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Trace inequalities for fractional integrals
in grand Lebesgue spaces

by

Vakhtang Kokilashvili and Alexander Meskhi (Tbilisi)

Abstract. Criteria guaranteeing the trace inequality for integral transforms of vari-
ous types with fractional order in (generalized) grand Lebesgue spaces defined, generally
speaking, on quasi-metric measure spaces are established. In particular, we derive neces-
sary and sufficient conditions on a measure ν governing the boundedness for fractional
maximal and potential operators defined on quasi-metric measure spaces from Lp),θ(X,µ)
to Lq),qθ/p(X, ν) (trace inequality), where 1 < p < q < ∞, θ > 0 and µ satisfies the dou-
bling condition in X. The results are new even for Euclidean spaces. For example, from
our general results D. Adams-type necessary and sufficient conditions guaranteeing the
trace inequality for fractional maximal functions and potentials defined on so-called s-sets
in Rn follow. Trace inequalities for one-sided potentials, strong fractional maximal func-
tions and potentials with product kernels, fractional maximal functions and potentials
defined on the half-space are also proved in terms of Adams-type criteria. Finally, we
remark that a Fefferman–Stein-type inequality for Hardy–Littlewood maximal functions
and Calderón–Zygmund singular integrals holds in grand Lebesgue spaces.

Introduction. The theory of grand Lebesgue spaces introduced by
T. Iwaniec and C. Sbordone [11] is one of the intensively developing di-
rections of modern analysis. These spaces find applications in various fields,
for example, in integrability problems of the Jacobian under minimal hy-
potheses (see [11] for the details).

Structural properties of grand Lebesgue spaces were studied in [6], [2].
In [7] the authors proved that for the boundedness of the Hardy–Littlewood

maximal operator in weighted grand Lebesgue spaces L
p)
w it is necessary and

sufficient that the weight w belongs to the Muckenhoupt class Ap. The same
phenomenon was noticed by the present authors [15] for the Hilbert trans-
form. We refer to [14], [13], [20] for one-weight results regarding maximal
and singular integrals of various type in these spaces. In [17] the author stud-
ied the boundedness of the fractional integral operator in weighted grand
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Lebesgue spaces from the one-weight viewpoint. That result, for example,
gives the Sobolev inequality for fractional integrals in grand Lebesgue spaces.

Recall that two-weight characterizations for fractional maximal functions
and fractional integrals in the classical Lebesgue spaces defined on quasi-
metric measure spaces have already been known (see, e.g., [12] and references
cited therein).

Our aim is to establish criteria for the trace inequality for fractional
maximal functions and potentials in grand Lebesgue spaces defined, gener-
ally speaking, on quasi-metric measure spaces. The conditions derived are
of Adams [1] type. It should be stressed that the results are new even for
Euclidean spaces.

The paper is organized as follows. In Section 1 we give the definition,
some properties and motivations of (generalized) grand Lebesgue spaces. In
Section 2 we prove a general theorem regarding a two-weight (two-measure)
inequality for linear operators in grand Lebesgue spaces defined on quasi-
metric measure spaces. In Section 3, based on the general result, we derive
Adams-type necessary and sufficient conditions governing the trace inequal-
ities for fractional maximal functions and integrals defined on spaces of ho-
mogeneous type and, as particular cases, formulate the corresponding results
for Euclidean spaces. Section 4 is devoted to the same problem for one-sided
potentials, while in Section 5 we establish trace inequality criteria for strong
fractional maximal functions and potentials with product kernels. In Sec-
tion 6 we derive Carleson-type necessary and sufficient conditions guaran-
teeing the trace inequality for fractional maximal functions and potentials
defined on the half-space. In Section 7 we remark that Fefferman–Stein-type
inequalities hold for grand Lebesgue spaces.

1. Preliminaries. Let X := (X, d, µ) be a topological space with a
complete measure µ such that the space of compactly supported continuous
functions is dense in L1(X,µ) and there exists a nonnegative real-valued
function (quasi-metric) d on X ×X satisfying:

(i) d(x, y) = 0 if and only if x = y;
(ii) there exists a constant a1 > 0 such that d(x, y) ≤ a1(d(x, z) +

d(z, y)) for all x, y, z ∈ X;
(iii) there exists a constant a0 > 0 such that d(x, y) ≤ a0d(y, x) for all

x, y ∈ X.

We assume that the balls B(x, r) := {y ∈ X : d(x, y) < r} are mea-
surable and 0 ≤ µ(B(x, r)) < ∞ for all x ∈ X and r > 0; and that for
every neighborhood V of x ∈ X, there exists r > 0 such that B(x, r) ⊂ V.
Throughout the paper we also suppose that µ{x} = 0.



Trace inequalities for fractional integrals 161

We call the triple (X, d, µ) a quasi-metric measure space. If µ satisfies the
doubling condition µ(B(x, 2r)) ≤ cµ(B(x, r)), where the positive constant
c is independent of x ∈ X and r > 0, then (X, d, µ) is called a space of
homogeneous type (SHT). For the definition, examples and properties of
SHTs, see, e.g., [21], [3], [4].

