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Shift-modulation invariant spaces on LCA groups

by

Carlos Cabrelli and Victoria Paternostro (Buenos Aires)

Abstract. A (K,Λ) shift-modulation invariant space is a subspace of L2(G) that is
invariant under translations along elements in K and modulations by elements in Λ. Here
G is a locally compact abelian group, and K and Λ are closed subgroups of G and the
dual group Ĝ, respectively.

We provide a characterization of shift-modulation invariant spaces when K and Λ are
uniform lattices. This extends previous results known for L2(Rd). We develop fiberization
techniques and suitable range functions adapted to LCA groups needed to provide the
desired characterization.

1. Introduction. Shift invariant spaces (SIS) play an important role
in approximation theory, wavelets and frames. They have also proven to be
useful as models in signal processing applications.

Shift-modulation invariant (SMI) spaces are shift invariant spaces that
have the extra property of also being invariant under some group of modula-
tions. Such spaces are usually known as Gabor or Weyl–Heisenberg spaces.
They have been intensively studied in [Bow07], [CCJ01], [CC01], [Chr03],
[Dau92], [GH04], [GH03], [Gro01].

A deep and detailed study of the structure of shift-modulation invariant
spaces of L2(Rd) was made by Bownik [Bow07], who provided a characteri-
zation of SMI spaces based on fiberization techniques and range functions.

In the case of SIS, the L2(Rd) theory using range functions has been
extended to the context of locally compact abelian (LCA) groups in [CP10]
and [KR08]. This general framework allows for a more complete view, in
which relationships among the groups involved and their properties are more
transparent. Further, the LCA group setting includes the finite case. Having
a valid theory for groups such as Zn is important for applications.

Since modulations become translations in the Fourier domain, shift-
modulations invariant spaces are spaces that are shift invariant in time and
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frequency. As a consequence, the techniques of shift-invariant spaces can be
applied to study the structure of SMI spaces. Having at hand a theory of
SIS on LCA groups, it is natural to ask whether a general theory of SMI
spaces could be developed in this more general context.

In this article we define and study the structure of SMI spaces using
range functions and fiberization techniques, in the context of LCA groups.
First we introduce the notion of shift-modulation spaces where translations
are on a closed subgroup of an LCA group G and modulations are on a
closed subgroup of the dual group Ĝ. Next we focus our attention on the
case where both translations and modulations are along uniform lattices
of G and the dual group of G respectively, with some minor hypotheses.
We prove a characterization of shift-modulation invariant spaces, extend-
ing the result obtained by Bownik [Bow07] for L2(Rd) to the case of LCA
groups. The LCA setting allows us to visualize the role played by the differ-
ent components: the groups, their duals, the quotients, and the relationships
between the different lattices involved and their annihilators. These roles are
somehow hidden in the Euclidean case. For example in the classical case,
the simple structure of the lattices allows one to reduce the study to the
case when one of the lattices is Zd. Since the dual group of Rd is isomorphic
to itself and the annihilator of Zd is isomorphic to Zd, most of the analy-
sis can be done in the original group Rd. As in the general case we do not
have these isomorphisms, it requires some effort to discover the role of each
component. The lack of structure of the lattices involved creates additional
difficulties in establishing the precise setting. This is particularly relevant
in defining the different isomorphisms that lead to a suitable decomposi-
tion of L2(G) and consequently to a range function well adapted to spaces
having this double invariance. A diversity of results are then required such
as the existence of Borel sections and their relations (see for example (2.3)
and (2.4)).

On the other hand, once the proper setting is obtained, there is a more
clear picture of the general interrelationships, which has the additional ad-
vantage of simplifying some reasonings.

We have organized the article as follows. In Section 2 we review some
of the basic facts on LCA groups. Then we develop the notion of shift-
modulation invariant spaces in this context and we set our standing as-
sumptions. In Section 3 we outline how the results on shift invariant spaces
can be used for shift-modulation invariant spaces. Section 4 establishes the
fiberization isometry and the concept of shift-modulation range functions.
Section 5 contains the main result of the paper, that is, the characteriza-
tion of shift-modulation invariant spaces under uniform lattices. Finally, we
include some examples in Section 6.
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2. Preliminaries. In this section we collect the known results and no-
tation needed for this paper. We also state our standing assumptions that
will be in force for the remainder of the article.

Let G be an arbitrary locally compact Hausdorff abelian group written
additively. We will denote by mG its Haar measure. The dual group of G,
that is, the set of continuous characters on G, is denoted by Γ or Ĝ. The
value of the character γ ∈ Γ at the point x ∈ G is written (x, γ).

When two LCA groups G1 and G2 are topologically isomorphic we will

write G1 ≈ G2. In particular, it is known that Γ̂ ≈ G, where Γ̂ is the dual
of the dual group of G.

For an LCA group G and K a closed subgroup of G, the Haar measures
mG, mK and mG/K can be so chosen that Weil’s formula

(2.1)
�

G

f(x) dmG(x) =
�

G/K

�

K

f(x+ k) dmK(k) dmG/K([x])

holds for each f ∈ L1(G). Here [x] denotes the coset of x in G/K. Given a
subgroup K of an LCA group G we will indicate by ΠG/K ⊆ G a section
for the quotient G/K.

The Fourier transform of a Haar integrable function f on G is the func-
tion f̂ on Γ defined by

f̂(γ) =
�

G

f(x)(x,−γ) dmG(x), γ ∈ Γ.

When the Haar measures mG and mΓ are normalized so that the inversion
formula holds (see [Rud62]), the Fourier transform on L1(G)∩L2(G) can be
extended to a unitary operator from L2(G) onto L2(Γ ), called the Plancherel
transformation and also denoted by “̂”.

If K is a subgroup of G, then the subgroup

K∗ = {γ ∈ Γ : (k, γ) = 1, ∀k ∈ K}
of Γ is called the annihilator of K. Since every character in Γ is continuous,
K∗ is a closed subgroup of Γ . If K is a closed subgroup, we have (K∗)∗ ≈ K.
For every closed subgroup K of G the following duality relationships are
valid:

(2.2) K∗ ≈ Ĝ/K and Γ/K∗ ≈ K̂.

Definition 2.1. Given an LCA group G, a uniform lattice in G is a
discrete subgroup K of G such that the quotient group G/K is compact.

