When unit groups of continuous inverse algebras are regular Lie groups

by

HELGE GLÖCKNER (Paderborn) and KARL-HERMANN NEEB (Erlangen)

Abstract. It is a basic fact in infinite-dimensional Lie theory that the unit group A^{\times} of a continuous inverse algebra A is a Lie group. We describe criteria ensuring that the Lie group A^{\times} is regular in Milnor's sense. Notably, A^{\times} is regular if A is Mackey-complete and locally m-convex.

1. Introduction and statement of the main result. A locally convex, unital, associative topological algebra A over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ is called a *continuous inverse algebra* if its group A^{\times} of invertible elements is open and the inversion map $\iota: A^{\times} \to A, x \mapsto x^{-1}$, is continuous (cf. [20]). Then ι is \mathbb{K} -analytic and hence A^{\times} is a \mathbb{K} -analytic Lie group [6]. Our goal is to describe conditions ensuring that the Lie group A^{\times} is well-behaved, i.e., it is a regular Lie group in the sense of Milnor [16].

To recall this notion, let G be a Lie group modelled on a locally convex space E, with identity element 1, its tangent bundle TG and the Lie algebra $\mathfrak{g} := T_1 G \cong E$. Given $g \in G$ and $v \in T_1 G$, let $\lambda_g : G \to G$, $x \mapsto gx$ be left translation by g and $gv := T_1(\lambda_g)(v) \in T_g G$. If $\gamma : [0,1] \to \mathfrak{g}$ is a continuous map, then there exists at most one C^1 -map $\eta : [0,1] \to G$ such that

$$\eta'(t) = \eta(t)\gamma(t)$$
 for all $t \in [0,1]$, and $\eta(0) = 1$.

If such an η exists, it is called the *evolution of* γ . The Lie group G is called *regular* if each $\gamma \in C^{\infty}([0,1],\mathfrak{g})$ admits an evolution η_{γ} , and the map evol: $C^{\infty}([0,1],\mathfrak{g}) \to G, \gamma \mapsto \eta_{\gamma}(1)$, is smooth (see [16] and [17], where also many applications of regularity are described). If G is regular, then its modelling space E is *Mackey-complete* in the sense that every Lipschitz

²⁰¹⁰ Mathematics Subject Classification: Primary 22E65; Secondary 34G10, 46G20, 46H05, 58B10.

Key words and phrases: continuous inverse algebra, Q-algebra, Waelbroeck algebra, locally m-convex algebra, infinite-dimensional Lie group, regular Lie group, regularity, left logarithmic derivative, product integral, evolution, initial value problem, parameter dependence.

curve in E admits a Riemann integral (¹) (as shown in [10]). It is a notorious open problem whether, conversely, every Lie group modelled on a Mackey-complete locally convex space is regular ([17, Problem II.2]; cf. [16]).

As a tool for the discussion of A^{\times} , we let $\mu_n \colon A^n \to A$ be the *n*-linear map defined via $\mu_n(x_1, \ldots, x_n) := x_1 \cdots x_n$, for $n \in \mathbb{N}$. Given seminorms $p, q \colon A \to [0, \infty[$, we define $\overline{B}_1^q(0) := \{x \in A : q(x) \leq 1\}$ and

$$\|\mu_n\|_{p,q} := \sup\{p(\mu_n(x_1,\ldots,x_n)) : x_1,\ldots,x_n \in \overline{B}_1^q(0)\} \in [0,\infty].$$

Our regularity criterion now reads as follows:

THEOREM 1.1. Let A be a Mackey-complete continuous inverse algebra such that the following condition is satisfied:

(*) For each continuous seminorm p on A, there exists a continuous seminorm q on A and r > 0 (which may depend on p and q) such that

$$\sum_{n=1}^{\infty} r^n \|\mu_n\|_{p,q} < \infty.$$

Then A^{\times} is a regular Lie group in Milnor's sense.

In fact, A^{\times} even has certain stronger regularity properties (see Proposition 4.4). Of course, by Hadamard's formula for the radius of convergence of a power series, condition (*) is equivalent to (²)

$$\limsup_{n \to \infty} \sqrt[n]{\|\mu_n\|_{p,q}} < \infty.$$

It is also equivalent to the existence of $M \in [0, \infty)$ such that $\|\mu_n\|_{p,q} \leq M^n$ for all $n \in \mathbb{N}$.

REMARK 1.2. The authors do not know whether condition (*) can be omitted, i.e., whether A^{\times} is regular for every Mackey-complete continuous inverse algebra A. Here are some preliminary considerations:

If A is a continuous inverse algebra, then the map $\pi_n \colon A \to A, x \mapsto x^n$, is a continuous homogeneous polynomial of degree n, for each $n \in \mathbb{N}_0$. It is known that the analytic inversion map $\iota \colon A^{\times} \to A$ is given by Neumann's series, $\iota(1-x) = \sum_{n=0}^{\infty} x^n = \sum_{n=0}^{\infty} \pi_n(x)$, for x in some 0-neighbourhood of A [6, Lemma 3.3]. Hence, for each continuous seminorm p on A, there exists a continuous seminorm q on A and s > 0 such that

$$\sum_{n=1}^{\infty} s^n \|\pi_n\|_{p,q} < \infty,$$

(²) If $\|\mu_n\|_{p,q} < \infty$, then also $\|\mu_k\|_{p,q} < \infty$ for all $k \in \{1, \ldots, n\}$. In fact, $\|\mu_k\|_{p,q} \le q(1)^{n-k} \|\mu_n\|_{p,q}$ since $\mu_k(x_1, \ldots, x_k) = \mu_n(1, \ldots, 1, x_1, \ldots, x_k)$.

 $^(^{1})$ See [13] for a detailed discussion of this property.

where $\|\pi_n\|_{p,q} := \sup\{p(\pi_n(x)) : x \in \overline{B}_1^q(0)\}$ (cf. [2, Proposition 5.1] (³)). Let S_n be the symmetric group of all permutations of $\{1, \ldots, n\}$ and let $\mu_n^{\text{sym}} : A^n \to A, (x_1, \ldots, x_n) \mapsto (1/n!) \sum_{\sigma \in S_n} x_{\sigma(1)} \cdots x_{\sigma(n)}$ be the symmetrization of μ_n . Then $\pi_n(x) = \mu_n^{\text{sym}}(x, \ldots, x)$ and thus $\|\mu_n^{\text{sym}}\|_{p,q} \leq (n^n/n!)\|\pi_n\|_{p,q}$ by the Polarization Formula (in the form [11, p. 34, (2)]). Since $\lim_{n\to\infty} (n/\sqrt[n]{n!}) = e$ is Euler's constant (as a consequence of Stirling's Formula), it follows that

(1.1)
$$\sum_{n=1}^{\infty} t^n \|\mu_n^{\text{sym}}\|_{p,q} < \infty \quad \text{for each } t \in]0, s/e[.$$

In general, it is not clear how one could give good estimates for $\|\mu_n\|_{p,q}$ in terms of $\|\mu_n^{\text{sym}}\|_{p,q}$. Hence, it does not seem to be clear in general whether (1.1) implies the existence of some r > 0 with (*).