Let 1 < p <∞ and let ϕ be a continuous positive function on (0, p− 1)
satisfying the condition limx→0+ ϕ(x) = 0. The generalized grand Lebesgue
spaces Lp),ϕ(·)(X,µ) is the class of those f : X → R for which the norm

‖f‖Lp),ϕ(·)(X,µ) = sup
0<ε<p−1

(
ϕ(ε)

µ(X)

�

X

|f(x)|p−ε dµ(x)

)1/(p−ε)

is finite.
If ϕ(x) = xθ, where θ is a positive number, then we denote Lp),ϕ(·)(X,µ)

by Lp),θ(X,µ).
It turns out that in the theory of PDEs the generalized grand Lebesgue

spaces are an appropriate setting for existence and uniqueness problems, and
also regularity problems, for various nonlinear differential equations. The
space Lp),θ (defined on domains in Rn) for arbitrary positive θ was intro-
duced in [10], where the authors studied the nonhomogeneous n-harmonic
equation divA(x,∇u) = µ. If θ = 1, then Lp),θ(X,µ) coincides with the
Iwaniec–Sbordone space, which we denote by Lp)(X,µ).

The classical Lebesgue space defined with respect to the measure µ on
X will be denoted by Lp(X,µ), where 1 < p < ∞. It is easy to check that
whenever 0 < ε ≤ p − 1 and θ1 < θ2 the following continuous embeddings
hold:

Lp(X,µ) ↪→ Lp),θ1(X,µ) ↪→ Lp),θ2(X,µ) ↪→ Lp−ε(X,µ).

Let 1 < p < ∞, 0 < α < 1/p and q be the Hardy–Littlewood–Sobolev
exponent, i.e., q = p

1−αp . It is known (see [17], [18]) that the potential
operator

(Jαf)(x) =

1�

0

f(t)

|x− t|1−α
dt, x ∈ [0, 1],

is bounded from Lp),θ1([0, 1]) to Lq),θ2([0, 1]) if θ2 ≥ qθ1/p. However, this
boundedness fails if θ2 < qθ1/p.

Finally we point out that constants (often different in the same series of
inequalities) will generally be denoted by c or C. The expression f(x) ≈ g(x)
means that c1f(x) ≤ g(x) ≤ c2f(x), where the positive constants c1 and c2
do not depend on x.

2. General result. To formulate the main result of this section we need
to introduce some definitions.
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Definition 2.1. Let 1 < p < q < ∞. Suppose that Mp,q(X,Y ) is
a class of pairs (µ, ν) of finite measures, where (X, d, µ) and (Y, ρ, ν) are
quasi-metric measure spaces. We say that a linear operator T belongs to
the class B(Mp,q(X,Y )) if T is bounded from Lp(X,µ) to Lq(Y, ν) for every
(µ, ν) ∈Mp,q(X,Y ).

Definition 2.2. Let 1 < p < q < ∞. We say that a class Mp,q(X,Y )
of couples (µ, ν) of finite measures, where (X, d, µ) and (Y, ρ, ν) are quasi-
metric measure spaces, is allowable if there exist numbers ε0 ∈ (0, q−1) and
η0 ∈ (0, p− 1) such that (µ, ν) ∈Mp,q(X,Y )⇒ (µ, ν) ∈Mp−η0,q−ε0(X,Y ).

If X = Y , then we denote Mp,q(X,Y ) by Mp,q(X).

Let 1 < r < ∞. We denote by Pr the class of all continuous functions
φ : [0, r − 1)→ (0,∞) satisfying limx→0 φ(x) = 0.

To formulate the main result of this section we need to introduce some
auxiliary functions. Let 1 < p < q < ∞ and let ε0 and η0 satisfy the
conditions 0 < ε0 < q − 1, 0 < η0 < p− 1. Let

g(η) :=
ηqε0(p− η0)

η0(q − ε0)(p− η) + ηε0(p− η0)
,

Ψ(x) := Φ(g(x))
p−x
q−g(x) ,(2.1)

where Φ ∈ Pq. Observe that g, Ψ ∈ Pp and g(η0) = ε0.

Our general theorem reads as follows:

Theorem 2.3. Let 1 < p < q < ∞ and let Mp,q(X,Y ) be an allowable
class of pairs of finite measures with the constants ε0 and η0. Assume that

T ∈ B(Mp,q(X,Y )) ∩ B(Mp−η0,q−ε0(X,Y )).

Then T is bounded from Lp),Ψ(·)(X,µ) to Lq),Φ(·)(Y, ν) for (µ, ν)∈Mp,q(X,Y ),
where Ψ and Φ are related by (2.1).

Proof. We use the interpolation argument applied in [14]. Let (µ, ν) ∈
Mp,q(X,Y ). Choose ε ∈ (ε0, q − 1). It is obvious that q−ε0

q−ε > 1. Hence,
Hölder’s inequality yields

(2.2) ‖Tf‖Lq−ε(Y,ν)) ≤
( �

Y

|Tf(x)|q−ε0 dν(x)
) 1
q−ε0 ν(Y )

ε−ε0
(q−ε0)(q−ε)

because
( q−ε0
q−ε

)′
= q−ε0

ε−ε0 .

Further, since ε0 < ε < q − 1, we have 0 < ε−ε0
(q−ε0)(q−ε) <

q−1−ε0
q−ε0 .