For every uniform lattice K in G, there exists a measurable (Borel) sec-
tion of G/K with finite mG-measure (see [KK98] and [FG64]). Another im-
portant fact is that if K is a countable (finite or countably infinite) uniform
lattice in G, then K∗ is a countable uniform lattice in Γ .
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Remark 2.2. If K1 ⊆ K2 are lattices in G, then K2/K1 is finite. To see

this, observe that since K∗2 ⊆ K∗1 , we have K̂∗1/K̂
∗
2 ≈ K2/K1 due to (2.2).

Therefore, K2/K1 is both compact and discrete, hence finite.

Let G be an LCA group, K a countable uniform lattice in G, and
ΠΓ/K∗ ⊆ Γ an mΓ -measurable section of Γ/K∗. Throughout we will iden-
tify the space Lp(ΠΓ/K∗) with the set {ϕ ∈ Lp(Γ ) : ϕ = 0 a.e. in Γ \ΠΓ/K∗}
for p = 1 and p = 2.

Proposition 2.3. Let G be an LCA group and K a countable uniform
lattice in G. Then {ηk}k∈K is an orthogonal basis for L2(ΠΓ/K∗), where
ηk(γ) = (k,−γ)χΠΓ/K∗ (γ). If moreover mΓ (ΠΓ/K∗) = 1, then this basis is
orthonormal.

The following proposition will be needed. Its proof can be found in
[CP10].

Proposition 2.4. Let G be an LCA group and K a countable uniform
lattice on G. Fix a Borel section ΠΓ/K∗ of Γ/K∗ and choose mK∗ and
mΓ/K∗ so that the inversion formula holds. Then

‖a‖`2(K) =
mK({0})1/2

mΓ (ΠΓ/K∗)1/2

∥∥∥∑
k∈K

akηk

∥∥∥
L2(ΠΓ/K∗ )

for each a = {ak}k∈K ∈ `2(K).

Definition 2.5. If K ⊆ G and Λ ⊆ Γ are closed subgroups, we will say
that a closed subspace V ⊆ L2(G) is:

• K-shift invariant (or shift invariant under K) if

f ∈ V ⇒ Tkf ∈ V ∀k ∈ K, where Tkf(x) = f(x− k),

• Λ-modulation invariant (or modulation invariant under Λ) if

f ∈ V ⇒ Mλf ∈ V ∀λ ∈ Λ, where Mλf(x) = (x, λ)f(x),

• (K,Λ)-invariant (or shift-modulation invariant under (K,Λ)) if V is
shift invariant under K and modulation invariant under Λ. In that
case

f ∈ V ⇒ MλTkf ∈ V ∀k ∈ K and λ ∈ Λ.
For a subset A ⊆ L2(G), define

E(K,Λ)(A) = {MλTkϕ : ϕ ∈ A, k ∈ K, λ ∈ Λ},
S(K,Λ)(A) = spanE(K,Λ)(A).

A straightforward computation shows that the space S(K,Λ)(A) is shift-
modulation invariant under (K,Λ). We call S(K,Λ)(A) the (K,Λ)-invariant
space generated by A. Note that for every (K,Λ)-invariant space V , there
exists a countable set of generators A ⊆ L2(G) such that V = S(K,Λ)(A).
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Similarly, SK(A) will denote the closed subspace generated by transla-
tions along K of the elements of A, and SΛ(A) the closed subspace generated
by modulations from Λ of the elements of A.

In this paper we characterize (F,∆)-invariant spaces whenever F and
∆ are uniform lattices in G and Γ respectively and F ∩ ∆∗ is a uniform
lattice in G. The condition of F ∩ ∆∗ being a uniform lattice corresponds
in the classical case G = Rd to rationally dependent lattices (see [Bow07]).
Similar to the shift invariant case (see [CP10]), a characterization of shift-
modulation invariant spaces will be established in terms of appropriate range
functions using fiberization techniques.

We now set our standing assumptions which will be in force throughout.

Standing Assumptions 2.6.

• G is a second countable LCA group and Γ its dual group.
• F is a countable uniform lattice on G. (translations)
• ∆ is a countable uniform lattice on Γ . (modulations)
• E := F ∩∆∗ is a (countable) uniform lattice on G.

From our Standing Assumptions and Remark 2.2 we obtain:

(a) E∗ is a uniform lattice in Γ and ∆ ⊆ E∗.
(b) E∗/∆ is finite.
(c) ∆∗ is a uniform lattice in G.

Now we observe that if we fix a measurable section ΠΓ/E∗ ⊆ Γ for
Γ/E∗ and a finite section ΠE∗/∆∗ ⊆ E∗ for E∗/∆, then we can construct a
measurable section ΠΓ/∆ for Γ/∆ as

(2.3) ΠΓ/∆ =
⋃

e∈ΠE∗/∆

ΠΓ/E∗ + e.

Let ΠF/E ⊆ F be a finite section for F/E. Note that, by the first iso-
morphism theorem for groups, F/E is isomorphic to (F + ∆∗)/∆∗. Thus,
ΠF/E ⊆ F is also a section for (F +∆∗)/∆∗. Then, letting ΠG/(F+∆∗) be a
measurable section for G/(F +∆∗), we see that

(2.4) ΠG/∆∗ =
⋃

d∈ΠF/E

ΠG/(F+∆∗) − d

is a section for G/∆∗. The minus sign in (2.4) is just for notational conve-
nience.

These sections will be used to define the fiberization isometry and the
range function.

In order to avoid carrying over constants through the article, we fix the
following normalization of the Haar measures considered. This particular
choice of the Haar measures does not affect the generality of our results.
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First, we choose m∆∗ so that m∆∗({0}) = 1. Then we fix mG and mG/∆∗

such that Weil’s formula holds for m∆∗ , mG and mG/∆∗ . Furthermore, we
choose mΓ/E∗ , mE∗ so as to get mE∗({0})mΓ/E∗(Γ/E

∗) = 1/|ΠE∗/∆∗ | where
|ΠE∗/∆∗ | denotes the cardinality of ΠE∗/∆∗ . Then, we choose mΓ so that
Weil’s formula holds for mΓ/E∗ , mE∗ and mΓ .

If ΠΓ/∆ is given by (2.3), this normalization implies that mΓ (ΠΓ/∆) = 1.
This is due to the formula mΓ (ΠΓ/E∗) = mE∗({0})mΓ/E∗(Γ/E

∗) proved in
[CP10, Lemma 2.10].

