
STUDIA MATHEMATICA 210 (3) (2012)

Almost ball remotal subspaces in Banach spaces

by

Tanmoy Paul (Bangalore)

Abstract. We investigate almost ball remotal and ball remotal subspaces of Banach
spaces. Several subspaces of the classical Banach spaces are identified having these prop-
erties. Some stability results for these properties are also proved.

1. Introduction. We work with complex scalars. The closed unit ball
and the unit sphere of a Banach space X are denoted by BX and SX re-
spectively. By a subspace of a Banach space we always mean a closed sub-
space. For a closed and bounded set M ⊆ X, the farthest distance map
φM is defined as φM (x) = sup{‖z − x‖ : z ∈ M}, x ∈ X. For x ∈ X, let
FM (x) = {z ∈M : ‖z−x‖ = φM (x)}, the set of points ofM farthest from x.
Note that this set may be empty. Let R(M) = {x ∈ X : FM (x) 6= ∅}.

We call a closed bounded set M remotal [Asp, DeZi, Ede] if R(M) = X,
densely remotal if R(M) = X, and almost remotal if R(M) is a residual set,
i.e., contains a dense Gδ set in X.

Definition 1.1. Let us call a subspace Y of X

(a) ball remotal (BR) in X if BY is remotal.
(b) densely ball remotal (DBR) in X if BY is densely remotal.
(c) almost ball remotal (ABR) in X if BY is almost remotal.

The notions (a) and (b) have been studied recently in [BLR, BP, BPR1,
BPR2]. In this paper we concentrate on (c).

In [BLR, BP, BPR1, BPR2] the authors identified some other subspaces
of Banach spaces which are BR/DBR. In this paper, we investigate whether
any of these DBR subspaces are actually ABR.

In Section 2, we obtain necessary and/or sufficient conditions for a sub-
space to be ABR. In the process, we note that several subsets of certain
Banach spaces are residual, many of which are of independent interest.
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The main result of Section 2 is: If X is Hahn–Banach smooth and any
extreme point of BX∗ is norm attaining, then X is ABR in X∗∗.

Among other things, we show that:

• c0 is ABR in `∞.
• K(H) is ABR in L(H), where H is a Hilbert space.
• If X is a reflexive space having the approximation property then
K(X, c0) is ABR in L(X, `∞).

Section 3 is devoted to identifying some closed subspaces of classical
Banach spaces which are ABR. A special attention is paid to M -ideals of
function spaces. The main result of this section is: If D ⊆ K is a closed
set and A ⊆ C(K) is a subspace such that (A,D) is an ‘Urysohn pair’
(Definition 3.1), then {f ∈ A : f |D = 0} is ABR in A. A few consequences
of this result are also derived.

In Section 4, we discuss various stability results.
[HWW] is a standard reference for any unexplained terminology.

2. Almost ball remotality in Banach spaces. As noted in [BLR], it
follows from known results that:

• A reflexive subspace is ABR [Lau, Theorem 2.3]. Hence in reflexive
Banach spaces, all subspaces are ABR.
• If X∗ is an Asplund space with a LUR dual norm, then any subspace

of X∗ is ABR [Ziz]. Such a subspace need not be reflexive.
• If X has the Radon–Nikodým Property (RNP), then w∗-closed sub-

space Y of X∗ is ABR [DeZi, Proposition 3].

[Lau, Theorem 2.3] and [BPR1, Corollary 4.14] imply

Theorem 2.1. For a Banach space X, the following are equivalent:

• X is reflexive.
• X is an ABR subspace of any superspace.
• X is an ABR subspace of any superspace in which it embeds isometri-
cally as a hyperplane.

From [BLR, BP, BPR1, BPR2], it is clear that the problem of ball re-
motality becomes slightly simpler for so-called (∗)-subspaces.

Definition 2.2 ([BP]). Let Y be a subspace of X. We call Y a (∗)-sub-
space of X if φBY (x) = ‖x‖+ 1 for all x ∈ X.

A list of natural examples of (∗)-subspaces can be found in [BLR]. A de-
tailed discussion of (∗)-subspaces is in [BP, Section 2] and [P, Chapter 2].

A major step in the proof of [Lau, Theorem 2.3] is the following result
(see also [DGZ, Proposition II.2.7]).
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Theorem 2.3. For any bounded set C ⊆ X, the set

G(C) :=
{
x ∈ X : sup

z∈C
Rex∗(x− z) = φC(x) for all x∗ ∈ ∂φC(x)

}
is a dense Gδ set in X, where ∂φC(x) is the subdifferential of φC at x, i.e.,

∂φC(x) = {x∗ ∈ X∗ : Rex∗(z − x) ≤ φC(z)− φC(x) for all z ∈ X}.
Proposition 2.4. Let Y be a subspace of X. Then R(BY ) ⊆ {x ∈ X :

supz∈BY Rex∗(x− z) = φBY (x) for some x∗ ∈ ∂φBY (x)}.
Proof. Let x ∈ R(BY ), and let x∗ and z be as in [BP, Theorem 2.5(b)].

Then, for any y ∈ X,

Rex∗(y − x) + φBY (x) = Rex∗(y − x) + Rex∗(x+ z)

= Rex∗(y + z) ≤ ‖y + z‖ ≤ φBY (y).

Therefore, Rex∗(y − x) ≤ φBY (y)− φBY (x). Hence, x∗ ∈ ∂φBY (x).

Remark 2.5. Clearly, the right hand set in the proposition contains
G(BY ), and hence is residual.

We now find conditions on Y that make it ABR.