However, (*) is satisfied in some important cases. Following [14], a topological algebra A is called *locally m-convex* if its topology arises from a set of seminorms q which are *submultiplicative*, i.e., $q(xy) \leq q(x)q(y)$ for all $x, y \in A$.

COROLLARY 1.3. Let A be a Mackey-complete continuous inverse algebra. If A is commutative or locally m-convex, then A^{\times} is a regular Lie group.

Proof. In fact, if A is commutative, then $\mu_n = \mu_n^{\text{sym}}$, whence (*) is satisfied with any $r \in]0, s/e[$ as in (1.1). Therefore Theorem 1.1 applies (⁴). If A is locally m-convex, then for every continuous seminorm p on A, there is a submultiplicative continuous seminorm q on A such that $p \leq q$. Using the submultiplicativity, we see that $\|\mu_n\|_{p,q} \leq \|\mu_n\|_{q,q} \leq 1$. Thus (*) is satisfied with any $r \in]0, 1[$, and Theorem 1.1 applies.

It can be shown that every Mackey-complete, commutative continuous inverse algebra is locally m-convex (cf. [19]).

REMARK 1.4. We mention that there is a quite direct, alternative proof for the corollary if A is locally m-convex and *complete* $(^5)$. The easier argu-

^{(&}lt;sup>3</sup>) If $\mathbb{K} = \mathbb{R}$, we can apply the proposition to $A_{\mathbb{C}}$, which is a complex continuous inverse algebra (see, e.g., [6, Proposition 3.4]).

^{(&}lt;sup>4</sup>) Alternative proof: (A, +) is regular, as it is Mackey-complete [17, Proposition II.5.6]. Since exp: $A \to A^{\times}$ is a homomorphism of groups (as A^{\times} is abelian) and a local diffeomorphism (see [6, Theorem 5.6]), it follows that also A^{\times} is regular [18, Proposition 3].

^{(&}lt;sup>5</sup>) Then $A = \varprojlim A_q$ is a projective limit of Banach algebras (where q ranges through the set of all submultiplicative continuous seminorms on A). Being a Banach–Lie group, each A_q^{\times} is regular [16]. Then $C^{\infty}([0,1], A) = \varprojlim C^{\infty}([0,1], A_q)$ and $\operatorname{evol}_{A^{\times}} = \varprojlim \operatorname{evol}_{A_q^{\times}}$ is a smooth evolution (cf. [1, Lemma 10.3]).

ments fail however if A is not complete, but merely sequentially complete or Mackey-complete. By contrast, our more elaborate method does not require that A be complete: Mackey-completeness suffices.

REMARK 1.5. Our Theorem 1.1 is a variant of the (possibly too optimistic) Theorem IV.1.11 announced in the survey [17], and its proof expands the sketch of proof given there. To avoid the difficulties described in Remark 1.2, we added condition (*).

REMARK 1.6. Unit groups of Mackey-complete continuous inverse algebras are so-called *BCH-Lie groups* [6, Theorem 5.6], i.e., they admit an exponential function which is an analytic diffeomorphism around 0 (see [5], [17], [18] for information on such groups). Inspiration for the studies came from an article by Robart [18]. He pursued the (possibly too optimistic) larger goal to show that every BCH-Lie group with Mackey-complete modelling space is regular. However, there seem to be gaps in his arguments (⁶).

REMARK 1.7. The following questions are open:

- (a) Are there examples of Mackey-complete continuous inverse algebras which satisfy (*) but are not locally m-convex? Or even:
- (b) Does every Mackey-complete continuous inverse algebra satisfy (*)?

2. Notation and preparatory results

Basic notation. Let $\mathbb{N} = \{1, 2, ...\}$ and $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. If X is a set and $n \in \mathbb{N}$, we write $X^n := X \times \cdots \times X$ (with n factors). If $f : X \to Y$ is a map, we abbreviate $f^n := f \times \cdots \times f : X^n \to Y^n$, $(x_1, \ldots, x_n) \mapsto (f(x_1), \ldots, f(x_n))$. If $(E, \|\cdot\|_E)$ and $(F, \|\cdot\|_F)$ are normed spaces and $\beta : E^n \to F$ is a continuous n-linear map, we write $\|\beta\|_{\text{op}}$ for its operator norm, defined as usual as $\sup\{\|\beta(x_1, \ldots, x_n)\|_F : x_1, \ldots, x_k \in E, \|x_1\|_E, \ldots, \|x_n\|_E \leq 1\}$. If E is a locally convex space, we let P(E) be the set of all continuous seminorms on E. If $p \in P(E)$, we consider the factor space $E_p := E/p^{-1}(0)$ as a normed space with the norm $\|\cdot\|_p$ given by $\|x+p^{-1}(0)\|_p := p(x)$. Then the canonical map $\pi_p : E \to E_p, x \mapsto x + p^{-1}(0)$, is linear and continuous, with $\|\pi_p(x)\|_p = p(x)$.

Weak integrals. Recall that if E is a locally convex space, $a \leq b$ are reals and $\gamma: [a, b] \to E$ a continuous map, then the weak integral $\int_a^b \gamma(s) ds$ (if it exists) is the unique element of E such that $\lambda(\int_a^b \gamma(s) ds) = \int_a^b \lambda(\gamma(s)) ds$ for each continuous linear functional λ on E. If $\alpha: E \to F$ is a continuous

^{(&}lt;sup>6</sup>) For example, it is unclear whether the limit γ_u constructed in the proof of [18, Proposition 7] takes its values in Aut(\mathcal{L}) (as observed by K.-H. Neeb), and no explanation is given how a smooth curve g in the local group with Ad(g) = γ_u can be obtained.

linear map between locally convex spaces and $\int_a^b \gamma(s) ds$ (as before) exists in E, then also $\int_a^b \alpha(\gamma(s)) ds$ exists in F and is given by

(2.1)
$$\int_{a}^{b} \alpha(\gamma(s)) \, ds = \alpha \Big(\int_{a}^{b} \gamma(s) \, ds \Big)$$

(see, e.g., [10] for this observation). If E is sequentially complete, then $\int_{a}^{b} \gamma(s) ds$ always exists (cf. [2, Lemma 1.1] or [11, 1.2.3]).

 C^r -curves. Let $r \in \mathbb{N}_0 \cup \{\infty\}$. As usual, a C^r -curve in a locally convex space E is a continuous function $\gamma: I \to E$ on a non-degenerate interval Isuch that the derivatives $\gamma^{(k)}: I \to E$ of order k exist for all $k \in \mathbb{N}$ with $k \leq r$, and are continuous (see, e.g., [10] for more details). The C^{∞} -curves are also called *smooth curves*.