We will use different instances of the following space.

Definition 2.7. Let (X,µ) be a finite measure space and H a separable
Hilbert space with inner product 〈·, ·〉H. We define L2(X,H) as the space of
all measurable functions Φ : X → H such that

‖Φ‖22 :=
�

X

‖Φ(x)‖2H dµ(x) <∞,

where Φ : X → H is measurable if for each v ∈ H, the function x 7→
〈Φ(x), v〉H from X to C is measurable in the usual sense. The space L2(X,H)
with the inner product

〈Φ, Ψ〉 :=
�

X

〈Φ(x), Ψ(x)〉H dµ(x)

is a complex Hilbert space.

3. Heuristic. Before we proceed to state the results and their proofs,
we will give an informal discussion of the main ideas. We start by recalling
some results from [CP10]. For further details we refer to [CP10].

Let G be an LCA group, H a uniform lattice in G, and ΠΓ/H∗ a measur-

able section for Γ/H∗. Then the spaces L2(G) and L2(ΠΓ/H∗ , `
2(H∗)) are

isometrically isomorphic via the isomorphism

(3.1) TH : L2(G)→ L2(ΠΓ/H∗ , `
2(H∗)), THf(γ) = {f̂(γ + δ)}δ∈H∗ .

The object {f̂(γ + δ)}δ∈H∗ is called the H∗-fiber of f̂ at γ.
The isometry TH defined by (3.1) is used to characterize, by means of

range functions, the subspaces of L2(G) that are shift invariant under H:

Definition 3.1. A shift range function with respect to the pair (G,H)
is a mapping

J : ΠΓ/H∗ → {closed subspaces of `2(H∗)}.
The space J(γ) is called the fiber space associated to γ.

Then we have the following characterization:

Theorem 3.2 ([CP10, Theorem 3.10]). Let V be a closed subspace of
L2(G). Then V is H-shift invariant if and only if there exists a measurable
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shift range function J such that

V = {f ∈ L2(G) : THf(γ) ∈ J(γ) for a.e. γ ∈ ΠΓ/H∗}.
If A is a set of generators of V as an H-shift invariant space (i.e. V =
SH(A)), then for a.e. γ ∈ ΠΓ/H∗,

J(γ) = span{THϕ(γ) : ϕ ∈ A}.
Basically the result states that a function f ∈ L2(G) belongs to V if and

only if each fiber of the Fourier transform of f is in the corresponding fiber
space.

From Theorem 3.2, we can easily derive a similar result for modulation
invariant spaces. Namely, if Λ is a uniform lattice in Γ , and W ⊆ L2(G) is

Λ-modulation invariant, then Ŵ , the image of W under the Fourier trans-
form, is Λ-shift invariant in L2(Γ ). Hence, fixing a section ΠG/Λ∗ for G/Λ∗

and using Theorem 3.2, we can derive the following characterization of mod-
ulation invariant spaces:

Corollary 3.3. Let W be a closed subspace of L2(G). Then W is Λ-
modulation invariant if and only if there exists a measurable shift range
function J with respect to the pair (Γ,Λ) such that

W = {f ∈ L2(G) : T̃Λ∗f(x) ∈ J(x) for a.e. x ∈ ΠG/Λ∗},

where T̃Λ∗ is the isometric isomorphism

(3.2) T̃Λ∗ : L2(G)→ L2(ΠG/Λ∗ , `
2(Λ∗)), T̃Λ∗f(x) = {f(x+ h)}h∈Λ∗ .

If A is a set of generators of W as a Λ-modulation invariant space (i.e.
V = SΛ(A)), then for a.e. x ∈ ΠG/Λ∗,

J(x) = span{T̃Λ∗ϕ(x) : ϕ ∈ A}.
That is, a function f belongs to W if and only if its fibers (and not the

fibers of its Fourier transform) belong to the corresponding fiber space.
Now we describe how we will apply these results to shift-modulation

invariant spaces.
Let G be an LCA group and Γ its dual, and let F and ∆ be uniform

lattices in G and Γ respectively satisfying Standing Assumptions 2.6.
Let V be an (F,∆)-shift-modulation invariant space in L2(G) (see Defini-

tion 2.5). We now have two ways to characterize V : one using invariance un-
der translations and the other using invariance under modulations. Assume
we choose the characterization using the fact that our space is ∆-modulation
invariant. Then, by Corollary 3.3, we have a range function defined on a sec-
tion ΠG/∆∗ , with fiber spaces J(x) ⊆ `2(∆∗).

Next we will show that invariance under translations along the lattice
E = F∩∆∗ implies that the fiber spaces J(x) are E-shift invariant in `2(∆∗).
So using again Theorem 3.2, we obtain a range function for each of the fiber
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spaces J(x). From this we will construct a shift-modulation range function
that will produce the desired characterization.

Note that in this description we did not consider translations by elements
of F that are not in E. As we will see later, the action of these elements
produces some periodicity on the range function.

4. The fiberization isometry and range functions. The goal of this
section is to define the fiberization isometry and a suitable range function
required to achieve the characterization of (F,∆)-invariant spaces. We start
by defining the isometry that will produce a decomposition of the space
L2(G), and we show its relation to the Zak transform in Section 4.1. In
Section 4.2 we first introduce the concept of shift-modulation range func-
tion, to which we associate a shift-modulation invariant space; then we also
construct a range function from a given shift-modulation invariant space.

4.1. The isometry. Let us fix F ⊆ G and ∆ ⊆ Γ , countable uniform
lattices satisfying Standing Assumptions 2.6.

In order to construct the fiberization isometry, we introduce the following
isomorphisms.

Let T̃∆∗ : L2(G) → L2(ΠG/∆∗ , `
2(∆∗)) be the isometric isomorphism

defined as in (3.2) for G and ∆∗, that is,

(4.1) T̃∆∗f(x) = {f(x+ h)}h∈∆∗ .

On the other hand, consider TE : `2(∆∗) → L2(ΠΓ/E∗ , `
2(ΠE∗/∆)) de-

fined by

(4.2) TEa(ξ) =
{∑
h∈∆∗

ahηh(ξ + e)
}
e∈ΠE∗/∆

,

where the functions ηh are as in Proposition 2.3 and a = {ah}h∈∆∗ .