Consequently, by applying (2.2) we find that

(2.3) ‖Tf‖Lq−ε(Y,ν) ≤ C‖Tf‖Lq−ε0 (Y,ν), ε ∈ (ε0, q − 1),

where the positive constant C depends only on ν, q and ε0.
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By assumption,

‖Tf‖Lq(Y,ν) ≤ c‖f‖Lp(X,µ), ‖Tg‖Lq−ε0 (Y,ν) ≤ c0‖g‖Lp−η0 (X,µ),
where the positive constant c (resp. c0) does not depend on f (resp. g).

Using now the Riesz–Thorin theorem we conclude that T is bounded
from Lp−η(X,µ) to Lq−ε(Y, ν), where

1

p− η
=

t

p− η0
+

1− t
p

,
1

q − ε
=

t

q − ε0
+

1− t
q

, t ∈ (0, 1).

Moreover,

(2.4) ‖T‖Lp−η(X,µ)→Lq−ε(Y,ν) ≤ ‖T‖1−tLp(X,µ)→Lq(Y,ν)‖T‖
t
Lp−η0 (X,µ)→Lq−ε0 (Y,ν).

For given Φ ∈ Pp, we construct Ψ by (2.1). First observe that (2.3) yields

sup
ε0<ε<q−1

Φ(ε)
1
q−ε ‖Tf‖Lq−ε(Y,ν)

≤ CΦ(ε0)
1

q−ε0 ‖Tf‖Lq−ε0 (Y,ν)
(

sup
ε0<ε<q−1

Φ(ε)
1
q−ε
)
Φ(ε0)

− 1
q−ε0

≤ C sup
0<ε≤ε0

Φ(ε)
1
q−ε ‖Tf‖Lq−ε(Y,ν).

Hence, (2.4) implies that

‖Tf‖Lq),Φ(·)(Y,ν) ≤ C sup
0<ε≤ε0

Φ(ε)
1
q−ε ‖Tf‖Lq−ε(Y,ν)

≤ C sup
0<η≤η0

Φ(g(η))
1

p−η ‖f‖Lp−η(X,µ) ≤ C‖f‖Lp),Ψ(·)(X,µ).

3. Fractional maximal functions and potentials. In this section
we are interested in the fractional integral operator

(Tαf)(x) =
�

X

f(y)

µ(B(x, d(x, y)))1−α
dµ(y), 0 < α < 1.

The fractional maximal function related to Tα is given by

(Mαf)(x) = sup
B3x

1

µ(B)1−α

�

B

|f(y)| dµ(y), 0 < α < 1,

where the supremum is taken over all balls B ⊂ X containing x.

The following pointwise inequality is obvious:

(Tαf)(x) ≥ Cα(Mαf)(x), f ≥ 0.

Throughout the paper for 1 < p < q <∞ and 0 < α < 1/p we shall use
the notation

(3.1) Ap,q,α := q(1/p− α).
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Also, let D be the function defined by

(3.2) D(ε) := p− q − ε
Ap,q,α + α(q − ε)

, ε ∈ (0, q − 1].

It is easy to see that the inverse of D on (0, ε0) where ε0 is sufficiently small
is given by

B(η) = q − (p− η)Ap,q,α
1− α(p− η)

.

It is clear that

lim
ε→0

D(ε) = lim
η→0

B(η) = 0

and

(3.3) D(ε) ≈ ε, ε→ 0.

Let us recall an Adams-type [1] trace theorem for fractional integrals. We
formulate the result for spaces of homogeneous type (see [8] or [4, Ch. 6]).

Theorem A. Let 1 < p < q < ∞ and 0 < α < 1/p. Suppose that
(X, d, µ) is an SHT and ν is another measure on X. Then the operator
Tα is bounded from Lp(X,µ) to Lqν(X, ν) if and only if there is a positive
constant C such that for all balls B in X,

(3.4) ν(B) ≤ Cµ(B)Ap,q,α .

Definition 3.1. Let 1 < p < q < ∞ and 0 < α < 1/p. We say that a

pair (µ, ν) of finite measures defined on X belongs to the class M̃p,q(X) if
condition (3.4) holds.

Proposition A. Let (X, d, µ) be an SHT . Let 1 < p < q < ∞ and
0 < α < 1/p. Suppose that ν is another finite measure on X. Assume that

lim inf
µ(B)→0

ν(B)µ(B)Ap,q,α 6= 0.

Then the operator Mα (and consequently Tα) is not bounded from Lp),θ1(X,µ)
to Lq),θ2(X, ν) for 0 < θ2 < qθ1/p.

Proof. Suppose the contrary: Mα is bounded from Lp),θ1(X,µ) to
Lq),θ2(X, ν). For a ball B ⊂ X we choose ηB so that

sup
0<η≤p−1

(ηθ1µ(B))
1

p−η = (ηθ1B µ(B))
1

p−ηB .

Now we claim that (see also [17] for X = [0, 1] and dµ = dx)

(3.5) lim
µ(B)→0

ηB = 0.
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Suppose that there is a sequence {Bn} of balls and a positive number λ
such that µ(Bn)→ 0 and ηBn ≥ λ > 0 for all n ∈ N. Pick a ball Bn0 so that

µ(Bn0)1/θ1(p− 1)

e
< e−2p/λ.