Definition 2.6. Let X be a Banach space. For x ∈ X, we set

D(x) = {x∗ ∈ SX∗ : x∗(x) = ‖x‖}.
For a subspace Y of X, we define

AY := {x∗ ∈ SX∗ : ‖x∗|Y ‖ = 1},
NY := {x∗ ∈ SX∗ : x∗(y) = 1 for some y ∈ SY }.

As noted in the proof of [BP, Theorem 2.3], for a (∗)-subspace Y of X,
G(BY ) = {x ∈ X : D(x) ⊆ AY }. In fact, we have

Theorem 2.7 ([BP, Theorem 2.3]). A subspace Y of X is a (∗)-subspace
if and only if the set {x ∈ X : D(x) ⊆ AY } is a dense Gδ set in X.

Now from [BLR, Proposition 2.10], it follows that if Y is a (∗)-subspace
of X, then

(2.1) R(BY ) = {x ∈ X : D(x) ∩NY 6= ∅} ⊆ {x ∈ X : D(x) ∩AY 6= ∅}.
Hence we have the following necessary and sufficient condition for a sub-

space to be (∗) and ABR.

Definition 2.8. For a Banach space X, let NA(X) = {x∗ ∈ X∗ : there
exists x ∈ SX such that |x∗(x)| = ‖x∗‖} and NA1(X) = NA(X) ∩ SX∗ .

Theorem 2.9. A subspace Y of X is (∗) and ABR if and only if {x ∈ X :
D(x) ∩NY 6= ∅} is a residual set.

If Y is a (∗)-subspace and AY ∩NA(X) = NY , then Y is ABR.
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Proof. To prove the second statement, it is enough to observe that R(BY )
= {x ∈ X : D(x) ∩ NY 6= ∅} = {x ∈ X : D(x) ∩ AY 6= ∅}, which follows
from the hypothesis. The last set contains G(BY ).

When we consider X as a subspace of X∗∗, then

AX = {x∗∗∗ ∈ SX∗∗∗ : ‖x∗∗∗|X‖ = 1} ⊇ SX∗ .
Therefore, X is a (∗)-subspace of X∗∗.

Definition 2.10. We call a Banach space X Hahn–Banach smooth
(HBS for short) if every x∗ ∈ X∗ has a unique norm-preserving extension
to all of X∗∗; and weakly Hahn–Banach smooth (wHBS for short) if every
x∗ ∈ NA(X) has a unique norm-preserving extension to all of X∗∗.

The next theorem is well known but we recapture it in a completely
different set-up, which leads to a few interesting observations.

Theorem 2.11. If X is HBS, then the set NA(X∗) is residual in X∗∗.

Proof. Since X is HBS, we have AX = SX∗ . Moreover, G(BX) =
{x∗∗ ∈ X∗∗ : D(x∗∗) ⊆ AX} is a dense Gδ in X∗∗. Now, if x∗∗ ∈ G(BX),
then D(x∗∗) ⊆ SX∗ , and hence x∗∗ ∈ NA(X∗). It follows that G(BX) ⊆
NA(X∗).

Remark 2.12. It is not necessary the case that G(BX) = NA(X∗). For
example, c0 is HBS. Consider 1 ∈ `∞. Clearly for any Banach limit Λ ∈ `∗∞,
we have Λ ∈ D(1), but Λ /∈ X∗.

Corollary 2.13. If X is HBS, then {x∗∗ ∈ X∗∗ : ‖x∗∗‖ = d(x∗∗, X)}
is of first category.

The following observations come essentially from [BLR]. Let

NA2(X) = {x∗∗ ∈ X∗∗ : x∗∗(x∗) = ‖x∗∗‖ for some x∗ ∈ NA1(X)}.
Clearly, X ⊆ NA2(X) ⊆ NA(X∗).

Proposition 2.14. If X is wHBS, then R(BX) = NA2(X).

Proof. If x∗∗0 ∈ NA2(X), then there exist x∗ ∈ SX∗ and x ∈ SX such
that x∗∗0 (x∗) = ‖x∗∗0 ‖ and x∗(x) = 1. Hence −x ∈ BX is farthest from x∗∗0 .

Conversely, suppose x∗∗0 ∈ SX∗∗ has a farthest point −x ∈ BX so that
‖x∗∗0 + x‖ = 2. Let x∗∗1 = (x∗∗0 + x)/2 and x∗∗∗ ∈ D(x∗∗1 ). Let x∗ = x∗∗∗|X .
Then x∗∗∗ ∈ D(x∗∗0 ) and x∗ ∈ D(x). Since X is wHBS, we have x∗∗∗ = x∗,
and hence x∗∗0 ∈ NA2(X).

Remark 2.15. Since every wHBS space is Asplund, it is now an ob-
vious consequence of Proposition 2.14 that if X is wHBS then X is ABR
in X∗∗ ⇔ NA2(X) is a residual ⇔ NA2(X) ∩ Z is a residual, where Z =
{x∗∗ ∈ X∗∗ : the norm is Fréchet differentiable at x∗∗}. Also X∗∗ being a
w∗-Asplund space, if x∗∗ ∈ NA2(X) ∩ Z then D(x∗∗) is w∗-continuous and



Almost ball remotal subspaces in Banach spaces 213

hence x∗∗ ∈ G(BX). As X∗ has RNP, it is now evident that D(x∗∗) ∈
ext(BX∗) and in addition D(x∗∗) ∈ NA(X).

Corollary 2.16. If X is HBS as well as ball remotal in its bidual, then
X is reflexive.

Theorem 2.17. If X is HBS and any extreme point of BX∗ is in NA(X),
then X is ABR in X∗∗.