Lemma 4.1. The map TE defined in (4.2) is an isometric isomorphism
between `2(∆∗) and L2(ΠΓ/E∗ , `

2(ΠE∗/∆)).

Proof. Since ΠE∗/∆ is an index set, according to Definition 2.7 we have

‖TEa‖22 =
�

ΠΓ/E∗

∑
e∈ΠE∗/∆

∣∣∣ ∑
h∈∆∗

ahηh(ξ + e)
∣∣∣2 dmΓ (ξ)

=
�

ΠΓ/∆

∣∣∣ ∑
h∈∆∗

ahηh(ω)
∣∣∣2 dmΓ (ω) =

∥∥∥∑
h∈∆∗

ahηh

∥∥∥2
L2(ΠΓ/∆)

.

Now, applying Proposition 2.4 we obtain∥∥∥∑
h∈∆∗

ahηh

∥∥∥2
L2(ΠΓ/∆)

=
mΓ (ΠΓ/∆)

m∆∗({0})
‖a‖2`2(∆∗).
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Hence, by our normalization of the Haar measures, mΓ (ΠΓ/∆)/m∆∗({0})
= 1 and so ‖TEa‖22 = ‖a‖2`2(∆∗).

Let Φ ∈ L2(ΠΓ/E∗ , `
2(ΠE∗/∆)). Then Φ induces a function Φ̃ ∈ L2(ΠΓ/∆)

given by
Φ̃(ω) = (Φ(ξ))e,

where ω = ξ + e ∈ ΠΓ/∆ with ξ ∈ ΠΓ/E∗ and e ∈ ΠE∗/∆. Here (Φ(ξ))e
denotes the value of the sequence Φ(ξ) at e. It is easy to check that ‖Φ‖2 =

‖Φ̃‖L2(ΠΓ/∆).

By Proposition 2.3, {ηh}h∈∆∗ is an orthonormal basis for L2(ΠΓ/∆).

Thus, Φ̃ =
∑

h∈∆∗ ahηh for some a = {ah}h∈∆∗ ∈ `2(∆∗). Hence TEa = Φ.
Therefore, TE is an isomorphism.

Remark 4.2. Note that E∗(∆∗) , the annihilator of E as a subgroup of ∆∗,
is topologically isomorphic to E∗/∆. Hence, using the dual relationships

(2.2), it follows that ∆̂∗/E∗(∆∗) ≈ Γ/E∗. This allows us to look at TE as a
particular case of the map defined in (3.1).

The isometric isomorphism TE induces another isometric isomorphism

Ψ1 : L2(ΠG/∆∗ , `
2(∆∗))→ L2(ΠG/∆∗ , L

2(ΠΓ/E∗ , `
2(ΠE∗/∆)))

defined by
Ψ1(φ)(x) = TE(φ(x)).

We can also identify the Hilbert space L2(ΠG/∆∗ , L
2(ΠΓ/E∗ , `

2(ΠE∗/∆)))

with L2(ΠG/∆∗ ×ΠΓ/E∗ , `
2(ΠE∗/∆))) using the isometric isomorphism

Ψ2 : L2(ΠG/∆∗ , L
2(ΠΓ/E∗ , `

2(ΠE∗/∆)))→ L2(ΠG/∆∗ ×ΠΓ/E∗ , `
2(ΠE∗/∆))

given by
Ψ2(φ)(x, ξ) = φ(x)(ξ).

Definition 4.3. We define T : L2(G)→ L2(ΠG/∆∗×ΠΓ/E∗ , `
2(ΠE∗/∆))

as
T = Ψ2 ◦ Ψ1 ◦ T̃∆∗ .

The mapping T , which is actually an isometric isomorphism, and which
we call the fiberization isometry, can be explicitly defined as

(4.3) T f(x, ξ) = TE(T̃∆∗f(x))(ξ) =
{∑
h∈∆∗

f(x− h)(h, ξ + e)
}
e∈ΠE∗/∆

.

4.1.1. The isometry and the Zak transform. As is well known, a natural
tool to study shift-modulation invariant spaces is the Zak transform, first
introduced in R by Gelfand [Gel50]. Weil [Wei64] extended this transform
to general LCA groups, and independently Zak [Zak67] used it in physical
problems. In what follows we show how the Zak transform is present in our
analysis.
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We recall the usual Zak transform Z : L2(G)→ Q given by

Zf(x, ξ) =
∑
h∈∆∗

f(x− h)(h, ξ),

where Q is the set of all measurable functions F : G× Γ → C satisfying

(a) F (x+ h, ξ) = (h, ξ)F (x, ξ) for all h ∈ ∆∗,
(b) F (x, ξ + δ) = F (x, ξ) for all δ ∈ ∆ and
(c) ‖F‖2 =

	
ΠΓ/∆

	
ΠG/∆∗

|F (x, ξ)|2 dmG(x) dmΓ (ξ) <∞.

Then it is clear that

T f(x, ξ) = {Zf(x, ξ + e)}e∈ΠE∗/∆ .

The next lemma states an important property of T , which is a straight-
forward consequence of properties (a)–(c) above.

Lemma 4.4. For each f ∈ L2(G) the map T of Definition 4.3 satisfies

T (MδTyf)(x, ξ) = (x, δ)(−z, ξ)T (Tdf)(x, ξ) for a.e. (x, ξ)∈ΠG/∆∗×ΠΓ/E∗ ,

where δ ∈ ∆, y ∈ F and y = z + d with z ∈ E and d ∈ ΠF/E.

4.2. Shift-modulation range functions. In this section we introduce
the notion of shift-modulation range function adapted to the isometry de-
fined above.

Definition 4.5. A shift-modulation range function with respect to the
pair (F,∆) is a mapping

J : ΠG/∆∗ ×ΠΓ/E∗ → {subspaces of `2(ΠE∗/∆)}
with the following periodicity property:

(4.4)
J(x, ξ) = J(x− d, ξ) ∀d ∈ ΠF/E and a.e. (x, ξ) ∈ ΠG/(F+∆∗) ×ΠΓ/E∗ .

For a shift-modulation range function J , we associate to each (x, ξ) ∈
ΠG/∆∗×ΠΓ/E∗ the orthogonal projection onto J(x, ξ), P(x,ξ) : `2(ΠE∗/∆)→
J(x, ξ).