Smooth maps. If E and F are real locally convex spaces, $U \subseteq E$ is an open subset and $r \in \mathbb{N}_0 \cup \{\infty\}$, then a function $f: U \to F$ is called C^r if f is continuous, the iterated directional derivatives $d^{(k)}f(x, y_1, \ldots, y_k) :=$ $(D_{y_k} \ldots D_{y_1} f)(x)$ exist for all $k \in \mathbb{N}$ such that $k \leq r, x \in U$ and y_1, \ldots, y_k $\in E$, and define continuous functions $d^{(k)}f: U \times E^k \to F$. If U is not open, but is a convex (or locally convex) subset of E with dense interior U^0 , we say that f is C^r if f is continuous, $f|_{U^0}$ is C^r and $d^{(k)}(f|_{U^0}): U^0 \times E^k \to F$ has a continuous extension $d^{(k)}f: U \times E^k \to F$ for each $k \in \mathbb{N}$ such that $k \leq r$. C^{∞} -maps are also called *smooth*. We abbreviate $df := d^{(1)}f$. It is known that the Chain Rule holds in the form $d(f \circ g)(x, y) = df(g(x), dg(x, y))$, and that compositions of C^r -maps are C^r . Moreover, a C^0 -curve $\gamma: I \to E$ is a C^r -curve if and only if it is a C^r -map, in which case $\gamma'(t) = d\gamma(t, 1)$ (see [10] for all of these basic facts; cf. also [15], [16], and [4]).

Analytic maps. If E and F are complex locally convex spaces and $n \in \mathbb{N}$, then a function $p: E \to F$ is called a *continuous homogeneous polynomial* of degree $n \in \mathbb{N}_0$ if $p(x) = \beta(x, \ldots, x)$ for some continuous *n*-linear map $\beta: E^n \to F$ (if n = 0, this means a constant function). A map $f: U \to F$ on an open set $U \subseteq E$ is called *complex-analytic* (or \mathbb{C} -analytic) if it is continuous and for each $x \in U$, there is a 0-neighbourhood $Y \subseteq E$ with $x + Y \subseteq U$ and continuous homogeneous polynomials $p_n: E \to F$ of degree n such that

$$(\forall y \in Y)$$
 $f(x+y) = \sum_{n=0}^{\infty} p_n(y)$

(see [2], [4] and [10] for further information). Following [16], [4] and [10] (but deviating from [2]), given real locally convex spaces E, F, we call a function $f: U \to F$ on an open set $U \subseteq E$ real-analytic (or \mathbb{R} -analytic) if it extends to a complex-analytic map $V \to F_{\mathbb{C}}$, defined on some open subset $V \subseteq E_{\mathbb{C}}$

of the complexification of E, such that $U \subseteq V$. For $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, it is known that compositions of \mathbb{K} -analytic maps are \mathbb{K} -analytic. Every \mathbb{K} -analytic map is smooth (see, e.g., [10] or [4] for both of these facts).

We shall use the following lemma (proved in Appendix A):

LEMMA 2.1. Let E and F be complex locally convex spaces, \widetilde{F} be a completion of F such that $F \subseteq \widetilde{F}$ as a dense vector subspace, and $p_n \colon E \to F$ be continuous homogeneous polynomials of degree n for $n \in \mathbb{N}_0$. Assume that

$$f(x) := \sum_{n \in \mathbb{N}_0} p_n(x)$$

converges in \widetilde{F} for all x in a balanced, open 0-neighbourhood $U \subseteq E$, and $f: U \to \widetilde{F}$ is continuous. If F is Mackey-complete, then $f(x) \in F$ for all $x \in U$ and $f: U \to F$ is \mathbb{C} -analytic.

Function spaces. If *E* is a locally convex space and $r \in \mathbb{N}_0 \cup \{\infty\}$, let $C^r([0,1], E)$ be the space of all C^r -maps from [0,1] to *E*. We endow $C^r([0,1], E)$ with the locally convex vector topology defined by the seminorms $\|\cdot\|_{C^k, p}$ given by

$$\|\gamma\|_{C^{k},p} := \max_{j=0,\dots,k} \max_{t \in [0,1]} p(\gamma^{(j)}(t))$$

for p in the set of continuous seminorms on E and $k \in \mathbb{N}_0$ with $k \leq r$. We abbreviate $C([0,1], E) := C^0([0,1], E)$. Three folklore lemmas concerning these function spaces will be used (the proofs can be found in Appendix A):

LEMMA 2.2. Let E and F be locally convex spaces, $\alpha \colon E \to F$ be a continuous linear map, and $r \in \mathbb{N}_0 \cup \{\infty\}$. Then also the map

$$\alpha_* := C^r([0,1],\alpha) \colon C^r([0,1],E) \to C^r([0,1],F), \quad \gamma \mapsto \alpha \circ \gamma,$$

is continuous and linear. If α is a topological embedding (i.e., a homeomorphism onto its image), then also α_* is a topological embedding.

LEMMA 2.3. If E is a locally convex space and $r \in \mathbb{N}_0 \cup \{\infty\}$, then the topology on the space $C^r([0,1], E)$ is initial with respect to the mappings $(\pi_p)_* : C^r([0,1], E) \to C^r([0,1], E_p), \gamma \mapsto \pi_p \circ \gamma$, for $p \in P(E)$.

LEMMA 2.4. If $r \in \mathbb{N}_0 \cup \{\infty\}$ and E is a locally convex space which is complete (resp., Mackey-complete), then also $C^r([0,1], E)$ is complete (resp., Mackey-complete).

3. Picard iteration of paths in a topological algebra

SETTING 3.1. Let A be a locally convex topological algebra over \mathbb{C} , i.e., a unital, associative, complex algebra, equipped with a Hausdorff locally

convex vector topology making the map $A \times A \to A$, $(x, y) \mapsto xy$, continuous. We assume that condition (*) from Theorem 1.1 is satisfied (⁷).

If E is a locally convex space, then a function $\gamma: [0,1] \to E$ is a Lipschitz curve if $\left\{\frac{\gamma(t)-\gamma(s)}{t-s}: s \neq t \in [0,1]\right\}$ is bounded in E (cf. [13, p. 9]). For our current purposes, we endow the space Lip([0,1], E) of all such curves with the topology \mathcal{O}_{C^0} induced by $C^0([0,1], E)$.