Proof. Combining Theorem 2.11 and Proposition 2.14, it suffices to show
that NA2(X) = NA(X∗).

Since X is HBS, X∗ has the RNP. If x∗∗∈NA(X∗), then Z={x∗ ∈ BX∗ :
|x∗∗(x∗)| = ‖x∗∗‖} is a nonempty closed bounded convex set, which, by RNP,
has a denting point, say z∗0 . But Z is a face of BX∗ , and hence z∗0 is an extreme
point of BX∗ . By hypothesis, z∗0 ∈ NA(X). It follows that x∗∗ ∈ NA2(X).

Definition 2.18. A subspace Y of a Banach space X is an M -ideal in
X if there is a projection P on X∗ with ker(P ) = Y ⊥ and for all x∗ ∈ X∗,
‖x∗‖ = ‖Px∗‖+‖x∗−Px∗‖. A Banach space X is said to be M -embedded if
X is anM -ideal in X∗∗; [HWW] is a well known reference for these concepts.
It is well known that M -embedded spaces are HBS.

A Banach space X is an L1-predual if X∗ is isometrically isomorphic to
L1(µ) for some measure µ. It is known that if X is an L1-predual, then any
extreme point of BX∗ is in NA(X).

Corollary 2.19.

• If X is M-embedded and any extreme point of BX∗ is in NA(X), then
X is DBR in X∗∗.
• If X is HBS and an L1-predual, then X is ABR in X∗∗.

Notation. Let X, Y be Banach spaces.

• X ⊗̌ Y represents the injective tensor product of X and Y .
• F(X,Y ) (resp. K(X,Y ), L(X,Y )) represents the space of all finite

rank (resp. compact, bounded linear) operators from X to Y .

It is well known that K(H)∗∗ = L(H) and K(H) is an M -embedded
space [HWW, Example III.1.4].

Example 2.20.

(a) c0 is ABR in `∞.
(b) K(H) is ABR in L(H).
(c) Let X be a reflexive Banach space with the approximation property

(AP). Then K(X, c0) is an M -embedded space which is ABR in its
bidual L(X, `∞).

(d) Let X be a reflexive space with AP. Then K(X, `p), for 1 < p <∞,
is HBS and also ABR in its bidual L(X, `p).
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Proof. (a) c0 is M -embedded as well as an L1-predual.
(b)X = K(H) isM -embedded, andX∗ = B1(H), the space of trace class

operators. By [No], any extreme point of BB1(H) is a rank one operator, and
hence is in NA(X). This completes the proof.

(c) That K(X, c0) is anM -ideal in L(X, `∞) follows from [Fin]. From the
hypothesis, X∗ has AP, hence K(X,Y ) = F(X,Y ) for any Banach space Y
[LiCh, p. 17], and hence K(X,Y )∗ = (X∗ ⊗̌ Y )∗ [LiCh, p. 18]. Now due to a
result Grothendieck [DU, p. 231], Φ ∈ (X∗ ⊗̌Y )∗ if and only if there exists a
regular Borel measure µ on BX ×BY ∗ such that for all x∗ ∈ X∗ and y ∈ Y ,

Φ(x∗ ⊗ y) =
�

BX×BY ∗
x̂(x∗)y∗(y) dµ(x, y∗).

And ‖Φ‖ = |µ|(BX ×BY ∗).
Hence an extreme point of (X∗⊗̌Y )∗ is of the form αδx ⊗ βδy∗ where

y∗ ∈ ext(BY ∗). Since in our case Y = c0 and ext(B`1) ⊆ NA(c0), it follows
that ext(BK(X,c0)∗) ⊆ NA(K(X, c0)). It remains to prove that K(X, c0)

∗∗ =
L(X, `∞). This follows from [Fab, Theorems 16.41, 16.42], since X has both
RNP and AP.

(d) HBS-ness of K(X, `p) follows from [HWW, p. 44]. Arguing simi-
larly to (c), it can be proved that ext(BK(X,`p)∗) ⊆ NA(K(X, `p)) and also
K(X, `p)

∗∗ = L(X, `p).

Remark 2.21. Note that the spaces in (d) above are examples of the
so-called HB-spaces [HWW, p. 44], which are HBS but not necessarily M -
ideals.

For X = K(H), the set G(BX) is a dense Gδ subset of L(H), closed
under scalar multiplication, contained in the set of norm attaining operators
in L(H) and not containing unitary operators. The last observation follows
from the fact that if U ∈ L(H) is a unitary, then span{D(U)} = L(H)∗ (see
[AW]), hence D(U) 6⊆ SK(H)∗ .

3. Almost ball remotality in some classical Banach spaces. Let
us begin with the space C(K) of all complex-valued continuous functions on
a compact Hausdorff space K, and its subspaces.

Let us recall the definition of an ‘Urysohn pair’ [BPR2].

Definition 3.1. Let A be a subspace of C(K) and D ⊆ K a closed set.
We say that (A,D) is an Urysohn pair if the following property holds:

For any t0 ∈ K\D, there exists f ∈ A such that ‖f‖∞=1, f |D ≡ 0
and f(t0) = 1.

Recall the following fact:

Proposition 3.2 ([BPR2, Proposition 2.2]). Let (A,D) be an Urysohn
pair and Y = {f ∈ A : f |D = 0}. Then
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• for any f ∈ A, φBY (f) = max{‖f |D‖∞, ‖f |K\D‖∞ + 1},
• f ∈ R(BY ) if and only if either φBY (f) = ‖f |D‖∞ or there exists
t ∈ K \D such that |f(t)| = ‖f |K\D‖∞.