We say that a shift-modulation range function J is measurable if the
function (x, ξ) 7→ P(x,ξ) from ΠG/∆∗ ×ΠΓ/E∗ to `2(ΠE∗/∆) is measurable.

For a shift-modulation range function J (not necessarily measurable) we
define

(4.5) MJ = {Ψ ∈ L2(ΠG/∆∗ ×ΠΓ/E∗ , `
2(ΠE∗/∆)) :

Ψ(x, ξ) ∈ J(x, ξ) for a.e. (x, ξ) ∈ ΠG/∆∗ ×ΠΓ/E∗}.

Remark 4.6. MJ is a closed subspace of L2(ΠG/∆∗×ΠΓ/E∗ , `
2(ΠE∗/∆)).

For the proof see [CP10, Lemma 3.8].
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4.2.1. The shift-modulation invariant space associated to a range func-
tion. The following proposition states that to any shift-modulation range
function with respect to (F,∆), we can associate an (F,∆)-invariant space.

Proposition 4.7. Let J be a shift-modulation range function and define
V := T −1MJ , where MJ is as in (4.5) and T is the fiberization isometry.
Then V is an (F,∆)-invariant space in L2(G).

Proof. To begin with, observe that, since T is an isometry, V ⊆ L2(G)
is a closed subspace, by Remark 4.6.

Let f ∈ V , δ ∈ ∆ and y ∈ F . We need to show that MδTyf ∈ V .

According to Lemma 4.4, we have

T (MδTyf)(x, ξ) = (x, δ)(−z, ξ)T (Tdf)(x, ξ) for a.e. (x, ξ)∈ΠG/∆∗×ΠΓ/E∗ ,

where y = z + d with z ∈ E and d ∈ ΠF/E .

In particular, if x ∈ ΠG/(F+∆∗) we can rewrite T (Tdf)(x, ξ) as
T f(x− d, ξ). Then, since T f ∈MJ and J satisfies (4.4), we have

T (Tdf)(x, ξ) = T f(x− d, ξ) ∈ J(x− d, ξ) = J(x, ξ)

for a.e. (x, ξ) ∈ ΠG/(F+∆∗) ×ΠΓ/E∗ . Thus,

(4.6) T (MδTyf)(x, ξ) ∈ J(x, ξ) for a.e. (x, ξ) ∈ ΠG/(F+∆∗) ×ΠΓ/E∗ ,

and this is valid for all y ∈ F and δ ∈ ∆.

We now want to show that (4.6) holds on ΠG/∆∗ ×ΠΓ/E∗ . Let (x, ξ) ∈
ΠG/∆∗ × ΠΓ/E∗ . By (2.4) we can set x = x′ − d with x′ ∈ ΠG/(F+∆∗)

and d ∈ ΠF/E . If we fix δ ∈ ∆ and y ∈ F , then T (MδTyf)(x, ξ) =

T (TdMδTyf)(x′, ξ). Since MλTkg = (k, λ)TkMλg for all g ∈ L2(G), λ ∈ ∆
and k ∈ F , we have

T (TdMδTyf)(x′, ξ) = (−d, δ)T (MδTd+yf)(x′, ξ) ∈ J(x′, ξ) = J(x, ξ).

Thus, (4.6) holds on ΠG/∆∗ ×ΠΓ/E∗ . Therefore, MδTyf ∈ V for all δ ∈ ∆
and y ∈ F .

4.2.2. The range function associated to an (F,∆)-invariant space. The-
orem 3.2 gives a specific way to describe the shift range function associated
to each shift invariant space in terms of the fibers of its generators. The anal-
ogous description for modulation invariant spaces is given in Corollary 3.3.
Now we will use these results to construct a shift-modulation range function
from a given (F,∆)-invariant space.

Assume that V ⊆ L2(G) is an (F,∆)-invariant space and that V =
S(F,∆)(A) for some countable set A ⊆ L2(G). We will associate to V a
shift-modulation range function.

Since V is ∆-modulation invariant, by Corollary 3.3 we have

(4.7) V =
{
f ∈ L2(G) : T̃∆∗f(x) ∈ J∆∗(x) for a.e. x ∈ ΠG/∆∗

}
,
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where T̃∆∗ is the isometry defined in (4.1) and J∆∗ is the shift range function
associated to V given by

J∆∗ : ΠG/∆∗ → {closed subspaces of `2(∆∗)},

J∆∗(x) = span{T̃∆∗(Tyϕ)(x) : y ∈ F, ϕ ∈ A}.
Now, let us see that J∆∗(x) ⊆ `2(∆∗) is a shift invariant space under trans-
lations in E. Since ΠF/E ⊆ F is a section for the quotient F/E, every y ∈ F
can be written in a unique way as y = z + d with z ∈ E and d ∈ ΠF/E .

Then, using T̃∆∗Tzf = TzT̃∆∗f for all z ∈ E, we can rewrite J∆∗(x) as

J∆∗(x) = span{TzT̃∆∗(Tdϕ)(x) : z ∈ E, d ∈ ΠF/E , ϕ ∈ A}.
This description shows that J∆∗(x) is a shift invariant space under transla-

tions in E generated by the set {T̃∆∗(Tdϕ)(x) : d ∈ ΠF/E , ϕ ∈ A}.
Using Theorem 3.2, we can characterize J∆∗(x) for a.e. x ∈ ΠG/∆∗ as

follows. For each x ∈ ΠG/∆∗\Z, where Z is the exceptional zero mG-measure

set, there exists a range function JxE : ΠΓ/E∗ → {subspaces of `2(ΠE∗/∆)}
such that

J∆∗(x) = {a ∈ `2(∆∗) : TEa(ξ) ∈ JxE(ξ) for a.e. ξ ∈ ΠΓ/E∗},
where TE is the map given in (4.2). Moreover,

JxE(ξ) = span{TE(T̃∆∗Tdϕ(x))(ξ) : d ∈ ΠF/E , ϕ ∈ A}
= span{T (Tdϕ)(x, ξ) : d ∈ ΠF/E , ϕ ∈ A}
= span{T (Tdϕ)(x, ξ) : d ∈ ΠF/E , ϕ ∈ A},

where in the last equality we use the fact that dim(`2(ΠE∗/∆)) <∞.