It is easy to see that for x ∈ [λ/2, p− 1],

µ(Bn0)1/θ1x

e
≤ µ(Bn0)1/θ1(p− 1)

e
< e
− p
λ/2 ≤ e−p/x.

Hence, calculating the derivative of F (x) = (xθ1µ(Bn0))1/(p−x) we see that
F ′(x) < 0 for x ∈ [λ/2, p − 1]. Consequently, ηBn0 < λ. Equality (3.5) is
proved.

Further, assume that µ(B) is small and choose εB so that

1

p− ηB
− Ap,q,α
q − εB

= α.

Observe that since ηB → 0, we have εB → 0. By taking f = χB, we see that

‖f‖Lp),θ1 (X,µ) ≤ Cη
θ1/(p−ηB)
B µ(B)1/(p−ηB),

where the positive constant C does not depend on B. On the other hand,
there is a positive constant c independent of B such that

‖Mαf‖Lq),θ2 (X,ν) ≥ cε
θ2/(q−εB)
B ν(B)1/(q−εB)µ(B)α.

Consequently, the boundedness of Mα yields

(3.6) ν(B)µ(B)(α−1/(p−ηB))(q−εB)[ε
θ2/(q−εB)
B η

−θ1/(p−ηB)
B ]q−εB ≤ C.

Observe now that (3.3) implies

ε
θ2/(q−εB)
B η

−θ1/(p−ηB)
B ≈ D(εB)θ2/(q−εB)η

−θ1/(p−ηB)
B

= η
θ2

Ap,q,α(p−ηB)
− αθ2
Ap,q,α

− θ1
p−ηB

B

for small εB. If ηB tends to 0, then the exponent of the latter expression
converges to

− αθ2
Ap,q,α

+
θ2

pAp,q,α
− θ1

p
,

which is negative due to the condition θ2 < qθ1/p. Hence, the lim inf of the
left-hand side of (3.6) is equal to +∞ as ηB → 0.

This statement gives us the motivation to investigate the boundedness of
fractional maximal functions and potentials from Lp),θ1(X,µ) to Lq),θ2(Y, ν),
where 1 < p < q < ∞ and θ2 ≥ qθ1/p. Since Lq),qθ1/p(X, ν) ↪→ Lq),θ2(Y, ν)
for θ2 ≥ qθ1/p, it is enough to consider the case θ2 = qθ1/p.

Our main result in this section is the following statement:
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Theorem 3.2. Let 1 < p < q < ∞ and let 0 < α < 1/p. Suppose that
(X, d, µ) is an SHT and ν is another finite measure on X. Let θ > 0. Then
the following conditions are equivalent:

(i) the operator Tα is bounded from Lp),θ(X,µ) to Lq),qθ/p(X, ν);
(ii) the operator Mα is bounded from Lp),θ(X,µ) to Lq),qθ/p(X, ν);

(iii) condition (3.4) holds.

To prove the main theorem, introduce the function

D(ε) := D(ε)Ap,q,α+α(q−ε),

where Ap,q,α and D are defined by (3.1) and (3.2) respectively.

By using (3.3) we see that

(3.7) D(ε) ≈ εq/p.

Proof of Theorem 3.2. First of all notice that if Sα is Tα or Mα then
the boundedness of Sα from Lp),θ(X,µ) to Lq),qθ/p(X, ν) is equivalent to the
inequality

(3.8) ‖Sαf‖Lq),D̃(·)(X,ν)
≤ C‖f‖Lp),θ(X,µ),

where

(3.9) D̃(x) := D(xθ).

Indeed, it is enough to notice that (3.7) implies

(3.10) D̃(x) ≈ xθq/p, x→ 0.

(iii)⇒(i): Observe that for a given ε0 with 0 < ε0 < q − 1, there is

η0 ∈ (0, p − 1) such that (µ, ν) ∈ M̃p,q(X) ⇒ (µ, ν) ∈ M̃p−η0,q−ε0(X). In
fact, η0 is chosen so that

(3.11) Ap,q,α = Ap−η0,q−ε0,α.

Hence, the class M̃p,q(X) is allowable in the sense of Definition 2.2. By

Theorem A we have Tα ∈ B(M̃p,q(X)) ∩ B(M̃p−η0,q−ε0(X)). Observe also
that

1

p
− Ap,q,α

q
=

1

p− η0
− Ap,q,α
q − ε0

.

Assuming

g(η) = q − (p− η)Ap,q,α
1− α(p− η)

, Φ(x) = xθ

in Theorem 2.3, we have the desired conclusion. It is easy to see that in this
case Ψ(x) = D̃(x).

Since the implication (i)⇒(ii) is obvious, it remains to show (ii)⇒(iii).
It suffices to see that (3.4) holds for all balls B having sufficiently small
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measure µ(B). Let f = χB, where B ⊂ X is a ball. Then

‖f‖Lp),θ(X,µ) ≤ C sup
0<η≤p−1

ηθ/(p−η)µ(B)1/(p−η) = Cη
θ/(p−ηB)
B µ(B)1/(p−ηB),

where the positive constant C does not depend on B. Recall that ηB → 0 as
µ(B)→ 0 (see (3.5)). Thus, ηB is small for sufficiently small µ(B). Choose
εB so that

1

p− ηB
− Ap,q,α
q − εB

= α.