LEMMA 3.2 (Picard Iteration). Let A be as in 3.1. If A is sequentially complete and $\gamma \in C([0,1], A)$, we can define a sequence $(\eta_n)_{n \in \mathbb{N}}$ in $C^1([0,1], A)$ via

$$\eta_0(t) := 1, \quad \eta_n(t) := 1 + \int_0^t \eta_{n-1}(t_n)\gamma(t_n) \, dt_n \quad \text{for } t \in [0,1] \text{ and } n \in \mathbb{N}.$$

Then:

- (a) The limit $\eta := \eta_{\gamma} := \lim_{n \to \infty} \eta_n$ exists in $C^1([0,1], A)$.
- (b) $\eta_n(t) = 1 + \sum_{k=1}^n \int_0^t \int_0^{t_k} \dots \int_0^{t_2} \gamma(t_1) \cdots \gamma(t_k) dt_1 \cdots dt_k \text{ for all } n \in \mathbb{N}_0$ and $t \in [0, 1]$, and thus

(3.1)
$$\eta(t) = 1 + \sum_{n=1}^{\infty} \int_{0}^{t} \int_{0}^{t_{n}} \cdots \int_{0}^{t_{2}} \gamma(t_{1}) \cdots \gamma(t_{n}) dt_{1} \cdots dt_{n}.$$

(c)
$$\eta'(t) = \eta(t)\gamma(t)$$
 and $\eta(0) = 1$

(d) The map $\Phi: C([0,1], A) \to C^1([0,1], A), \gamma \mapsto \eta_{\gamma}$, is \mathbb{C} -analytic.

If A is not sequentially complete, but Mackey-complete, then the $(\eta_n)_{n \in \mathbb{N}_0}$ can be defined and (a)–(c) hold for each $\gamma \in \text{Lip}([0, 1], A)$. Moreover,

(d)'
$$\Phi$$
: (Lip([0,1], A), \mathcal{O}_{C^0}) $\rightarrow C^1([0,1], A)$, $\gamma \mapsto \eta_{\gamma}$, is \mathbb{C} -analytic.

Proof. If A is sequentially complete, set X := C([0, 1], A); otherwise, set $X := \operatorname{Lip}([0, 1], A)$. Let \widetilde{A} be a completion of A such that $A \subseteq \widetilde{A}$. Then the inclusion map $\phi : C^1([0, 1], A) \to C^1([0, 1], \widetilde{A})$ is a topological embedding (Lemma 2.2) and $C^1([0, 1], \widetilde{A})$ is complete (Lemma 2.4). Hence also the closure $Y \subseteq C^1([0, 1], \widetilde{A})$ of the image $\operatorname{im}(\phi)$ is complete, and thus Y is a completion of $C^1([0, 1], A)$.

To prove (a), (b), (d), (d)', let $\gamma \in X$. Then all integrals needed to define η_n exist, and each η_n is C^1 , by the Fundamental Theorem of Calculus. A trivial induction shows that

(3.2)
$$\eta_n(t) = 1 + \sum_{k=1}^n \int_0^t \int_0^{t_k} \dots \int_0^{t_2} \gamma(t_1) \cdots \gamma(t_k) dt_1 \cdots dt_k$$

 $^(^{7})$ Note that A is not assumed to be a continuous inverse algebra in this section.

(as asserted in (b)). Likewise, if $n \in \mathbb{N}$ and $\gamma_1, \ldots, \gamma_n \in X$, then the weak integrals needed to define $\tau_n(\gamma_1, \ldots, \gamma_n) \colon [0, 1] \to A$,

$$t \mapsto \int_{0}^{t} \int_{0}^{t_n} \dots \int_{0}^{t_2} \gamma_1(t_1) \cdots \gamma_n(t_n) dt_1 \cdots dt_n$$

exist and $\tau_n(\gamma_1, \ldots, \gamma_n)$ is a C^1 -map. Since $\tau_n \colon X \to C^1([0, 1], A)$, $(\gamma_1, \ldots, \gamma_n) \mapsto \tau_n(\gamma_1, \ldots, \gamma_n)$, is an *n*-linear mapping, it follows that the map $\sigma_n \colon X \to C^1([0, 1], A)$, $\sigma_n(\gamma) \coloneqq \tau_n(\gamma, \ldots, \gamma)$, is a homogeneous polynomial of degree *n* (and this conclusion also holds for n = 0, if we define $\sigma_0(\gamma) \coloneqq 1$). If $p \in P(A)$, there is $q \in P(A)$ and $M \in [0, \infty]$ such that

$$(\forall n \in \mathbb{N}) \quad \|\mu_n\|_{p,q} \le M^n,$$

as a consequence of condition (*). Applying p to the iterated integral defining $\sigma_n(\gamma)(t)$, we deduce that

$$p(\sigma_n(\gamma)(t)) \le \frac{t^n}{n!} \|\mu_n\|_{p,q} \|\gamma\|_{C^0,q}^n \le \frac{t^n M^n}{n!} \|\gamma\|_{C^0,q}^n$$

for each $t \in [0, 1]$ and thus

(3.3)
$$\|\sigma_n(\gamma)\|_{C^0,p} \le \frac{M^n}{n!} \|\gamma\|_{C^0,q}^n$$

Also, $\sigma_0(\gamma)' = 0$, $\sigma_1(\gamma)'(t) = \gamma(t)$ and

(3.4)
$$\sigma_n(\gamma)'(t) = \int_0^t \int_0^{t_{n-1}} \dots \int_0^{t_2} \gamma(t_1) \cdots \gamma(t_{n-1}) \gamma(t) \, dt_1 \cdots dt_{n-1}$$

if $n \ge 2$, by the Fundamental Theorem of Calculus. Thus $\sigma_n(\gamma)' = \sigma_{n-1}(\gamma) \cdot \gamma$ for all $n \in \mathbb{N}$. Using $\eta_n = \sum_{k=0}^n \sigma_k(\gamma)$, we infer that

(3.5)
$$(\forall n \in \mathbb{N}) \quad \eta'_n(t) = \eta_{n-1}(t)\gamma(t)$$

which will be useful later. By (3.4), also

$$p(\sigma_n(\gamma)'(t)) \le \frac{t^{n-1}}{(n-1)!} \|\mu_n\|_{p,q} \|\gamma\|_{C^0,q}^n$$

and thus

(3.6)
$$\|\sigma_n(\gamma)'\|_{C^0,p} \le \frac{M^n}{(n-1)!} \|\gamma\|_{C^0,q}^n$$

Combining (3.3) and (3.6), we see that

(3.7)
$$\|\sigma_n(\gamma)\|_{C^{1,p}} \le \frac{M^n}{(n-1)!} \|\gamma\|_{C^{0,q}}^n.$$

Therefore $\sigma_n \colon X \to C^1([0,1], A)$ is a continuous homogeneous polynomial. Moreover, we obtain

$$\sum_{n=1}^{\infty} \|\sigma_n(\gamma)\|_{C^{1,p}} \le \sum_{n=1}^{\infty} \frac{M^n \|\gamma\|_{C^{0,q}}^n}{(n-1)!} = M \|\gamma\|_{C^{0,q}} e^{M \|\gamma\|_{C^{0,q}}} < \infty$$