This leads to the function J :ΠG/∆∗×ΠΓ/E∗→{subspaces of `2(ΠE∗/∆)}
defined as

(4.8) J(x, ξ) = span{T (Tdϕ)(x, ξ) : d ∈ ΠF/E , ϕ ∈ A}
for a.e. (x, ξ) ∈ ΠG/∆∗ ×ΠΓ/E∗ .

Lemma 4.8. Let A ⊆ L2(G) be a countable set. Then the map defined
in (4.8) is a shift-modulation range function.

Proof. We need to show that J satisfies (4.4).
Let d0 ∈ ΠF/E . For each d ∈ ΠF/E , we have

T (Tdϕ)(x− d0, ξ) = T (Td+d0ϕ)(x, ξ) for a.e. (x, ξ) ∈ ΠG/(F+∆∗) ×ΠΓ/E∗ .

Since d+ d0 ∈ F , we can write d+ d0 = d′ + z′ with d′ ∈ ΠF/E and z′ ∈ E.
Then, according to Lemma 4.4, T (Td+d0ϕ)(x, ξ) = (z′, ξ)T (Td′ϕ)(x, ξ).
Thus, T (Tdϕ)(x − d0, ξ) ∈ J(x, ξ) because T (Td′ϕ)(x, ξ) ∈ J(x, ξ). This
shows that J(x − d0, ξ) ⊆ J(x, ξ) for a.e. (x, ξ) ∈ ΠG/(F+∆∗) × ΠΓ/E∗ for
each d0 ∈ ΠF/E .
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With an analogous argument, it can be proven that J(x, ξ) ⊆ J(x−d0, ξ)
for a.e. (x, ξ) ∈ ΠG/(F+∆∗) ×ΠΓ/E∗ for each d0 ∈ ΠF/E .

As we have seen in Proposition 4.7, each shift-modulation range function
with respect to the pair (F,∆) induces an (F,∆)-invariant space. Further-
more, in Section 4.2.2 we associated to each shift-modulation invariant space
V a shift-modulation range function from a system of generators of V . This
leads to a natural question: If V is an (F,∆)-invariant space and J the
shift-modulation range function that V induces, what is the relationship
between V and the (F,∆)-invariant space induced from J?

This problem will be the topic of the following section.

5. The characterization of (F,∆)-invariant spaces. We can now
state our main result which characterizes (F,∆)-invariant spaces in terms
of the fiberization isometry and shift-modulation range functions.

Theorem 5.1. Let V ⊆ L2(G) be a closed subspace and T the fiber-
ization isometry of Definition 4.3. Then V is an (F,∆)-invariant space
if and only if there exists a measurable shift-modulation range function
J : ΠG/∆∗ ×ΠΓ/E∗ → {subspaces of `2(ΠE∗/∆)} such that

V = {f ∈ L2(G) : T f(x, ξ) ∈ J(x, ξ) for a.e. (x, ξ) ∈ ΠG/∆∗ ×ΠΓ/E∗}.
If we identify shift-modulation range functions which are equal almost

everywhere, then the correspondence between (F,∆)-invariant spaces and
measurable shift-modulation range functions is one-to-one and onto.

Moreover, if V = S(F,∆)(A) ⊆ L2(G) for some countable subset A of

L2(G), then the measurable shift-modulation range function J associated to
V is given by

J(x, ξ) = span{T Tdϕ(x, ξ) : d ∈ ΠF/E , ϕ ∈ A}
for a.e. (x, ξ) ∈ ΠG/∆∗ ×ΠΓ/E∗.

For the proof of Theorem 5.1 we need the following lemma, which is an
adaptation of [CP10, Lemma 3.11]. For its proof see [CP10].

Lemma 5.2. If J and J ′ are measurable shift-modulation range functions
such that MJ =MJ ′, where MJ and MJ ′ are given by (4.5), then J(x, ξ) =
J ′(x, ξ) for a.e. (x, ξ) ∈ ΠG/∆∗ ×ΠΓ/E∗. That is, J and J ′ are equal almost
everywhere.

Proof of Theorem 5.1. If V is an (F,∆)-invariant space, then, since
L2(G) is separable, it follows that V = S(F,∆)(A) for some countable subset

A of L2(G).
Let us consider the function J defined as

J(x, ξ) = span{T (Tdϕ)(x, ξ) : d ∈ ΠF/E , ϕ ∈ A}
defined on ΠG/∆∗ ×ΠΓ/E∗ and taking values in {subspaces of `2(ΠE∗/∆)}.
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By Lemma 4.8, J is a shift-modulation range function. We must prove
that T V = MJ where MJ is as in (4.5), and that J is measurable.

We first show T V = MJ .

Take δ ∈ ∆, y ∈ F written as y = z + d with z ∈ E and d ∈ ΠF/E , and
ϕ ∈ A. Then, by Lemma 4.4,

T (MδTyϕ)(x, ξ) = (x, δ)(−z, ξ)T (Tdϕ)(x, ξ) for a.e. (x, ξ)∈ΠG/∆∗×ΠΓ/E∗ .

Thus, since T (Tdϕ)(x, ξ) ∈ J(x, ξ), we have T (MδTyϕ)(x, ξ) ∈ J(x, ξ) for
a.e. (x, ξ) ∈ ΠG/∆∗ ×ΠΓ/E∗ . Therefore,

T (span{MδTyϕ : ϕ ∈ A, y ∈ F, δ ∈ ∆}) ⊆MJ .

Using the fact that T is a continuous function and Remark 4.6, we can
compute

T V = T (span{MδTyϕ : ϕ ∈ A, y ∈ F, δ ∈ ∆})
⊆ T (span{MδTyϕ : ϕ ∈ A, y ∈ F, δ ∈ ∆})
⊆MJ = MJ .

Let us suppose that T V (MJ . Then there exists Ψ ∈MJ \ {0} orthog-
onal to T V . In particular, 〈Ψ, T (MδTyϕ)〉 = 0 for all ϕ ∈ A, y ∈ F and
δ ∈ ∆. Hence, if we write y = z + d with z ∈ E and d ∈ ΠF/E , by Lemma
4.4 we obtain

0 =
�

ΠG/∆∗

�

ΠΓ/∆

〈Ψ(x, ξ), T (MδTyϕ)(x, ξ)〉 dmΓ (ξ) dmG(x)

=
�

ΠG/∆∗

�

ΠΓ/∆

(x, δ)(−z, ξ)〈Ψ(x, ξ), T (Tdϕ)(x, ξ)〉 dmΓ (ξ) dmG(x)

=
�

ΠG/∆∗

�

ΠΓ/∆

ηδ(x)η−z(ξ)〈Ψ(x, ξ), T (Tdϕ)(x, ξ)〉 dmΓ (ξ) dmG(x),

where ηδ and η−z are as in Proposition 2.3.