Hence,

‖Mαf‖Lq),D̃(·)(X,ν)
≥ cD̃(εB)1/(q−εB)ν(B)1/(q−εB)µ(B)α.

Taking into account (3.8) for Sα = Mα, we find that

ν(B)1/(q−εB)µ(B)αD̃(εB)1/(q−εB)η
−θ/(p−ηB)
B µ(B)−1/(p−ηB) ≤ C.

Observe now that (3.10) implies

D̃(εB)1/(q−εB) ≈ εθq/p(q−εB)
B ≈ D(εB)αθ+Ap,q,α/(q−εB) = η

θ/(p−ηB)
B .

Finally,

ν(B) ≤ Cµ(B)(1/(p−ηB)−α)(q−εB) = Cµ(B)Ap,q,α .

Remark 3.3. It is easy to see that if the operator Tα is bounded from
Lp),θ(X,µ) to Lq),qθ/p(X, ν), where µ is a finite measure on X, then ν is also
finite on X. Indeed, taking f ≡ 1 on X we see that

‖Tαf‖Lq),qθ/p(X,ν) ≥ C sup
0<ε≤q−1

(
εqθ/pν(X)

)1/(q−ε)
= C

(
ε
qθ/p
0 ν(X)

)1/(q−ε0).
On the other hand,

‖f‖Lp),θ(X,µ) = sup
0<η≤p−1

ηθ/(p−η) = η
θ/(p−η0)
0 .

Taking these estimates into account and using the boundedness of Tα, we
conclude that ν(X) <∞.

Let us now formulate the main result of this section for particular cases.

Let Γ be a bounded s-set of Rn (0 < s ≤ n) in the sense that there is a
Borel measure µ on Rn such that

(i) suppµ = Γ ;
(ii) there are positive constants c1 and c2 such that for all x ∈ Γ and all

r ∈ (0, diamΓ ),

(3.12) c1r
s ≤ µ(Γ (x, r)) ≤ c2rs,

where Γ (x, r) := B(x, r)∩Γ and B(x, r) is the ball in Rn with center
x and radius r.
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It is known (see [22, Theorem 3.4]) that µ is equivalent to the restriction
of the Hausdorff s-measure Hs to Γ ; we shall identify µ with Hs|Γ .

For example, connected rectifiable regular curves with respect to the
arc-length measure satisfy condition (3.12) for s = 1.

Let 0 < γ < s, and let MΓ
γ and TΓγ be the fractional maximal and

potential operators given by

(MΓ
γ g)(x) = sup

r>0

1

Hs(Γ (x, r))1−γ/s

�

Γ (x,r)

|g(y)| dHs(y), x ∈ Γ,

(TΓγ g)(x) =
�

Γ

g(y)

|x− y|s−γ
dHs(y), x ∈ Γ.

It is easy to see that Theorem 3.2 implies the following statement:

Corollary 3.4. Let 1 < p < q <∞ and let 0 < γ < s/p. Suppose that
ν is another finite measure on Γ . Let θ > 0. Then the following conditions
are equivalent:

(i) the operator TΓγ is bounded from Lp),θ(Γ,Hs) to Lq),qθ/p(Γ, ν);

(ii) the operator MΓ
γ is bounded from Lp),θ(Γ,Hs) to Lq),qθ/p(Γ, ν);

(iii) supr>0 ν(Γ (x, r))rq(γ−s/p) <∞.

If Γ = Ω is a bounded domain in Rn and (3.12) is satisfied for s = n (in
this case µ is a Lebesgue measure on Ω), then we have the next statement:

Corollary 3.5. Let 1 < p < q <∞ and let 0 < γ < n/p. Suppose that
ν is a finite measure on Ω. Let θ > 0. Then the following conditions are
equivalent:

(i) the operator TΩγ is bounded from Lp),θ(Ω, dx) to Lq),qθ/p(Ω, ν);

(ii) the operator MΩ
γ is bounded from Lp),θ(Ω, dx) to Lq),qθ/p(Ω, ν);

(iii) supr>0 ν(D(x, r))rq(γ−n/p) <∞, where D(x, r) := B(x, r) ∩Ω.

4. One-sided potentials. In this section, for 0 < α < 1, we discuss
the trace inequality for one-sided potentials

(Rαf)(x) =

x�

0

f(t)

(x− t)1−α
dt, x ∈ [0, 1],

(Wαf)(x) =

1�

x

f(t)

(t− x)1−α
dt, x ∈ [0, 1].

Let us recall the notation Ap,q,α := q(1/p − α) for 1 < p < q < ∞ and
0 < α < 1/p (see (3.1)).