This estimate entails that the series $\sum_{n=0}^{\infty} \sigma_n(\gamma)$ converges absolutely in the completion Y of $C^1([0,1], A)$. In particular, the limit

$$\Phi(\gamma) := \sum_{n=0}^{\infty} \sigma_n(\gamma) = \lim_{n \to \infty} \eta_n$$

exists in Y, and defines a function $\Phi: X \to Y$. We claim that Φ is continuous. If this is true, then we can exploit that $C^1([0, 1], A)$ is Mackey-complete by Lemma 2.4, and each σ_n takes its values inside $C^1([0, 1], A)$. Thus all hypotheses of Lemma 2.1 are satisfied, and we deduce that $\Phi(\gamma) \in C^1([0, 1], A)$ for each γ (entailing (a) and (b)), and that the map $\Phi: X \to C^1([0, 1], A)$ is complex-analytic (establishing (d) and (d)'). To establish the claim, we need only show that Φ is continuous as a map to $C^1([0, 1], \tilde{A})$. Identify $p \in P(A)$ with its continuous extension to a seminorm on \tilde{A} . Let $\pi_p: \tilde{A} \to ((\tilde{A})_p, \|\cdot\|_p)$ be the canonical map. By Lemma 2.3, Φ will be continuous if the maps $h := (\pi_p)_* \circ \Phi: X \to C^1([0, 1], (\tilde{A})_p)$ are continuous. It suffices that h is continuous on the ball $B_R := \{\gamma \in X : \|\gamma\|_{C^0, q} < R\}$ for each R > 0. However,

$$h(\gamma) = \sum_{n=0}^{\infty} \pi_p \circ \sigma_n(\gamma)$$

for $\gamma \in B_R$, where

$$\|\pi_p \circ \sigma_n(\gamma)\|_{C^1, \|\cdot\|_p} = \|\sigma_n(\gamma)\|_{C^1, p} \le \frac{M^n}{(n-1)!} \|\gamma\|_{C^0, q}^n \le \frac{M^n}{(n-1)!} R^n$$

for $n \in \mathbb{N}$, by (3.7). Hence

$$\sum_{n=0}^{\infty} \sup\{\pi_p \circ \sigma_n(\gamma) : \gamma \in B_R\} \le p(1) + MRe^{RM} < \infty,$$

entailing that $\sum_{k=0}^{n} ((\pi_p)_* \circ \sigma_n | B_R) \to h | B_R$ uniformly. Thus $h | B_R$ is continuous, being a uniform limit of continuous functions.

To prove (c), observe that because $\eta_n \to \eta$ in $C^1([0,1], A)$, we have $\eta'_n \to \eta'$ uniformly (and thus pointwise). Letting $n \to \infty$ in (3.5), we deduce that $\eta'(t) = \eta(t)\gamma(t)$.

4. Proof of Theorem 1.1. We establish our theorem as a special case of a more general result (Proposition 4.4). The latter deals with certain strengthened regularity properties (as used earlier in [7] and [3]):

DEFINITION 4.1. Let G be a Lie group modelled on a locally convex space, with Lie algebra \mathfrak{g} , and $k \in \mathbb{N}_0 \cup \{\infty\}$.

- (a) G is called strongly C^k -regular if every curve $\gamma \in C^k([0,1],\mathfrak{g})$ admits an evolution $\operatorname{Evol}(\gamma) \in C^1([0,1],G)$ and the mapping evol: $C^k([0,1],\mathfrak{g}) \to G, \gamma \mapsto \operatorname{Evol}(\gamma)(1)$, is smooth.
- (b) G is called C^{k} -regular if each $\gamma \in C^{\infty}([0,1],\mathfrak{g})$ has an evolution and the map evol: $(C^{\infty}([0,1],\mathfrak{g}), \mathcal{O}_{C^{k}}) \to G, \gamma \mapsto \operatorname{Evol}(\gamma)(1)$, is smooth, where $\mathcal{O}_{C^{k}}$ denotes the topology induced by $C^{k}([0,1],\mathfrak{g})$ on $C^{\infty}([0,1],\mathfrak{g})$.

The reader is referred to [8] and [9] for a discussion of these regularity properties (and applications depending thereon). Both C^{∞} -regularity and strong C^{∞} -regularity coincide with regularity in the usual sense. If $k \leq l$ and G is (strongly) C^k -regular, then G is also (strongly) C^l -regular.

REMARK 4.2. If A is a continuous inverse algebra, we identify the tangent bundle $T(A^{\times})$ of the open set A^{\times} with $A^{\times} \times A$ in the natural way. Let $\eta: [0,1] \to A^{\times}$ be a C^1 -curve and $\gamma: [0,1] \to A$ be continuous. Then $\eta'(t) = \eta(t)\gamma(t)$ holds in $T(A^{\times})$ (using $\eta': [0,1] \to T(A^{\times})$, and identifying the range A of γ with $\{1\} \times A \subseteq T_1(A^{\times})$) if and only if $\eta'(t) = \eta(t)\gamma(t)$ holds in A (where the product simply refers to the algebra multiplication, and $\eta': [0,1] \to A$ is the derivative of the A-valued C^1 -curve η).

The next lemma will help us to see that the A-valued map η associated to γ in Lemma 3.2 actually takes its values in A^{\times} if A is a continuous inverse algebra. Hence η will be the evolution of γ , by Remark 4.2.

LEMMA 4.3. Let A be a continuous inverse algebra, $\gamma \colon [0,1] \to A$ be continuous and $\eta \colon [0,1] \to A$ as well as $\zeta \colon [0,1] \to A$ be C^1 -curves. Assume that $\eta(0) = \zeta(0) = 1$ and

(4.1) $\eta'(t) = \eta(t)\gamma(t)$ and $\zeta'(t) = \zeta(t)\gamma(t)$ for all $t \in [0,1]$.

If $\zeta([0,1]) \subseteq A^{\times}$, then $\eta = \zeta$.

Proof. Recall from [6, proof of Lemma 3.1] that the differential of the inversion map $\iota: A^{\times} \to A$ is given by $d\iota(a, b) = -a^{-1}ba^{-1}$ for $a \in A^{\times}$ and $b \in A$. As a consequence, the derivative of the C^1 -curve $\iota \circ \zeta : [0, 1] \to A^{\times}$, $t \mapsto \zeta(t)^{-1}$, is given by

(4.2)
$$(\iota \circ \zeta)'(t) = -\zeta(t)^{-1}\zeta'(t)\zeta(t)^{-1}.$$

Now consider the C^1 -curve $\theta: [0,1] \to A$, $\theta(t) := \eta(t)\zeta(t)^{-1}$. Using the Product Rule, (4.2) and (4.1), we obtain

$$\begin{aligned} \theta'(t) &= \eta'(t)\zeta(t)^{-1} - \eta(t)\zeta(t)^{-1}\zeta'(t)\zeta(t)^{-1} \\ &= \eta(t)\gamma(t)\zeta(t)^{-1} - \eta(t)\zeta(t)^{-1}\zeta(t)\gamma(t)\zeta(t)^{-1} \\ &= \eta(t)\gamma(t)\zeta(t)^{-1} - \eta(t)\gamma(t)\zeta(t)^{-1} = 0. \end{aligned}$$

Hence $\theta(t) = \theta(0) = \eta(0)\zeta(0)^{-1} = 1$ for all $t \in [0, 1]$ and thus $\eta = \zeta$.

