ∈ F ∗2 such that
‖l∗ − f‖ < 1/8. Then ‖x∗k − f‖ ≤ ‖x∗k − l∗‖ + ‖l∗ − f‖ ≤ 1/4 + 1/8 = 3/8,
‖f‖ ≥ ‖x∗k‖ − ‖x∗k − f‖ ≥ 1− 3/8 = 5/8 and we obtain a contradiction:

4

8
=

5

8
− 1

8
≤ ‖f‖ − 1

8
< f(xf ) = |x∗k(xf )− f(xf )| ≤ ‖x∗k − f‖ · ‖xf‖ ≤

3

8
.

Thus dist(x∗k, L
∗) > 1/4, so the ball B∗ = {x∗ ∈ X∗ : ‖x∗ − x∗k‖ ≤ 1/4}

does not intersect L∗. By the Banach–Alaoglu Theorem this ball is compact
in the weak∗ topology of X∗. Now the Hahn–Banach Theorem applied to
that topology yields an xk ∈ X that separates L∗ and B∗ in the sense that
supx∗∈L∗ x∗(xk) < infx∗∈B∗ x∗(xk). It follows from the linearity of L∗ that
x∗(xk) = 0 for all x∗ ∈ L∗. In particular, x∗i (xk) = 0 for all i < k. Multi-
plying xk by a suitable positive constant, we may additionally assume that
x∗k(xk) = 1. Then ‖xk‖ ≥ 1 because x∗k has unit norm. To finish the inductive
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step it suffices to check that ‖xk‖ < 4. Otherwise there exists x∗ ∈ X∗ with
unit norm such that x∗(xk) = ‖xk‖ ≥ 4. Then y∗ = x∗k−

1
4x
∗ ∈ B∗ and thus

y∗(xk) > 0. On the other hand, y∗(xk) = x∗k(xk)−
1
4x
∗(xk) ≤ 1− 1

4 · 4 = 0,
which is the desired contradiction.

Lemma 6.2. Assume that a closed convex subset C of an infinite-dimen-
sional Banach space X has VC = {0}. Then for each ε > 0 there is a
positively hiding closed convex set Cε ⊂ X with dH(Cε, C) ≤ ε.

Proof. By Lemma 6.1, there exists a biorthogonal sequence {(xn, x∗n)}n∈ω
⊂ X × V ∗C such that 1 = ‖x∗n‖ ≤ ‖xn‖ < 4 for all n ∈ ω. Then for every
ε > 0, a positively hiding convex set Cε with dH(Cε, C) ≤ ε can be defined
by

Cε =
{
x ∈ cl(C + εB) : ∀n ∈ ω x∗n(x) ≤ 1

8ε+ supx∗n(C)
}

where B = {x ∈ X : ‖x‖ < 1}. It is clear that C ⊂ Cε ⊂ cl(C + εB), which
implies that dH(Cε, C) ≤ ε. It remains to check that the set Cε is positively
hiding.

For every n ∈ ω choose cn ∈ C with x∗n(cn) > supx∗n(C) − 1
16ε and set

an = cn + ε
4xn. We claim that dist(an, Cε) ≥ 1

16ε. Indeed, for any c ∈ Cε, we

get x∗n(c) ≤ supx∗n(C) + 1
8ε while

x∗n(an) =
ε

4
x∗n(xn) + x∗n(cn) >

ε

4
+ supx∗n(C)− ε

16
=

3ε

16
+ supx∗n(C).

Consequently, ‖a∗n − c‖ = ‖x∗n‖ · ‖an − c‖ ≥ x∗n(an)− x∗(c) ≥ 3ε
16 −

ε
8 = ε

16 .

So, the set A = {an}n∈ω has infa∈A dist(a,Cε) ≥ 1
16ε. To show that

it is infinite and hidden behind Cε, it suffices to check that for any dis-
tinct n,m the midpoint 1

2an + 1
2am of [an, am] belongs to Cε. As an, am ∈

cl(C + εB), we conclude that 1
2an + 1

2am ∈ [an, am] ⊂ cl(C + εB). The in-

clusion 1
2an + 1

2am ∈ Cε will follow from the definition of Cε as soon as we

check that x∗k(
1
2an + 1

2am) ≤ supx∗k(C) + 1
8ε for every k ∈ ω.

If k /∈ {n,m}, then x∗k(xn) = x∗k(xm) = 0 and hence

x∗k(
1
2an + 1

2am) = x∗k(
1
2cn + 1

2cm) ≤ supx∗k(C).

If k = n, then

x∗k(
1
2an + 1

2am) = x∗n(1
2cn + 1

2cm) + 1
8εx
∗
n(xn) ≤ supx∗n(C) + 1

8ε.

The case k = m is analogous.

Lemma 6.3. Assume that for a closed convex subset C of a Banach
space X the closed linear subspace Z = cl(VC−VC) has infinite codimension
in X. Then for each ε > 0 there is a positively hiding convex set Cε ⊂ X
with dH(Cε, C) ≤ ε.