The following statement is taken from [4, pp. 131–132].
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Theorem B. Let 1 < p < q < ∞ and let 0 < α < 1/p. Suppose that ν
is a measure on [0, 1]. Then the following statements are equivalent:

(i) the operator Rα is bounded from Lp([0, 1]) to Lq([0, 1], ν);
(ii) the operator Wα is bounded from Lp([0, 1]) to Lq([0, 1], ν);

(iii) there is a positive constant C such that for all a ∈ [0, 1] and h ∈
[0,min{a, 1− a}],

(4.1) ν([a, a+ h)) ≤ ChAp,q,α ;

(iv) there is a positive constant C such that for all a ∈ [0, 1] and h ∈
[0,min{a, 1− a}],

(4.2) ν([a− h, a)) ≤ ChAp,q,α .
Our result is the following statement:

Theorem 4.1. Let 1 < p < q < ∞ and let 0 < α < 1/p. Suppose that
ν is a finite measure on [0, 1]. Let θ > 0. Then the following conditions are
equivalent:

(i) the operator Rα is bounded from Lp),θ([0, 1]) to Lq),θq/p([0, 1], ν);
(ii) the operator Wα is bounded from Lp),θ([0, 1]) to Lq),θq/p([0, 1], ν);

(iii) there is a positive constant C such that for all x ∈ [0, 1] and h ∈
[0,min{a, 1− a}] condition (4.1) holds.

(iv) there is a positive constant C such that for all a ∈ [0, 1] and h ∈
[0,min{a, 1− a}] condition (4.2) holds.

Proof. The implications (iii)⇒(i) and (iv)⇒(ii) follow from Theorems
B and 2.3 because condition (4.1) (resp. (4.2)) defines an allowable class
(see Definition 2.2) of pairs of measures (dx, ν), where dx is the Lebesgue
measure. In fact, ε0 and η0 are chosen so that equality (3.11) holds. Assuming

that Φ(x) = xθ, we see that Ψ(x) = D̃(x), where D̃ is given by (3.9).
Relation (3.10) completes the proof of these implications (see also the proof
of Theorem 3.2 for the details).

Let us see that (i)⇒(iii). As in the proof of Theorem 3.2 it is enough to
show that the inequality

(4.3) ‖Rαf‖Lq),D̃(·)([0,1],ν)
≤ C‖f‖Lp),θ([0,1])

implies (4.1). Taking f = χ[a−h,a) in (4.3), where h is a small positive num-
ber, and arguing as in the proof of Theorem 3.2 we derive the desired im-
plication. Analogously, we obtain (ii)⇒(iii) by choosing f = χ[a,a+h) in the
inequality

‖Wαf‖Lq),D̃(·)([0,1],ν)
≤ C‖f‖Lp),θ([0,1]),

where h is sufficiently small. Theorem B yields the equivalence of (iii)
and (iv).
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5. Strong fractional maximal functions and potentials with
product kernels. Let R0 := I0 × J0 be a bounded rectangle in R2. For
0 < α, β < 1, define the following operators on R0:

(Mα,βf)(x, y) = sup
I×J3(x,y)

1

|I|1−α|J |1−β
� �

I×J
|f(x, y)| dx dy,

where the supremum is taken over all rectangles I × J ⊆ R0 containing
(x, y), and

(Iα,βf)(x, y) =
� �

I0×J0

f(t, τ)

|x− t|1−α|y − τ |1−β
dt dτ.

If α = β, then Mα,β and Iα,β are denoted by Mα,α and Iα,α respectively.
Let us recall the definition of the well-known Muckhenhoupt A∞ class

with respect to a single variable (see, e.g., [16, p. 182]).

Definition 5.1. Let R0 = I0 × J0 be a rectangle in R2. We say that
an integrable a.e. positive function (weight) u defined on R0 belongs to the
class A∞(I0) with respect to the first variable uniformly in the second one

(u ∈ A(x)
∞ (I0)) if there are positive constants c and δ such that

uy(E)

uy(I)
≤ c
(
|E|
|I|

)δ
for all y ∈ J0, all intervals I ⊂ I0 and all measurable sets E ⊂ I. The class

A
(y)
∞ (J0) is defined analogously.

In what follows, the space Lq),θ(Y, ν) for ν absolutely continuous, dν =
u(z)dz, will be denoted by Lq),θ(Y, u).

Theorem C ([16, Section 4.5]). Let R0 = I0 × J0 be a rectangle in R2.
Let 1 < p < q < ∞ and let 0 < α, β < 1/p. Suppose that v is a weight
function on R0. Then the following statements are equivalent:

(i) Mα,β is bounded from Lp(R0) to Lq(R0, v);
(ii) there is a positive constant C such that for all rectangles I×J ⊆ R0,

(5.1)
� �

I×J
v(x, y) dx dy ≤ C|I|q(1/p−α)|J |q(1/p−β).

Theorem D ([16, Section 4.5]). Let R0 = I0 × J0 be a rectangle in R2.

Let 1 < p < q <∞ and 0 < α, β < 1/p. Suppose that v ∈ A(x)
∞ (I0)∪A(y)

∞ (J0).
Then the following statements are equivalent:

(i) Iα,β is bounded from Lp(R0) to Lq(R0, v);
(ii) condition (5.1) holds.

Definition 5.2. Let R0 be a bounded rectangle in R2. We say that
a pair (dx, v(x)dx), where dx is the Lebesgue measure and v is a weight
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function on R0, belongs to the classMp,q(R0) (1 < p < q <∞, 0 < α < 1/p)
if there is a positive constant C such that for all rectangles R ⊂ R0,

(5.2)
� �

R

v(x, y) dx dy ≤ C|R|Ap,q,α ,

where Ap,q,α is defined by (3.1).