PROPOSITION 4.4. Let A be a continuous inverse algebra over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ which satisfies the condition (*) described in Theorem 1.1.

- (a) If A is sequentially complete, then A is strongly C^0 -regular and the map Evol: $C^0([0,1], A) \to C^1([0,1], A^{\times})$ is \mathbb{K} -analytic.
- (b) If A is Mackey-complete, then A is C^0 -regular and strongly C^1 -regular. Further, each $\gamma \in \text{Lip}([0,1], A)$ has an evolution $\text{Evol}(\gamma) \in C^1([0,1], A^{\times})$, and $\text{Evol}: (\text{Lip}([0,1], A), \mathcal{O}_{C^0}) \to C^1([0,1], A^{\times})$ is \mathbb{K} -analytic.

Proof. If A is sequentially complete, let X := C([0,1], A); otherwise, let $X := (\text{Lip}([0,1], A), \mathcal{O}_{C^0}).$

We assume first that $\mathbb{K} = \mathbb{C}$. Let $\Phi: X \to C^1([0,1], A)$ be the mapping provided by Lemma 3.2. Note that $C^1([0,1], A^{\times}) \subseteq C^1([0,1], A)$ is an identity neighbourhood, $\Phi(0) = 1$ (cf. (3.1)) and Φ is \mathbb{C} -analytic (see (d) or (d)' of Lemma 3.2) and hence continuous. Therefore, there exists an open 0-neighbourhood $\Omega \subseteq X$ such that $\Phi(\Omega) \subseteq C^1([0,1], A^{\times})$. By Lemma 3.2(c), Evol $(\gamma) := \Phi(\gamma)$ is an evolution for $\gamma \in \Omega$. Moreover, evol: $\Omega \to A^{\times}$, $\gamma \mapsto \text{Evol}(\gamma)(1) = \Phi(\gamma)(1)$, is \mathbb{C} -analytic, since Φ and the continuous linear point evaluation ev₁: $C^1([0,1], A) \to A, \zeta \mapsto \zeta(1)$, are \mathbb{C} -analytic.

If A is sequentially complete, Proposition 1.3.10 in [3] now shows that A^{\times} is strongly C⁰-regular (⁸).

If A is Mackey-complete, we see as in the proof of [3, Proposition 1.3.10] that each $\gamma \in \text{Lip}([0, 1], A)$ has an evolution $\text{Evol}(\gamma) \in C^1([0, 1], A^{\times})$.

In either case, we deduce with Lemmas 3.2 (c) and 4.3 that $\text{Evol} = \Phi$. As a consequence, $\text{Evol}: X \to C^1([0,1], A^{\times})$ is \mathbb{C} -analytic and thus (a) holds. In the situation of (b), note that also evol := $\text{ev}_1 \circ \text{Evol}: \text{Lip}([0,1], A) \to A^{\times}$ is \mathbb{C} -analytic. The inclusion maps $(C^{\infty}([0,1], A), \mathcal{O}_{C^0}) \to (\text{Lip}([0,1], A), \mathcal{O}_{C^0})$ and $C^1([0,1], A) \to (\text{Lip}([0,1], A), \mathcal{O}_{C^0})$ being continuous linear and hence \mathbb{C} -analytic, it follows that also the maps evol: $(C^{\infty}([0,1], A), \mathcal{O}_{C^0}) \to A^{\times}$ and evol: $C^1([0,1], A) \to A^{\times}$ are \mathbb{C} -analytic and thus smooth. Hence A^{\times} is C^0 -regular and strongly C^1 -regular.

If $\mathbb{K} = \mathbb{R}$, then also the complexification $A_{\mathbb{C}}$ of A is a continuous inverse algebra (see, e.g., [6, Proposition 3.4]) with the same completeness properties. In (a), we can identify $X_{\mathbb{C}}$ with $C^0([0,1], A_{\mathbb{C}})$; in the situation of (b), we can identify $X_{\mathbb{C}}$ with $\operatorname{Lip}([0,1], A_{\mathbb{C}})$. For $p \in P(A)$, let $p_{\mathbb{C}} \in P(A_{\mathbb{C}})$ be the seminorm defined via

$$p_{\mathbb{C}}(a+ib) := \inf\left\{\sum_{j} |z_j| p(x_j) : a+ib = \sum_{j} z_j x_j, \, x_j \in A, \, z_j \in \mathbb{C}\right\}$$

for $a, b \in A$ (which satisfies $\max\{p(a), p(b)\} \leq p_{\mathbb{C}}(a+ib) \leq p(a)+p(b)$). Then also $A_{\mathbb{C}}$ satisfies (*), as $\|(\mu_n)_{\mathbb{C}}\|_{p_{\mathbb{C}},q_{\mathbb{C}}} = \|\mu_n\|_{p,q}$. Let $\Phi \colon X_{\mathbb{C}} \to C^1([0,1],A_{\mathbb{C}})$

^{(&}lt;sup>8</sup>) Compare already [13, p. 409] and [18, Lemma 3] for similar arguments.

be the complex-analytic map provided by Lemma 3.2 (applied to $A_{\mathbb{C}}$ in place of A). By the complex case just discussed,

$$\Phi = \operatorname{Evol}_{(A_{\mathbb{C}})^{\times}} \colon X_{\mathbb{C}} \to C^1([0,1], (A_{\mathbb{C}})^{\times}).$$

If $\gamma \in X$, then $\Phi(\gamma)$ takes only values in the closed vector subspace A of $A_{\mathbb{C}} = A \oplus iA$, as is clear from (3.1). Hence $\Phi(\gamma) \in C^1([0,1],A)$ (see [10] or [1, Lemma 10.1]) and thus $\Phi(\gamma) \in C^1([0,1],A^{\times})$, using the fact that $A \cap (A_{\mathbb{C}})^{\times} = A^{\times}$ for any unital algebra (⁹). We deduce that the map $\Phi|_X \colon X \to C^1([0,1],A^{\times})$ is the evolution map $\operatorname{Evol}_{A^{\times}}$ of A^{\times} . Note that $\operatorname{Evol}_{A^{\times}}$ is \mathbb{R} -analytic, because $\Phi \colon X_{\mathbb{C}} \to C^1([0,1],A)_{\mathbb{C}}$ is a \mathbb{C} -analytic extension of $\operatorname{Evol}_{A^{\times}}$. As $\operatorname{ev}_1 \colon C^1([0,1],A) \to A$, $\zeta \mapsto \zeta(1)$, is continuous linear and so \mathbb{R} -analytic, also $\operatorname{evol}_{A^{\times}} := \operatorname{ev}_1 \circ \operatorname{Evol}_{A^{\times}} : X \to A^{\times}$ is \mathbb{R} -analytic (and hence smooth). In the situation of (a), this completes the proof. In (b), compose $\operatorname{evol}_{A^{\times}}$ with the continuous linear inclusion map $C^1([0,1],A) \to \operatorname{Lip}([0,1],A)$ (resp., $(C^{\infty}([0,1],A), \mathcal{O}_{C^0}) \to \operatorname{Lip}([0,1],A)$) to see that also the evolution mapping on $C^1([0,1],A)$ (resp., on $(C^{\infty}([0,1],A^{\times}), \mathcal{O}_{C^0})$) is \mathbb{R} -analytic and hence C^{∞} .