Proof. Using Lemma 3.3 (by analogy with the proof of Lemma 3.4), we
can reduce the proof to the case −VC ∩ VC = {0}, which we assume from
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now on. Replacing C by a shift of its closed neighborhood, we can assume
that C has non-empty interior C0 in X and 0 ∈ C0. If VC is not polyhedral in
Z = cl(VC − VC), then by Lemma 5.3, C is infinitely (and hence positively)
hiding and hence we can put Cε = C. So, we assume that VC is polyhedral
in Z. Since −VC ∩VC = {0}, the polyhedrality of VC implies that the closed
linear space Z = cl(VC−VC) is finite-dimensional and coincides with VC−VC .
Now consider X̃ = X/Z, the quotient operator q : X → X̃, and the convex
set C̃ = q(C). Since q is open, the image C̃0 = q(C0) of the interior C0 of C
coincides with the interior of C̃. Now consider the characteristic cone VC̃0

of the open convex set C̃0.
If VC̃0

contains some non-zero vector ṽ, then for any v ∈ q−1(ṽ) and
for the finite-dimensional linear subspace E = lin(Z ∪ {v}) the intersection
E ∩ C0 satisfies dH(E ∩ C0, VE∩C0) = ∞, because q(VE∩C0) ⊂ q(VC) = {0}
while q(E ∩ C0) ⊃ R̄+ṽ. Then Lemma 5.13 guarantees that C is infinitely
(and hence positively) hiding. In this case we can put Cε = C.

So, it remains to consider the case VC̃0
= {0}. In this case, Lemma 6.2

yields a positively hiding closed convex set C̃ε ⊂ X̃ with dH(C̃ε, C̃0) < ε.
Now the convex set Cε = (C + εB) ∩ q−1(C̃ε) satisfies dH(Cε, C) ≤ ε and
q(Cε) = C̃ε.

Being positively hiding, C̃ε hides a countably infinite set Ã ⊂ X̃ \ C̃ε
with infa∈Ã dist(a, C̃ε) > 0. As Z = VZ∩C0 − VZ∩C0 and q(Cε) = C̃ε, using

Lemma 5.4 we can find an infinite subset A ⊂ q−1(Ã) hidden behind Cε ⊂ C.
Since q is not expanding, we have

inf
a∈A

dist(a,C) = inf
a∈A

dist(a,C0) ≥ inf
ã∈Ã

dist(ã, C̃0) > 0.

So, Cε is positively hiding.

Our next approximation lemma will be used in the proof of the implica-
tion (4)⇒(2) of Theorem 1.1.

Lemma 6.4. Let C be a closed convex set in a Banach space X. If
dH(C, VC) = ∞, then for each ε > 0 there is a positively hiding convex
set C̃ ⊂ X with dH(C̃, C) ≤ ε.

Proof. If the closed linear subspace V ±C = cl(VC − VC) has infinite codi-
mension in X, then the existence of a positively hiding convex set Cε ⊂ X
with dH(Cε, C) < ε follows from Lemma 6.3. So, we assume that V ±C has
finite codimension in X. If VC is not polyhedral in V ±C , then C is infinitely
(and positively) hiding by Lemma 5.3. In this case we can put Cε = C. It
remains to consider the case of VC polyhedral in V ±C . Since V ±C has finite
codimension in X, VC is also polyhedral in X and hence the closed linear
subspace V ∓C = −VC ∩ VC has finite codimension in X.

Then Y = X/V ∓C is finite-dimensional. Let q : X → Y be the quotient
operator. Lemma 3.3 guarantees that dH(qC, VqC) = dH(C, VC) = ∞ and
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then qC is infinitely hiding in Y by Lemma 5.13. By Lemma 5.5, C is
infinitely (and hence positively) hiding in X. Letting Cε = C finishes the
proof.

7. Proof of Theorem 1.1. To prove the first part of Theorem 1.1,
it suffices to prove the implications (1)⇒(2)⇒(3)⇒(5)⇒(6)⇒(4)⇒(2) and
(3)⇒(1), among which (2)⇒(3) and (5)⇒(6) are trivial.

To prove (1)⇒(2), assume that C is approximatively polyhedral and
choose a polyhedral convex set P with dH(C,P ) < ∞. Lemma 2.4 implies
that VC = VP . We have P =

⋂n
i=1 f

−1
i ((−∞, ai]) for some f1, . . . , fn : X →

R and some a1, . . . , an ∈ R. It is easy to check that

VC = VP =
n⋂
i=1

f−1
i ((−∞, 0]),

which means that VC is polyhedral. By Lemma 2.6, dH(P, VC) = dH(P, VP )
<∞. Consequently,

dH(C, VC) ≤ dH(C,P ) + dH(P, VC) <∞.
The implications (3)⇒(5) and (3)⇒(1) are proved in Lemma 3.4, and

(6)⇒(4) in Lemma 4.2. The implication (4)⇒(2) follows from Lemmas 5.3,
6.3 and 6.4.

For the second part of the theorem assuming that X is finite-dimensional,
it suffices to check that (4)⇒(7)⇒(8)⇒(2). In fact, the implications (4)⇒(7)
⇒(8) are trivial, while (8)⇒(2) follows from Lemmas 5.3 and 5.13.
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