The main statements of this section are as follows:

Theorem 5.3. Let R0 = I0×J0 be a rectangle in R2. Let 1 < p < q <∞
and 0 < α < 1/p. Suppose that θ is a positive number. Assume that v is a
weight function on R0. Then the following statements are equivalent:

(i) Mα,α is bounded from Lp),θ(R0) to Lq),qθ/p(R0, v);
(ii) there is a positive constant C such that for all rectangles R ⊆ R0,

condition (5.2) holds.

Theorem 5.4. Let R0 = I0×J0 be a rectangle in R2. Let 1 < p < q <∞
and 0 < α < 1/p. Suppose that v ∈ A(x)

∞ (I0) ∪ A(y)
∞ (J0). Then the following

statements are equivalent:

(i) Iα,α is bounded from Lp),θ(R0) to Lq),θq/p(R0, v);
(ii) condition (5.2) holds.

Proof of Theorem 5.3. Sufficiency is a direct consequence of Theorems
2.3 and C. Indeed, observe that if (dx, v(x)dx)∈Mp,q(R0), then (dx, v(x)dx)
∈ Mp−η0,q−ε0(R0) for some positive numbers ε0 and η0 (see also the proof
of Theorem 3.2 for the details).

Necessity. We show that (5.2) holds for all rectangles R ⊆ R0 having
sufficiently small Lebesgue measure |R|. Take f = χR. Then

‖f‖Lp),θ(R0)
≤ C sup

0<η≤p−1
ηθ/(p−η)|R|1/(p−η) = Cη

θ/(p−ηR)
R |R|1/(p−ηB),

where the positive constant C does not depend on R. Observe that the
inequality similar to (3.5) also holds for rectangles R. Hence ηR is a small
positive number when |R| is small. Let us choose εR so that

1

p− ηR
− Ap,q,α
q − εR

= α.

Hence,

‖Mα,αf‖Lq),D̃(·)(Y,v)
≥ cD̃(εR)1/(q−εR)

( � �
R

v(x, y) dx dy
)1/(q−εR)

|R|α,

where D̃ is defined by (3.9). Using the two-weight inequality for Mα,α we
obtain the desired result.

The proof of Theorem 5.4 is similar to that of Theorem 5.3; therefore it
is omitted.
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6. Potentials on the half-space. Let (X, d, µ) be an SHT with finite
measure µ. We introduce the notation

X̂ := X × [0,∞), B̂ := B × [0, 2 · radius(B)),

where B is a ball in X.
In this section, for 0 < α < 1, we establish trace inequality criteria for

the generalized potential operator

(T̂αf)(x, t) =
�

X

f(y)µ
(
B(x, d(x, y) + t)

)α−1
dµ(y), (x, t) ∈ X̂,

in grand Lebesgue spaces.
Together with T̂α we are interested in the appropriate fractional maximal

operator:

(M̂αf)(x, t) = sup µ(B)α−1
�

B

|f(y)| dµ(y),

where the supremum is taken over all balls B ⊂ X containing x and of
radius greater than t/2.

For the following statement we refer to [9] (see also [4, Section 6.4]).

Theorem E. Let 0 < α < 1/p and let 1 < p < q < ∞. Then the
following statements are equivalent:

(i) T̂α is bounded from Lp(X,µ) into Lq(X̂, β);

(ii) M̂α is bounded from Lp(X,µ) into Lq(X̂, β);
(iii) there exists a constant C such that for all balls B ⊂ X,

(6.1) β(B̂) ≤ Cµ(B)Ap,q,α ,

where the constant Ap,q,α is defined by (3.1).

Our result is the following statement:

Theorem 6.1. Let 0 < α < 1/p and 1 < p < q < ∞. Suppose that

β is a finite measure on B̂. Let θ > 0. Then the following statements are
equivalent:

(i) T̂α is bounded from Lp),θ(X,µ) into Lq),θq/p(X̂, β);

(ii) M̂α is bounded from Lp),θ(X,µ) into Lq),θq/p(X̂, β);
(iii) condition (6.1) holds.

Proof. The implication (i)⇒(ii) follows from the pointwise inequality

M̂α(x, t) ≤ cT̂α(x, t), (x, t) ∈ X̂.
The fact that (iii)⇒(i) follows from Theorems 2.3 and E because in

this case the class of measure pairs (µ, β) satisfying (6.1) is allowable (see
Definition 2.2). Arguing as in the proof of Theorem 3.2 we derive the desired
result.
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Let us see check (ii)⇒(iii). For this it is enough to show that (6.1) holds

for all balls B with µ(B) small. Take fB = χB. Then (M̂αfB)(x, t) ≥ µ(B)α

for (x, t) ∈ B̂. Now the result follows by substituting fB in the two-weight

inequality for M̂α and arguing as in the proof of Theorem 3.2; the details
are omitted.

Let Γ be a bounded s-set in Rn and let Hs be an appropriate Hausdorff
s-measure on Γ (see Section 3 for the details). Let 0 < γ < n.

Define

(M̂Γ
γ f)(x, t) = supHs

(
D
)1−γ/s �

D

|f(y)| dHs(y),

where the supremum is taken over all balls D ⊂ Γ (recall that balls D in Γ
have the form B ∩ Γ , where B is a ball in Rn) containing x and of radius
greater than t/2. Also, let

(T̂Γγ f)(x, t) =
�

Γ

f(y)(|x− y|+ t)γ−s dHs(y).