Appendix A. Proofs of the lemmas from Section 2. It is useful to recall that a locally convex space E is Mackey-complete (in the sense presented in the introduction) if and only if every Mackey–Cauchy sequence in E converges, i.e., every sequence $(x_n)_{n\in\mathbb{N}}$ in E for which there exists a bounded subset $B \subseteq E$ and a double sequence $(r_{n,m})_{n,m\in\mathbb{N}}$ of real numbers $r_{n,m} \ge 0$ such that $x_n - x_m \in r_{n,m}B$ for all $n, m \in \mathbb{N}$, and $r_{n,m} \to 0$ as both $n, m \to \infty$ (cf. [13, Theorem 2.14]).

Proof of Lemma 2.1. Given $x \in U$, there exists $r \in [1, \infty[$ such that $rx \in U$. Thus $\sum_{n=0}^{\infty} r^n p_n(x)$ converges and hence $C := \{r^n p_n(x) : n \in \mathbb{N}_0\}$ is a bounded subset of F. Then also the absolutely convex hull B of C is bounded. For all $n, m \in \mathbb{N}_0$, we have

$$\sum_{k=0}^{n+m} p_k(x) - \sum_{k=0}^n p_k(x) = \sum_{k=n+1}^{n+m} p_k(x) = r^{-n-1} \sum_{k=n+1}^{n+m} r^{n+1-k} r^k p_k(x)$$
$$\in r^{-n-1} \Big(\sum_{j=0}^{m-1} (1/r)^j \Big) B \subseteq \frac{r^{-n-1}}{1-1/r} B.$$

Hence $(\sum_{k=0}^{n} p_k(x))_{n \in \mathbb{N}_0}$ is a Mackey–Cauchy sequence in F and hence convergent. Thus $f(x) \in F$. By [2, Theorems 5.1 and 6.1(i)], f is \mathbb{C} -analytic as a map to \widetilde{F} . Hence, if $x \in U$, then $f(x + y) = \sum_{n=0}^{\infty} (1/n!) \delta_x^n(f)(y)$ for all y in some 0-neighbourhood, where $\delta_x^n f(y) := d^{(n)} f(x, y, \ldots, y)$ is the

⁽⁹⁾ If $x, a, b \in A$ and x(a + ib) = (a + ib)x = 1, then xa + ixb = 1 and ax + ibx = 1. Hence xa = ax = 1, i.e., $x^{-1} = a \in A$.

nth Gâteaux differential of f at x. Given $y \in E$, there is s > 0 such that $x + zy \in U$ for all $z \in \mathbb{C}$ such that $|z| \leq s$. For each $n \in \mathbb{N}_0$, Cauchy's Integral Formula for higher derivatives now shows that

$$\delta_x^n(f)(y) = \frac{n!}{2\pi i} \int_0^{2\pi} \frac{f(x + se^{it}y)}{(se^{it})^{n+1}} sie^{it} dt,$$

which lies in F since the integrand is a Lipschitz curve in F and F is Mackeycomplete (¹⁰). Hence each $\delta_x^n(f)$ is a continuous homogeneous polynomial from E to F and thus f is complex-analytic as a map from E to F.

Proof of Lemma 2.2. Let p be a continuous seminorm on F and $k \in \mathbb{N}_0$ be such that $k \leq r$. Then $q := p \circ \alpha$ is a continuous seminorm on E. Let $\gamma \in C^r([0,1], E)$. For each $j \in \mathbb{N}_0$ such that $j \leq k$, we have $(\alpha \circ \gamma)^{(j)} = \alpha \circ \gamma^{(j)}$ and thus $\|(\alpha \circ \gamma)^{(j)}\|_{C^0,p} = \|\alpha \circ \gamma^{(j)}\|_{C^0,p} = \|\gamma^{(j)}\|_{C^0,p\circ\alpha} = \|\gamma^{(j)}\|_{C^0,q}$, entailing that $\|\alpha \circ \gamma\|_{C^k,p} = \|\gamma\|_{C^k,q}$. Hence α_* is continuous.

If α is an embedding and Q is a continuous seminorm on $C^r([0,1], E)$, then there exists $k \in \mathbb{N}_0$ such that $k \leq r$ and a continuous seminorm q on Esuch that $Q \leq \|\cdot\|_{C^k,q}$. Since α is an embedding, there exists a continuous seminorm p on F such that $p(\alpha(x)) \geq q(x)$ for all $x \in E$ (because α^{-1} is continuous linear). Hence $\|(\alpha \circ \gamma)^{(j)}\|_{C^0,p} = \|\gamma^{(j)}\|_{C^0,p\circ\alpha} \geq \|\gamma^{(j)}\|_{C^0,q}$ for each $j \in \mathbb{N}_0$ such that $j \leq k$ and thus $\|\alpha \circ \gamma\|_{C^k,p} \geq \|\gamma\|_{C^k,q} \geq Q(\gamma)$, entailing that α_* is a topological embedding.

Proof of Lemma 2.3. Let $p \in P(E)$ and $k \in \mathbb{N}_0$ be such that $k \leq r$. Since $p = \|\cdot\|_p \circ \pi_p$, we have

 $\|(\pi_p \circ \gamma)^{(j)}\|_{C^0, \|\cdot\|_p} = \|\pi_p \circ \gamma^{(j)}\|_{C^0, \|\cdot\|_p} = \|\gamma^{(j)}\|_{C^0, \|\cdot\|_p \circ \pi_p} = \|\gamma^{(j)}\|_{C^0, p}$ for each $\gamma \in C^r([0, 1], E)$ and $j \in \{0, 1, \dots, k\}$, whence $\|(\pi_p)_*(\gamma)\|_{C^k, \|\cdot\|_p} = \|\gamma\|_{C^k, p}$. The assertion follows.