We now prove

Theorem 3.3. If (A,D) is an Urysohn pair, then Y ={f ∈A : f |D=0}
is an ABR subspace of A.

Proof. By Theorem 2.3, it is enough to prove that G(BY ) ⊆ R(BY ).
Let f ∈ G(BY ). By Proposition 3.2, it suffices to assume φBY (f) =

‖f |K\D‖∞ + 1 > ‖f |D‖∞. Let t ∈ K \D and α ∈ T be such that αf(t) =
|f(t)| = ‖f |K\D‖∞. By Proposition 3.2, it is enough to show that t ∈ K \D.

Claim. αδt ∈ ∂φBY (f).

For g ∈ A,
Reα[g(t)− f(t)] ≤ |g(t)| − |f(t)| ≤ ‖g|K\D‖∞ − ‖f |K\D‖∞

= ‖g|K\D‖∞ + 1− (‖f |K\D‖∞ + 1)

≤ φBY (g)− φBY (f).

This proves the claim. By definition of G(BY ), it now follows that

sup
h∈BY

Reα[f(t)− h(t)] = φBY (f).

If t ∈ D, then

‖f |D‖∞ ≥ |f(t)| = sup
h∈BY

Reα[f(t)− h(t)] = φBY (f) > ‖f |D‖∞,

a contradiction. Therefore, t ∈ K \D.

Combining Theorem 3.3 with the results of [BPR2], we get

Corollary 3.4. In each of the following cases, every M -ideal in X is
an ABR subspace.

• X = C(K).
• X = C0(L), the space of all C-valued continuous functions on a locally
compact Hausdorff space L “vanishing at infinity”.
• X = A, the disc algebra, i.e., the space of continuous functions on the
closed unit disc D that are analytic on the open unit disc.

Combining Theorem 3.3 with [BPR2, Theorem 2.11], we get

Theorem 3.5. Let K be a compact Hausdorff space and A ⊆ C(K) a
subspace such that every µ ∈ A⊥ is nonatomic. If D ⊆ K is a closed set such
that |µ|(D) = 0 for all µ ∈ A⊥, then

Y = {a ∈ A : a|D ≡ 0}
is an M -ideal as well as an ABR subspace of A.
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Let now Y be an arbitrary subspace of C(K). We define

K0 := {t ∈ K : |g(t)| = 1 for some g ∈ SY },

K ′ :=
{
t ∈ K : sup

g∈SY
|g(t)| = 1

}
.

Theorem 3.6. Let K be a compact metric space, Y a subspace of C(K)
and K0,K

′ as defined above.

(a) If K0 is residual, then Y is (∗) and ABR.
(b) If Y is a (∗) and DBR subspace of C(K) and K ′ \ K0 is at most

countable, then Y is ABR.
(c) If Y is a (∗)-subspace of C(K) and K0 = K ′, then Y is ABR.

Proof. (a) If K0 is residual, then by [BPR1, Theorem 2.5], Y is a (∗)-
subspace of C(K), and there are open dense sets Un such that

⋂
n Un ⊆ K0.

Since Y is a (∗)-subspace, from [BPR1, Proposition 2.8] we have R(BY ) =
{f ∈ C(K) : f(t) = ‖f‖∞ for some t ∈ K0}.

For each n, let Zn = {f ∈ C(K) : f |Ucn = 0}. Then Zn is a (∗)-subspace
[BPR1, Theorem 2.5], an M -ideal [HWW, Example 1.4(a)], and hence an
ABR subspace of C(K) (Corollary 3.4) and we have

R(BZn) = {f ∈ C(K) : f(t) = ‖f‖∞ for some t ∈ Un}.
Hence T =

⋂
nR(BZn) is a residual set.

Since K is metrizable, C(K) is separable. Hence G := {f ∈ C(K) :
‖ · ‖∞ is Gâteaux differentiable at f} is a dense Gδ subset of C(K) [Ph,
Theorem 1.20]. And if f ∈ G, then {t ∈ K : |f(t)| = ‖f‖∞} is a singleton
[DGZ, Example 1.6(b)]. Let W = G ∩ T . Clearly W is residual in C(K).

Claim. W ⊆ R(BY ).

Let f ∈ W . There exists a unique s ∈ K such that |f(s)| = ‖f‖∞. It
follows that s ∈ Un for all n, and hence s ∈ K0. This proves that f ∈ R(BY ).

(b) Since Y is a (∗) and DBR subspace, from [BPR1, Theorems 2.5
and 2.13] it follows that K ′ is a residual set, and K0 is dense in K. Let
K ′ \K0 = {tn}. Since K0 is dense, the points tn are not isolated. Therefore,
K0 = K ′ \ {tn} is also residual. The result now follows from (a).

Example 3.7. If K is a countable compact space, then a (∗)-subspace
of C(K) is DBR if and only if it is ABR.

Theorem 3.8. Let {µn} be a countable family of regular Borel measures
on K. Let S(µn) denote the support of µn. Suppose that

• for each n ≥ 1, K \ S(µn) is dense in K, and
•
⋃
n S(µn) is a closed subset of K.

Then Y =
⋂
n kerµn is an ABR subspace of C(K).
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Proof. Argue as in [BPR1, Theorem 5.7].

Theorem 3.9.

(a) For a (∗)-subspace of c0, DBR ⇔ ABR ⇔ BR.
(b) For a (∗)-subspace of `∞, DBR ⇔ ABR.