If we define ν(δ,z)(x, ξ) := ηδ(x)η−z(ξ), then, using Proposition 2.3, it can

be seen that {ν(δ,z)}(δ,z)∈∆×E is an orthogonal basis for L2(ΠG/∆∗×ΠΓ/E∗).
Therefore, 〈Ψ(x, ξ), T (Tdϕ)(x, ξ)〉 = 0 for a.e. (x, ξ) ∈ ΠG/∆∗ ×ΠΓ/E∗ and
all d ∈ ΠF/E .

This shows that Ψ(x, ξ) ∈ J(x, ξ)⊥ for a.e. (x, ξ) ∈ ΠG/∆∗ × ΠΓ/E∗ ,
and since Ψ ∈ MJ , we must have Ψ = 0, which is a contradiction. Thus
T V = MJ .

Let us now prove that J is measurable. If P is the orthogonal projection
on MJ , I is the identity mapping in L2(ΠG/∆∗ ×ΠΓ/E∗ , `

2(ΠE∗/∆)), and if

Ψ ∈ L2(ΠG/∆∗ ×ΠΓ/E∗ , `
2(ΠE∗/∆)), we deduce that (P −I)Ψ is orthogonal

to MJ . Then, by the above reasoning, (P − I)Ψ(x, ξ) ∈ J(x, ξ)⊥ for a.e.
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(x, ξ) ∈ ΠG/∆∗ ×ΠΓ/E∗ . Thus,

P(x,ξ)((P − I)Ψ(x, ξ)) = 0 for a.e. (x, ξ) ∈ ΠG/∆∗ ×ΠΓ/E∗ ,

and therefore PΨ(x, ξ) = P(x,ξ)(Ψ(x, ξ)) for a.e. (x, ξ) ∈ ΠG/∆∗×ΠΓ/E∗ . If in
particular Ψ(x, ξ) = a for all (x, ξ) ∈ ΠG/∆∗×ΠΓ/E∗ , we find that Pa(x, ξ) =
P(x,ξ)(a). Therefore, since (x, ξ) 7→ Pa(x, ξ) is measurable, (x, ξ) 7→ P(x,ξ)a
is measurable as well.

Conversely, if J is a shift-modulation range function, then by Proposition
4.7, V := T −1MJ is an (F,∆)-invariant space. Hence V = S(F,∆)(A) for

some countable subset A of L2(G), and by Lemma 4.8 we can define the
shift-modulation range function J ′ as

J ′(x, ξ) = span{T (Tdϕ)(x, ξ) : d ∈ ΠF/E , ϕ ∈ A}
for a.e. (x, ξ) ∈ ΠG/∆∗ ×ΠΓ/E∗ . Thus, as we have shown, J ′ is measurable
and MJ ′ = T V = MJ . Then Lemma 5.2 gives us J = J ′ a.e.

This also proves that the correspondence between (F,∆)-invariant spaces
and shift-modulation measurable range functions is one-to-one and onto.

Remark 5.3. All the results of this paper are valid for uniform lattices
satisfying Standing Assumptions 2.6. However, for shift-modulation invari-
ant spaces where the translations (modulations) are along the whole group
(dual group) we can still give a characterization as a corollary of Wiener’s
theorem (see [Hel64], [Sri64], [Rud87] and [HS64]).

We say that a set B ⊆ G is K-translation invariant if B + k = B for all
k ∈ K.

Proposition 5.4. Let V ⊆ L2(G) be a closed subspace and Λ ⊆ Γ be
a closed subgroup. Then V is (G,Λ)-invariant if and only if there exists an
mΓ -measurable set B ⊆ Γ which is Λ-translation invariant and such that

V = {f ∈ L2(G) : supp(f̂) ⊆ B}.

Proof. By Wiener’s theorem, there exists an mΓ -measurable set B ⊆ Γ
satisfying V = {f ∈ L2(G) : supp(f̂) ⊆ B}. Since V is Λ-modulation
invariant, it follows that B is Λ-translation invariant.

The following proposition is analogous to the previous one for the case
when the subspace is invariant along every modulation.

Proposition 5.5. Let V ⊆ L2(G) and T ⊆ G be a closed subgroup.
Then V is (T, Γ )-invariant if and only if there exists an mG-measurable set
A ⊆ G which is T -translation invariant and such that

V = {f ∈ L2(G) : supp(f) ⊆ A}.

Finally, we have the following corollary.
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Corollary 5.6. Let V ⊆ L2(G) be a non-zero closed subspace. If V is
(G,Γ )-invariant, then V = L2(G).

6. Examples. In order to illustrate the constructions of the previous
sections we now present some examples.

Example 6.1. Let G = R. Then Γ = R. Now fix F = 2
3Z as the lattice

for translations and ∆ = Z as the lattice for modulations. Since ∆∗ = Z,
the lattice E = F ∩∆∗ is 2Z and F +∆∗ = 2

3Z + Z = 1
3Z. Thus, E∗ = 1

2Z
and E∗/∆ ≈ Z2. Hence, we can fix ΠΓ/E∗ = [0, 1/2) and ΠE∗/∆ = {0, 1/2}.

On the other hand, we set ΠF/E = {0,−2/3,−4/3} and ΠG/(F+∆∗) =
[0, 1/3). Then, by (2.4), ΠG/∆∗ = [0, 1/3) ∪ [2/3, 1) ∪ [4/3, 5/3) is a section
for G/∆∗.

Therefore, the fundamental isometry of Definition 4.3 applied to f ∈
L2(R) is given by the formula

T f(x, ξ) = (Zf(x, ξ), Zf(x, ξ + 1/2)),

where x ∈ [0, 1/3) ∪ [2/3, 1) ∪ [4/3, 5/3), ξ ∈ [0, 1/2) and Z is the Zak
transform in R given by Zf(x, ξ) =

∑
k∈Z f(x− k)e2πikξ.