REMARK A.1. Before we turn to the proof of Lemma 2.4, it is useful to record some simple observations:

(a) It is clear from the definitions that the map

$$h: C^{k}([0,1], E) \to C([0,1], E) \times C^{k-1}([0,1], E), \quad \gamma \mapsto (\gamma, \gamma'),$$

is linear and a homeomorphism onto its image, for each $k \in \mathbb{N}$.

(b) The image $\operatorname{im}(h)$ of h consists of all pairs (γ, η) such that $\gamma(t) = \gamma(0) + \int_0^t \eta(s) \, ds$ for each $t \in [0, 1]$. Since point evaluations and the linear mappings $\eta \mapsto \int_0^t \eta(s) \, ds$ (with $p(\int_0^t \eta(s) \, ds) \leq \|\eta\|_{C^0, p})$ are continuous, it follows that $\operatorname{im}(h)$ is a closed vector subspace of $C([0, 1], E) \times C^{k-1}([0, 1], E)$.

 $^(^{10})$ The integrand is a $C^\infty\text{-curve}$ in \widetilde{F} and hence a Lipschitz curve in $\widetilde{F},$ with image in F.

Proof of Lemma 2.4. Because direct products of Mackey-complete locally convex spaces are Mackey-complete, and so are closed vector subspaces, also projective limits of Mackey-complete locally convex spaces are Mackey-complete. Since $C^{\infty}([0,1], E) = \lim_{K \to \infty} C^k([0,1], E)$ (with the appropriate inclusion maps as the limit maps), we therefore only need to prove Mackey-completeness if $k := r \in \mathbb{N}_0$. Likewise in the case of completeness.

CASE k = 0. If E is complete, then also C([0, 1], E) is complete, as is well known (cf. [12, Chapter 7, Theorem 10]). If E is merely Mackey-complete, let \tilde{E} be a completion of E which contains E. Then $C([0, 1], \tilde{E})$ is complete. The inclusion map $\phi: C([0, 1], E) \to C([0, 1], \tilde{E})$ is a topological embedding, by Lemma 2.2. If $(\gamma_n)_{n\in\mathbb{N}}$ is a Mackey–Cauchy sequence in C([0, 1], E), then $(\phi \circ \gamma_n)_{n\in\mathbb{N}} = (\gamma_n)_{n\in\mathbb{N}}$ is a Mackey–Cauchy sequence in $C([0, 1], \tilde{E})$, hence convergent to some $\gamma \in C([0, 1], \tilde{E})$. For each $t \in [0, 1]$, the point evaluation $\varepsilon_t: C([0, 1], \tilde{E}) \to \tilde{E}, \eta \mapsto \eta(t)$, is continuous and linear. Hence $(\gamma_n(t))_{n\in\mathbb{N}}$ is a Mackey–Cauchy sequence in E and hence convergent in E. Since $\gamma_n(t) = \varepsilon_t(\gamma_n) \to \varepsilon_t(\gamma) = \gamma(t)$, we deduce that $\gamma(t) \in E$. Therefore $\gamma \in C([0, 1], E)$ and it is clear that $\gamma_n \to \gamma$ in C([0, 1], E).

INDUCTION STEP. If $C^{k-1}([0,1], E)$ is (Mackey-)complete, then so is $C^k([0,1], E)$, being isomorphic to a closed vector subspace of the (Mackey-) complete direct product $C([0,1], E) \times C^{k-1}([0,1], E)$ (see Remark A.1(b)).

Acknowledgements. This research was supported by DFG (grant GL 357/5-1) and the Emerging Field Project "Quantum Geometry" of FAU Erlangen-Nürnberg.

References

- W. Bertram, H. Glöckner and K.-H. Neeb, Differential calculus over general base fields and rings, Expo. Math. 22 (2004), 213–282.
- J. Bochnak and J. Siciak, Analytic functions in topological vector spaces, Studia Math. 39 (1971), 77–112.
- R. Dahmen, Direct limit constructions in infinite-dimensional Lie theory, doctoral dissertation, Univ. Paderborn, 2011; http://nbn-resolving.deurn:nbn:de:hbz:466:2-239.
- H. Glöckner, Infinite-dimensional Lie groups without completeness restrictions, in: Banach Center Publ. 55, Inst. Math., Polish Acad. Sci., Warszawa, 2002, 43–59.
- H. Glöckner, Lie group structures on quotient groups and universal complexifications for infinite-dimensional Lie groups, J. Funct. Anal. 194 (2002), 347–409.
- [6] H. Glöckner, Algebras whose groups of units are Lie groups, Studia Math. 153 (2002), 147–177.
- [7] H. Glöckner, Direct limits of infinite-dimensional Lie groups, in: Developments and Trends in Infinite-Dimensional Lie Theory, K.-H. Neeb and A. Pianzola (eds.), Progr. Math. 288, Birkhäuser, Boston, 2011, 243–280.

- [8] H. Glöckner, Notes on regularity properties of infinite-dimensional Lie groups, arXiv: 1208.0715.
- [9] H. Glöckner, Regularity in Milnor's sense for direct limits of infinite-dimensional Lie groups, manuscript in preparation.
- [10] H. Glöckner and K.-H. Neeb, *Infinite-Dimensional Lie Groups*, Vol. I, book in preparation.
- [11] M. Hervé, Analyticity in Infinite-Dimensional Spaces, de Gruyter, Berlin, 1989.
- [12] J. L. Kelley, *General Topology*, Springer, 1955.
- [13] A. Kriegl and P. W. Michor, *The Convenient Setting of Global Analysis*, Amer. Math. Soc., Providence, RI, 1997.
- [14] E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952).
- [15] P. W. Michor, Manifolds of Differentiable Mappings, Shiva Publ., Orpington, 1980.
- [16] J. Milnor, Remarks on infinite-dimensional Lie groups, in: Relativité, groupes et topologie II (Les Houches, 1983), B. S. DeWitt and R. Stora (eds.), North-Holland, Amsterdam, 1984, 1007–1057.
- [17] K.-H. Neeb, Towards a Lie theory of locally convex groups, Japan. J. Math. 1 (2006), 291–468.
- [18] Th. Robart, On Milnor's regularity and the path-functor for the class of infinite dimensional Lie algebras of CBH type, Algebras Groups Geom. 21 (2004), 367–386.
- [19] Ph. Turpin, Une remarque sur les algèbres à inverse continu, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1686–A1689.
- [20] L. Waelbroeck, Les algèbres à inverse continu, C. R. Acad. Sci. Paris 238 (1954), 640–641.

Helge Glöckner	Karl-Hermann Neeb
Universität Paderborn	FAU Erlangen-Nürnberg
Institut für Mathematik	Department Mathematik
Warburger Str. 100	Cauerstr. 11
33098 Paderborn, Germany	91058 Erlangen, Germany
E-mail: glockner@math.upb.de	E-mail: karl-hermann.neeb @math.uni-erlangen.de

Received February 6, 2012 Revised version September 28, 2012 (7422)