Proof. (a) follows from [BP, Corollary 3.3].
(b) It follows from the proof of [BP, Theorem 3.2] that if Y is (∗) and

DBR in `∞, then R := {x ∈ `∞ : ‖x‖∞ = |xk| for some k ∈ N} ⊆ R(BY ).
It is easy to see that R = R(Bc0) [BLR, Corollary 2.15] and we have

already shown that c0 is ABR in `∞ (Example 2.20(a)).

Theorem 3.10. Let a Banach space X be an `1-predual, that is, X∗ is
isometrically isomorphic to `1. Then X is ABR in X∗∗.

Proof. Since X∗ = `1, X can be assumed to be a subspace of `∞. Thus,
by Theorem 3.9 and [BP, Theorem 3.2], it is enough to prove that for each
n ∈ N, the coordinate functional en is in NA(X). But since en ∈ ext(B`1)
and X is an `1-predual, this is indeed the case.

It can be proved that there are uncountably many nonisometric Banach
spaces X such that X∗ is isometric to `1. Note that one such space, namely c,
is not HBS.

Proposition 3.11.

(a) Any w∗-closed subspace of `∞ is ABR.
(b) If c0 ⊆ Y ⊆ `∞, then Y is (∗) and ABR in `∞.
(c) If Λ ∈ ext(B`∗∞), then Y = ker Λ is ABR in `∞.
(d) If Λ ∈ `∗∞ with |Λ(en)| < 1

2‖Λ|c0‖ for all n, where {en} ⊆ c0 are the
canonical basis vectors, then Y = kerΛ is (∗) and ABR in `∞.

Proof. To prove (a)–(c) argue as in [BP, Theorem 3.13].
(d) Simply use the arguments of [P, Theorem 3.2.20] and the results in

Theorem 3.9.

4. Stability results

Notation. Let (Xn) be a family of Banach spaces. For 1 ≤ p ≤ ∞,
denote X̃p =

⊕
pXn, X̃0 =

⊕
c0
Xn.

For any Banach space X, we simply write c0(X) or `∞(X) in place of⊕
c0
X and

⊕
`∞
X respectively. We also denote by c(X) the space of all

convergent sequences in X.
Let K be a compact Hausdorff space and X a Banach space. Then

C(K,X) denotes the space of all X-valued continuous functions on K.
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Let (Ω,Σ, µ) be a complete probability space. For 1 ≤ p < ∞, let
Lp(µ,X) denote the space of all Bochner integrable functions f with	
Ω ‖f(t)‖p dµ(t) <∞ and define ‖f‖p = (

	
Ω ‖f(t)‖p dµ(t))1/p.

If p =∞, we say f ∈ L∞(µ,X) if inf{a ≥ 0 : µ{t ∈ Ω : ‖f(t)‖ > a} = 0}
is finite and in that case we define this infimum to be the norm of f .

We first prove the stability of the (∗)-property under various sums of
Banach spaces.

Theorem 4.1. Let {Xn : n ∈ N} be a family of Banach spaces and
Yn ⊆ Xn be subspaces. Then the following are equivalent:

(a) Yn is a (∗)-subspace of Xn for all n.
(b) Ỹ0 is a (∗)-subspace of X̃0.
(c) Ỹ0 is a (∗)-subspace of X̃∞.
(d) Ỹ∞ is a (∗)-subspace of X̃∞.

Also (a) implies Ỹp is (∗) in X̃p, for 1 ≤ p <∞.

Proof. Equivalence of (a)–(d) is [P, Theorem 6.3.4].
That (a) implies Ỹ1 is (∗) in X̃1, follows from [P, Theorem 6.3.1]. That (a)

implies Ỹp is (∗) in X̃p, for 1 < p <∞, follows from [P, Theorem 6.3.15].

Theorem 4.2. Let Y ⊆ X be a subspace. The following are equivalent.

(a) Y is a (∗)-subspace of X.
(b) c(Y ) is a (∗)-subspace of c(X).
(c) Lp(µ, Y ) is a (∗)-subspace of Lp(µ,X) for p = 1 and ∞.
(d) For every compact Hausdorff space K, C(K,Y ) is a (∗)-subspace of

C(K,X).

Proof. (a)⇔(b). If Y is a (∗)-subspace inX, then by [P, Theorem 6.3.11],
c(Y ) is a (∗)-subspace in c(X).

To prove the converse, let x0 ∈ X and define (xn) ∈ c(X) by xn = x0 for
all n. Then given ε > 0 there exists (yn) ∈ Bc(Y ) such that ‖(xn)+(yn)‖∞ >
‖(xn)‖∞+1−ε = ‖x0‖+1−ε. Pick anm such that ‖xm+ym‖ > ‖x0‖+1−ε.
Then ‖x0 + ym‖ > ‖x0‖+ 1− ε and hence the result follows.

(a)⇒(c) follows from Theorem 4.12 below together with the fact that
Lp(µ,BY ) ⊆ BLp(µ,Y ).

(c)⇒(a). Let x ∈ X and define f = χΩx ∈ Lp(µ,X). Then φBLp(µ,Y )
(f)

= ‖f‖p + 1 = ‖x‖+ 1.
Now from Theorem 4.12, for p = 1, ‖x‖ + 1 =

	
Ω φBY (f(t)) dµ(t) =	

Ω φBY (x) dµ(t) = φBY (x). And for p =∞,
‖x‖+ 1 = φBL∞(µ,Y )

(f) = inf{a ≥ 0 : µ{t ∈ Ω : φBY (f(t)) > a} = 0}
= inf{a ≥ 0 : µ{t ∈ Ω : φBY (x) > a} = 0} = φBY (x).