Corollary 6.2. Let 0 < γ < s/p and let 1 < p < q <∞. Suppose that

β is a finite measure on Γ̂ . Let θ > 0. Then the following statements are
equivalent:

(i) T̂Γγ is bounded from Lp),θ(Γ, µ) into Lq),θq/p(Γ̂ , β);

(ii) M̂Γ
γ is bounded from Lp),θ(Γ, µ) into Lq),θq/p(Γ̂ , β);

(iii) there exists a constant C such that for all balls D ⊂ Γ ,

β(D̂) ≤ Cµ(D)q(1/p−γ/s).

7. Remarks on the Fefferman–Stein-type inequality. Let us re-
call the well-known Fefferman–Stein [5] inequality for the Hardy–Littlewood
maximal operator

(Mf)(x) = sup
B3x

1

|B|

�

B

|f(y)| dy, x ∈ Rn.

Theorem F. Let 1 < p < ∞. Then there is a positive constant c such
that for all f and all nonnegative locally integrable v,�

Rn
(Mf)(x)pv(x) dx ≤ c

�

Rn
|f(x)|p(Mv)(x) dx.

Further, let

(Kf)(x) =
�

Rn
k(x, y)f(y) dy

be a Calderón–Zygmund singular operator. Then the following statement
holds (see [19]):
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Theorem G. Let 1 < p < ∞. There is a positive constant c such that
for all functions f and all nonnegative locally integrable v,

�

Rn
|(Tf)(x)|pv(x) dx ≤

�

Rn
|f(x)|p(M[p]+1v)(x) dx,

where [p] is the largest integer less than or equal to p and Mk is the kth
iterate of the operator M. Moreover, the exponent [p] + 1 is sharp.

Let Ω be a bounded domain in Rn and let us introduce the maximal
operator defined on Ω,

MΩg(x) = sup
B3x

1

|B|

�

Ω∩B
|g(y)| dy, x ∈ Ω,

where the supremum is taken over all balls B in Rn containing x.

For a weight function V on Ω, set

VΩ(x) :=

{
V (x) if x ∈ Ω,

0 otherwise.

Proposition B. Let 1 < p <∞ and θ > 0. Suppose that Ω is a bounded
open set in Rn. Then:

(i) there is a positive constant c such that for all f and all nonnegative
integrable V defined on Ω,

‖MΩf‖Lp),θ(Ω,V ) ≤ c‖f‖Lp),θ(Ω,MΩV );

(ii) there is a positive constant c such that for all f and all nonnegative
integrable V defined on Ω,

‖Tf‖Lp),θ(Ω,VΩ) ≤ c‖f‖Lp),θ(Ω,M[p]+1VΩ).

Proof. (i) Let us extend f outside Ω by 0.

First observe that in the definition of MΩ the supremum can be taken
over all balls with |B| ≤ a, where the constant a depends only on diam(Ω).

Further, Theorem F yields

‖MΩf‖Lp(Ω,VΩ) ≤ c‖f‖Lp(Ω,MΩVΩ),

‖MΩf‖Lp−ε0 (Ω,VΩ) ≤ c‖f‖Lp−ε0 (Ω,MΩVΩ),

where ε0 is a small positive number, and the constant c is independent of f
and V .

By using the Riesz–Thorin theorem we find that

‖MΩf‖Lp−ε(Ω,V ) ≤ C‖f‖Lp−ε(Ω,MΩV ), 0 < ε < ε0,

where the positive constant C is independent of f , V and ε.
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Hence, since V is integrable on Ω we have (see also the proof of Theorem
2.3 for the details)

‖MΩ
α f‖Lp),θ(Ω,V ) ≤ C sup

0<ε<ε0

(
εθ

�

Ω

(MΩf(x))p−εV (x) dx
)1/(p−ε)

≤ C sup
0<ε<ε0

(
εθ

�

Ω

|f(y)|p−ε(MΩV )(y) dy
)1/(p−ε)

≤ C‖f‖Lp),θ(Ω,MΩV ).

(ii) First observe that

M[p−ε]+1VΩ(x) ≤M[p]+1VΩ(x), x ∈ Ω.
Hence, taking Theorem G into account we conclude that

‖Tf‖Lp(Ω,VΩ) ≤ c‖f‖Lp(Ω,M[p]+1VΩ),

‖Tf‖Lp−ε0 (Ω,VΩ) ≤ c‖f‖Lp−ε0 (Ω,M[p]+1VΩ),

for all f and nonnegative integrable V with support in Ω. Using the same
interpolation arguments, we can conclude that

‖Tf‖Lp−ε(Ω,VΩ) ≤ C‖f‖Lp−ε(Ω,M[p]+1VΩ),

where the positive constant C is independent of 0 < ε < ε0, f and V . Argu-
ing as in the case of the maximal operator we get the desired conclusion.
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[19] C. Pérez, Weighted norm inequalities for singular integral operators, J. London
Math. Soc. 49 (1994), 296–308.

[20] S. Samko and S. M. Umarkhadziev, On Iwaniec–Sbordone spaces on sets which may
have infinite measure, Azerb. J. Math. 1 (2010), 67–84.
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