Let ϕ ∈ L2(R) and let SF,∆(ϕ) be the (F,∆)-invariant space generated
by {ϕ}. If J is the shift-modulation range function associated to SF,∆(ϕ)
through Theorem 5.1, then

J(x, ξ) = span{T ϕ(x, ξ), T ϕ(x+ 2/3, ξ), T ϕ(x+ 4/3, ξ)},
where x ∈ [0, 1/3) and ξ ∈ [0, 1/2).

In the next example we change the lattice of translations. We will see
that the fiberization isometry in Example 6.2 has the same formula as in
Example 6.1.

Example 6.2. Consider now G = R, F = 2
5Z and ∆ = Z. Then E = 2Z.

By the same reasoning as in Example 6.1 we find that ΠG/∆∗ = [0, 1/5) ∪
[2/5, 3/5) ∪ [4/5, 1) ∪ [6/5, 7/5) ∪ [8/5, 9/5) and ΠΓ/E∗ = [0, 1/2). Hence, if

ϕ ∈ L2(R) the fiberization isometry is

T ϕ(x, ξ) = (Zϕ(x, ξ), Zϕ(x, ξ + 1/2)),

where x ∈ [0, 1/5)∪ [2/5, 3/5)∪ [4/5, 1)∪ [6/5, 7/5)∪ [8/5, 9/5), ξ ∈ [0, 1/2)
and Z is the usual Zak transform in R.

In this case, sinceΠF/E ={0,−2/5,−4/5,−6/5,−8/5}, the shift-modula-
tion range function associated to SF,∆(ϕ) is

J(x, ξ) =

span{T ϕ(x, ξ), T ϕ(x+2/5, ξ), T ϕ(x+4/5, ξ), T ϕ(x+6/5, ξ), T ϕ(x+8/5, ξ)},
where x ∈ [0, 1/5) and ξ ∈ [0, 1/2).



Shift-modulation invariant spaces 17

Remark 6.3. Note that in Examples 6.1 and 6.2, the fiberization isome-
tries have the same formula but different domains. This is due to the fact
that the lattice E is the same in both cases. The difference here appears in
the translations that are outside of E and they are mainly reflected in the
shift-modulation range function.

Our last example is for G = T.

Example 6.4. Let G = T. Then Γ = Z. Let us fix m,n ∈ N. We consider

F =
1

m
Zm =

{
0,

1

m
,

2

m
, . . . ,

m− 1

m

}
⊆ T

as the lattice for translations and ∆ = nZ as the lattice for modulations.
Since ∆∗ = 1/nZn = {0, 1/n, 2/n, . . . , (n−1)/n}, we see that E = F ∩∆∗ =

1
(n:m)Z(n:m) where (n : m) is the greatest common divisor of n and m, and

that F + ∆∗ = 1
[n:m]Z[n:m] where [n : m] is the least common multiple

of n and m. The construction of the fiberization isometry and the shift-
modulation range function can be done for general n and m. For simplicity
we fix m = 15 and n = 12.

Since (12 : 15) = 3 and [12 : 15] = 60, we have E = {0, 1/3, 2/3} and
F + ∆∗ = 1

60Z60. Then E∗ = 3Z and we can fix ΠE∗/∆ as {1, 3, 6, 9} and
ΠΓ/E∗ as {0, 1, 2}. Now, in order to construct ΠG/∆∗ following (2.4) we
choose

ΠG/F+∆∗ =

[
0,

1

60

)
and ΠF/E =

{
0,

3

15
,

6

15
,

9

15
,
12

15

}
.

Then the section ΠG/∆∗ is

ΠG/∆∗ =

[
0,

1

60

)
∪
[

12

60
,
13

60

)
∪
[

24

60
,
25

60

)
∪
[

36

60
,
37

60

)
∪
[

48

60
,
49

60

)
.

For ϕ ∈ L2(T) the fiberization isometry applied to ϕ is

T ϕ(x, ξ) = (Zϕ(x, ξ), Zϕ(x, ξ + 3), Zϕ(x, ξ + 6), Zϕ(x, ξ + 9))

where x ∈ ΠG/∆∗ , ξ ∈ ΠΓ/E∗ = {0, 1, 2} and the Zak transform is given by

Zϕ(x, ξ) =
∑11

j=0 ϕ(x− j/12)e2ϕii
j
12
ξ.

We now focus on the particular case when ϕ = χ[0,1/60). For all ξ ∈
{0, 1, 2}, Zϕ(x, ξ) = 1 if x ∈ [0, 1/60) and Zϕ(x, ξ) = 0 if x 6∈ [0, 1/60).
Moreover, it can be proven that for each r ∈ {0, 3, 6, 9, 12},

Z(Tr/15ϕ)(x, ξ) =

{
1 if x ∈

[
4r
60 ,

4r+1
60

)
,

0 if x ∈ ΠG/∆∗ \
[
4r
60 ,

4r+1
60

)
.
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Then, for all ξ ∈ {0, 1, 2} and for each r ∈ {0, 3, 6, 9, 12},

(6.1) T (T r
15
ϕ)(x, ξ) =

{
(1, 1, 1, 1) if x ∈

[
4r
60 ,

4r+1
60

)
,

(0, 0, 0, 0) if x ∈ ΠG/∆∗ \
[
4r
60 ,

4r+1
60

)
.

The shift-modulation range function associated to S(F,∆)(ϕ) is

J(x, ξ) = span
{
T (Tr/15ϕ)(x, ξ) : r ∈ {0, 3, 6, 9, 12}

}
,

and, using (6.1) we obtain J(x, ξ) = span{(1, 1, 1, 1)} for (x, ξ) ∈ [0, 1/60)×
{0, 1, 2}.

Now consider the translation of ϕ = χ[0,1/60) by 1/2. We will show that
T1/2ϕ /∈ S(F,∆)(ϕ). With similar computations to the above, it can be shown
that, for all ξ ∈ {0, 1, 2},

T (T1/2ϕ)(x, ξ)

=

{
(1 + eπiξ, 1− eπiξ, 1 + eπiξ, 1− eπiξ) if x ∈ [0, 1/60),

(0, 0, 0, 0) if x ∈ ΠG/∆∗ \ [0, 1/60).

From this, we deduce that T (T1/2ϕ)(x, 1) = (0, 2, 0, 2) /∈ J(x, 1) for x ∈
[0, 1/60). Using Theorem 5.1 we conclude that T1/2ϕ /∈ S(F,∆)(ϕ).
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