(a)⇔(d) is [P, Corollary 6.4.2.].
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Turning to natural summands of Banach spaces, using an argument some-
what similar to the one in [BLR, Lemma 3.1] we will prove

Lemma 4.3. For Banach spaces (Xi) suppose X =
⊕n

i=1Xi and there
exists a monotone map % : (R+)n → R+ such that if x = (xi)

n
i=1 then

‖x‖ = %((‖xi‖)).
Let Ei ⊆ Xi be remotal (resp. densely remotal, almost remotal) in Xi.

Then
⊕
Ei is remotal (resp. densely remotal, almost remotal) in X.

Proof. We only prove the statement for almost remotality. It is clear that
if E =

⊕
iEi, then

⊕
iR(Ei) ⊆ R(E). Let U im ⊆ Xi be dense open sets with⋂∞

m=1 U
i
m ⊆ R(Ei). Then from the given condition, it follows that p−1i (U im)

is dense open in X, where pi : X → Xi is the canonical projection. Since
p−1i (U im) = U im ⊕

⊕
j 6=iXj , the set

⋂n
i=1 p

−1
i (U im) =

⊕n
i=1 U

i
m is dense open

in X. Now we have⋂
m∈N

( n⋂
i=1

p−1i (U im)
)
⊆

n⊕
i=1

R(Ei) ⊆ R(E).

This completes the proof.

Remark 4.4. Since any M -embedded space is an M -ideal in each of its
even order duals, it is evident that if an M -embedded space X is BR (resp.
DBR, ABR) in X∗∗, then X is BR (resp. DBR, ABR) in X(n) for any even n.

We call a subspace Y of X factor reflexive if X/Y is reflexive. Using iden-
tical arguments to those in [BLR, Theorem 3.6], with the help of Lemma 4.3
we have

Theorem 4.5. Let {Xi : i ∈ I} be a family of reflexive Banach spaces.
Let X =

⊕
c0
Xi. For any factor reflexive proximinal subspace Y of X, Y is

ABR in X.

Our next results generalizes the fact that c0 is ABR in `∞.

Theorem 4.6. Let X be a reflexive Banach space and Y be a (∗)-sub-
space of X. Then c0(Y ) is (∗) and ABR in `∞(X). In particular c0(X) is
(∗) and ABR in `∞(X).

Proof. From Theorem 4.1 it follows that c0(Y ) is a (∗)-subspace of `∞(X).

From [P, Lemma 6.3.5] it follows that

R(Bc0(Y )) = {(xn) ∈ `∞(X) : ∃m ∈ N, ‖(xn)‖∞ = ‖xm‖ and xm ∈ R(BY )}.

Let A = {(xn) ∈ `∞(X) : (xn) attains its norm at some j ∈ N} and
B = {(xn) ∈ `∞(X) : xn ∈ R(BY ) for all n}. Then A ∩B ⊆ R(Bc0(Y )).

Being the dual of `1(X∗), a space having RNP, `∞(X) is w∗-Asplund,
and hence A contains a dense Gδ [Bo, Theorem 5.7.4].
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Since Y is ABR,
⋂
n Un ⊆ R(BY ), where Un’s are dense open sets in X.

Now
⋂
n,j{(xi) ∈ `∞(X) : xj ∈ Un} ⊆ B. Clearly, the left hand set is

a dense Gδ. This shows both A and B are residual, and hence so is A∩B.

Remark 4.7. Essentially the same technique can be used to prove The-
orem 4.6 for countable sum of reflexive spaces.

We do not know whether c0(Y ) is ABR in c0(X) implies Y is ABR in X.
Let X be reflexive and Y a (∗)-subspace of X. Since c0(Y ) ⊆ c(Y ) ⊆

`∞(Y ) ⊆ `∞(X), all the intermediate spaces are (∗) and ABR in `∞(X). Also
from Theorem 4.6 it follows that c0(Y ) is (∗) and ABR in `∞(Y ). Clearly
c(X) is (∗) and BR in `∞(X) for any Banach space X.

Our next result shows that being a HBS space that is ABR in its bidual
is stable under c0-sums.

Theorem 4.8. Let {Xi : i ∈ N} be a collection of HBS spaces which are
also ABR in their biduals. Then X̃0 is also HBS and ABR in its bidual X̃∗∗∞ .

Proof. From [BR, Corollary 2.8], it follows that X̃0 is an HBS space,
hence R(B

X̃0
) = NA2(X̃0). For i,m ∈ N, let U im ⊆ X∗∗i be dense open sets

such that
⋂
m U

i
m ⊆ R(BXi).

Let W i
m = {(x∗∗n ) ∈ X̃∗∗0 : xi ∈ U im}. Then each W i

m is a dense open set
in X̃∗∗0 . Let W =

⋂
m,iW

i
m. Now from the proof of Theorem 2.11, the set

G = {x∗∗ ∈ X̃∗∗0 : D(x∗∗) ⊆ A
X̃0
} is a dense Gδ.

Claim. G ∩W ⊆ NA2(X̃0).

Let x∗∗0 ∈ G ∩ W . From the proof of Theorem 2.11, it follows that
x∗∗0 ∈ NA(X̃∗0 ). Hence if x∗∗0 = (x∗∗n ), then there exists k such that ‖x∗∗k ‖ =
‖(x∗∗n )‖∞. Also x∗∗k ∈ R(BXk). Hence there exists xk ∈ BXk such that
‖x∗∗k + xk‖ = ‖x∗∗k ‖ + 1. Choose x∗∗∗ ∈ SX∗∗∗k

such that x∗∗∗(x∗∗k + xk) =
‖x∗∗k + xk‖. Then x∗∗∗ ∈ D(x∗∗k ), which implies x∗∗∗ = J(x∗) for some
x∗ ∈ SX∗k , where J : X∗ → X∗∗∗ is the canonical map. The last state-
ment follows from the fact that X̃0 is HBS and D((x∗∗n )) ⊆ A

X̃0
. In fact, if

z∗∗∗ = (z∗∗∗n ) ∈ S
X̃∗∗∗0

is such that z∗∗∗k = x∗∗∗ and all other coordinates are
zero, then z∗∗∗ ∈ D((x∗∗n )).

Finally, define z0 = (zn) ∈ X̃0 by setting zk = xk and all other coor-
dinates zero, and define z∗0 = (z∗n) ∈ X̃∗0 by setting z∗k = x∗k and all other
coordinates zero. Hence |x∗∗0 (z∗0)| = ‖x∗∗0 ‖ and also |z∗0(z0)| = 1. This implies
x∗∗0 ∈ NA2(X̃0), completing the proof.

Theorem 4.9. If Yn is (∗) and ABR in Xn for all n ∈ N, then Ỹ∞ is
(∗) and ABR in X̃∞.
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Proof. As in the proof of Theorem 4.8, we define W i
m and then W =⋂

m,iW
i
m. Next observe φBỸ∞ ((xj)) = supj φBYj (xj) [P, Theorem 6.3.8(b)].

Hence the result follows.

Turning to other `p sums, 1 ≤ p <∞, we have

Theorem 4.10. For each n ∈ N, let Yn be a subspace of Xn. If at least
one Yn is (∗) and ABR in Xn, then Ỹ1 is (∗) and ABR in X̃1.

Proof. Suppose Yk is (∗) and ABR in Xk. We have
⋂
n∈N V

k
n ⊆ R(BYk),

where V k
n ⊆ Xk are open and dense.

Define Wn = {(xn) ∈ X̃1 : xk ∈ V k
n }. Then each Wn is open and dense.

Hence W =
⋂
nWn is a dense Gδ.

Now follow the proof of [P, Proposition 6.3.2].

Theorem 4.11. Let {Xn : n ∈ N} be a family of Banach spaces and
Yn ⊆ Xn be subspaces. For 1 < p < ∞, Ỹp is a (∗) and BR/ABR subspace
of X̃p if and only if each Yn is a (∗) and BR/ABR subspace of Xn.

Proof. The BR part follows from [P, Theorem 6.3.17]. We now prove the
ABR part.

Suppose each Yn is (∗) and ABR in Xn. From Theorem 4.1, it follows
that Ỹp is a (∗)-subspace of X̃p.

Now for each n, R(BYn , Xn) ⊇
⋂
m U

n
m, where each Unm is a dense open

subset of Xn. Define

Wn
m = {(xi) ∈ X̃p : xn ∈ Unm}.

Then Wn
m is a dense open set in X̃p, so W =

⋂
m,n∈NW

n
m is dense in X̃p.

If (xi) ∈ W then xi ∈ R(BYi , Xi) for all i, and hence by [P, Lemma
6.3.16], (xi) ∈ R(B

Ỹp
, X̃p).

Conversely if Ỹp is (∗) and ABR in X̃p, then Yn is (∗) and DBR in Xn

from [P, Theorem 6.3.17]. It remains to prove that Yn’s are ABR in Xn.
Let R(B

Ỹp
) ⊇

⋂
m Vm, where Vm ⊆ X̃p are dense open sets.

Let pn : X̃p → Xn be the canonical projection. Then pn(Vm) is a
dense open set. Since

⋂
m pn(Vm) ⊆ pn(

⋂
m Vm) ⊆ R(BYn , Xn) by [P, Lem-

ma 6.3.16], the result follows.

We now turn to spaces of Bochner integrable functions.

Theorem 4.12. Let 1 ≤ p ≤ ∞, f ∈ Lp(µ,X) and Y be a subspace
of X. Then

(a) φLp(µ,BY )(f) = (
	
Ω φ

p
BY

(f(t)) dµ(t))1/p for 1 ≤ p <∞.
(b) φL∞(µ,BY )(f) = inf{a ≥ 0 : µ{t ∈ Ω : φBY (f(t)) > a} = 0}.
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Proof. (a) If f ∈ Lp(µ,X) and g ∈ Lp(µ,BY ), then

‖f − g‖pp =
�

Ω

‖f(t)− g(t)‖p dµ(t) ≤
�

Ω

φpBY (f(t)) dµ(t).

Hence,

φLp(µ,BY )(f) ≤
( �
Ω

φpBY (f(t)) dµ(t)
)1/p

.

Now, let f =
∑n

i=1 xiχAi ∈ Lp(µ,X) be a simple function. Without loss of
generality, we may assume

∑n
i=1 µ(Ai) = 1.

Observe that the map x 7→ φpBY (x) from X to R≥0 is continuous and
given ε > 0 there exists y ∈ BY such that ‖x− y‖p > φpBY (x)− ε.

Thus, given ε > 0 there exist yi ∈ BY such that ‖xi−yi‖p > φpBY (xi)− ε
for 1 ≤ i ≤ n.

Let g =
∑n

i=1 yiχAi . Then g ∈ Lp(µ,BY ) and

‖f − g‖pp =
n∑
i=1

‖xi − yi‖pµ(Ai) >
n∑
i=1

(φpBY (xi)− ε)µ(Ai)

=
n∑
i=1

φpBY (xi)µ(Ai)− ε =
�

Ω

φpBY (f(t)) dµ(t)− ε.

Since ε is arbitrary, we have φpLp(µ,BY )(f) ≥
	
Ω φ

p
BY

(f(t)) dµ(t), i.e.,

φLp(µ,BY )(f) ≥
( �
Ω

φpBY (f(t)) dµ(t)
)1/p

.

Hence φLp(µ,BY )(f) = (
	
Ω φ

p
BY

(f(t)) dµ(t))1/p if f is simple.
Now the map f 7→

	
Ω φ

p
BY

(f(t)) dµ(t) from Lp(µ,X) to R≥0 is continu-
ous, and since the simple functions are dense in Lp(µ,X), the result follows.

(b) We have

φL∞(µ,BY )(f) = sup
g∈L∞(µ,BY )

‖f − g‖∞

= sup
g∈L∞(µ,BY )

inf{a ≥ 0 : µ{t ∈ Ω : ‖(f − g)(t)‖ > a} = 0}

= inf{a ≥ 0 : µ{t ∈ Ω : φBY (f(t)) > a} = 0}.

Theorem 4.13. For 1 ≤ p ≤ ∞, if f ∈ Lp(µ,X), then g ∈ Lp(µ,BY ) is
farthest from f if and only if g(t) ∈ BY is farthest from f(t) a.e. [µ].

Proof. Case 1: 1 ≤ p <∞. Let g ∈ Lp(µ,BY ) be farthest from f . From
Theorem 4.12, �

Ω

‖f(t)− g(t)‖p dµ(t) =
�

Ω

φpBY (f(t)) dµ(t).
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Since ‖f(t)−g(t)‖p ≤ φpBY (f(t)) a.e. [µ], we have ‖f(t)−g(t)‖p = φpBY (f(t))
a.e. [µ]. Hence g(t) ∈ FBY (f(t)) a.e. [µ].

Conversely, if g ∈ Lp(µ,BY ) is such that ‖f(t) − g(t)‖ = φBY (f(t))
a.e. [µ], then ‖f − g‖pp =

	
Ω ‖f(t) − g(t)‖p dµ(t) =

	
Ω φ

p
BY

(f(t)) dµ(t) =

φpLp(µ,BY )(f). That is, g is farthest from f .

Case 2: p = ∞. We have f ∈ R(L∞(µ,BY )) if and only if there exists
g ∈ L∞(µ,BY ) such that ‖f − g‖∞ = φL∞(µ,BY )(f). Hence

inf{b ≥ 0 : µ{t ∈ Ω : ‖f(t)− g(t)‖ > b} = 0}
= inf{a ≥ 0 : µ{t ∈ Ω : φBY (f(t)) > a} = 0}.

Consequently, ‖f(t)− g(t)‖ = φBY (f(t)) a.e. [µ].

Theorem 4.14. Let Y be a separable ball remotal subspace of X. Then
Lp(µ,BY ) is remotal in Lp(µ,X) for 1 ≤ p ≤ ∞. The converse is true for
any subspace Y of X.

Proof. An identical technique used in [BLR, Theorem 3.8] can be used to
prove that there is a measurable selection of the set {(t, FBY (f(t))) : t ∈ Ω}.
Let g(t) ∈ FBY (f(t)) be the corresponding measurable selection.

It remains to prove that g ∈ Lp(µ,BY ). For p = ∞, this is immediate,
and for 1 ≤ p <∞,�

Ω

‖g(t)‖p dµ(t) ≤
�

Ω

‖g(t)− f(t)‖p dµ(t) +
�

Ω

‖f(t)‖p dµ(t)

=
�

Ω

φpBY (f(t)) dµ(t) +
�

Ω

‖f(t)‖p dµ(t) <∞.

Here
	
Ω φ

p
BY

(f(t)) dµ(t) <∞, since t 7→ φpBY (f(t)) is measurable.
To prove the converse, let x ∈ X and set f = xχΩ ∈ Lp(µ,X). There

exists g ∈ L1(µ,BY ) such that ‖f−g‖p = φLp(µ,BY )(f). From Theorem 4.13,
it follows that for some t ∈ Ω, g(t) is farthest from x.

Turning to spaces of continuous functions, we have the following

Theorem 4.15. Let Y be a ABR subspace of X, and K a compact Haus-
dorff space. Then C(K,Y ) is an ABR subspace of C(K,X).

Proof. Let
⋂
n Vn ⊆ R(BY ), where Vn’s are open dense subsets of X.

Let Tn = {f ∈ C(K,X) : f(K) ⊆ Vn}. From [P, Lemma 6.4.5], it follows
that Tn is dense in C(K,X). We now show that Tn is open.

Let f ∈ Tn. There exists δ > 0 such that B(f(t), δ) ⊆ Vn for each t ∈ K.
In fact, otherwise we can find sequences (tm) ⊆ K and (zm) ⊆ V c

n such that
‖f(tm)− zm‖ < 1/m. Now passing to a subnet of (tm), we can find a t0 ∈ K
such that tmi → t0, and hence ‖zmi − f(t0)‖ → 0. But zm’s are in V c

n , a
closed set, so f(t0) /∈ Vn, a contradiction.
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Claim. If ‖f − g‖ < δ/2, then g ∈ Tn.
For t ∈ K we have ‖f(t) − g(t)‖ < δ/2. Hence g(t) ∈ Vn. Since t is

arbitrary, g(K) ⊆ Vn, proving the claim.

Let f ∈
⋂
n Tn. Then f(K) ⊆

⋂
n Vn ⊆ R(BY ). Hence f ∈ R(BC(K,Y ))

[P, Theorem 6.4.1].
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