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When unit groups of continuous inverse algebras
are regular Lie groups

by

Helge Glöckner (Paderborn) and Karl-Hermann Neeb (Erlangen)

Abstract. It is a basic fact in infinite-dimensional Lie theory that the unit group A×

of a continuous inverse algebra A is a Lie group. We describe criteria ensuring that the
Lie group A× is regular in Milnor’s sense. Notably, A× is regular if A is Mackey-complete
and locally m-convex.

1. Introduction and statement of the main result. A locally con-
vex, unital, associative topological algebra A over K ∈ {R,C} is called a
continuous inverse algebra if its group A× of invertible elements is open
and the inversion map ι : A× → A, x 7→ x−1, is continuous (cf. [20]). Then
ι is K-analytic and hence A× is a K-analytic Lie group [6]. Our goal is to
describe conditions ensuring that the Lie group A× is well-behaved, i.e., it
is a regular Lie group in the sense of Milnor [16].

To recall this notion, let G be a Lie group modelled on a locally convex
space E, with identity element 1, its tangent bundle TG and the Lie algebra
g := T1G ∼= E. Given g ∈ G and v ∈ T1G, let λg : G → G, x 7→ gx be left
translation by g and gv := T1(λg)(v) ∈ TgG. If γ : [0, 1]→ g is a continuous
map, then there exists at most one C1-map η : [0, 1]→ G such that

η′(t) = η(t)γ(t) for all t ∈ [0, 1], and η(0) = 1.

If such an η exists, it is called the evolution of γ. The Lie group G is
called regular if each γ ∈ C∞([0, 1], g) admits an evolution ηγ , and the
map evol : C∞([0, 1], g)→ G, γ 7→ ηγ(1), is smooth (see [16] and [17], where
also many applications of regularity are described). If G is regular, then
its modelling space E is Mackey-complete in the sense that every Lipschitz
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curve in E admits a Riemann integral (1) (as shown in [10]). It is a no-
torious open problem whether, conversely, every Lie group modelled on a
Mackey-complete locally convex space is regular ([17, Problem II.2]; cf. [16]).

As a tool for the discussion of A×, we let µn : An → A be the n-linear
map defined via µn(x1, . . . , xn) := x1 · · ·xn, for n ∈ N. Given seminorms
p, q : A→ [0,∞[, we define B

q
1(0) := {x ∈ A : q(x) ≤ 1} and

‖µn‖p,q := sup{p(µn(x1, . . . , xn)) : x1, . . . , xn ∈ B
q
1(0)} ∈ [0,∞].

Our regularity criterion now reads as follows:

Theorem 1.1. Let A be a Mackey-complete continuous inverse algebra
such that the following condition is satisfied:

(∗) For each continuous seminorm p on A, there exists a continuous
seminorm q on A and r > 0 (which may depend on p and q) such
that

∞∑
n=1

rn‖µn‖p,q < ∞.

Then A× is a regular Lie group in Milnor’s sense.

In fact, A× even has certain stronger regularity properties (see Proposi-
tion 4.4). Of course, by Hadamard’s formula for the radius of convergence
of a power series, condition (∗) is equivalent to (2)

lim sup
n→∞

n

√
‖µn‖p,q <∞.

It is also equivalent to the existence of M ∈ [0,∞[ such that ‖µn‖p,q ≤Mn

for all n ∈ N.

Remark 1.2. The authors do not know whether condition (∗) can be
omitted, i.e., whether A× is regular for every Mackey-complete continuous
inverse algebra A. Here are some preliminary considerations:

If A is a continuous inverse algebra, then the map πn : A→ A, x 7→ xn,
is a continuous homogeneous polynomial of degree n, for each n ∈ N0. It is
known that the analytic inversion map ι : A× → A is given by Neumann’s
series, ι(1 − x) =

∑∞
n=0 x

n =
∑∞

n=0 πn(x), for x in some 0-neighbourhood
of A [6, Lemma 3.3]. Hence, for each continuous seminorm p on A, there
exists a continuous seminorm q on A and s > 0 such that

∞∑
n=1

sn‖πn‖p,q <∞,

(1) See [13] for a detailed discussion of this property.

(2) If ‖µn‖p,q < ∞, then also ‖µk‖p,q < ∞ for all k ∈ {1, . . . , n}. In fact, ‖µk‖p,q ≤
q(1)n−k‖µn‖p,q since µk(x1, . . . , xk) = µn(1, . . . , 1, x1, . . . , xk).
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where ‖πn‖p,q := sup{p(πn(x)) : x ∈ B
q
1(0)} (cf. [2, Proposition 5.1] (3)).

Let Sn be the symmetric group of all permutations of {1, . . . , n} and let
µsymn : An → A, (x1, . . . , xn) 7→ (1/n!)

∑
σ∈Sn

xσ(1) · · ·xσ(n) be the sym-
metrization of µn. Then πn(x) = µsymn (x, . . . , x) and thus ‖µsymn ‖p,q ≤
(nn/n!)‖πn‖p,q by the Polarization Formula (in the form [11, p. 34, (2)]).

Since limn→∞ (n/ n
√
n!) = e is Euler’s constant (as a consequence of Stir-

ling’s Formula), it follows that

(1.1)

∞∑
n=1

tn‖µsymn ‖p,q <∞ for each t ∈]0, s/e[.

In general, it is not clear how one could give good estimates for ‖µn‖p,q in
terms of ‖µsymn ‖p,q. Hence, it does not seem to be clear in general whether
(1.1) implies the existence of some r > 0 with (∗).

However, (∗) is satisfied in some important cases. Following [14], a topo-
logical algebra A is called locally m-convex if its topology arises from a set
of seminorms q which are submultiplicative, i.e., q(xy) ≤ q(x)q(y) for all
x, y ∈ A.

Corollary 1.3. Let A be a Mackey-complete continuous inverse al-
gebra. If A is commutative or locally m-convex, then A× is a regular Lie
group.

Proof. In fact, if A is commutative, then µn = µsymn , whence (∗) is sat-
isfied with any r ∈ ]0, s/e[ as in (1.1). Therefore Theorem 1.1 applies (4). If
A is locally m-convex, then for every continuous seminorm p on A, there is
a submultiplicative continuous seminorm q on A such that p ≤ q. Using the
submultiplicativity, we see that ‖µn‖p,q ≤ ‖µn‖q,q ≤ 1. Thus (∗) is satisfied
with any r ∈ ]0, 1[, and Theorem 1.1 applies.

It can be shown that every Mackey-complete, commutative continuous
inverse algebra is locally m-convex (cf. [19]).

Remark 1.4. We mention that there is a quite direct, alternative proof
for the corollary if A is locally m-convex and complete (5). The easier argu-

(3) If K = R, we can apply the proposition to AC, which is a complex continuous
inverse algebra (see, e.g., [6, Proposition 3.4]).

(4) Alternative proof: (A,+) is regular, as it is Mackey-complete [17, Proposi-
tion II.5.6]. Since exp: A → A× is a homomorphism of groups (as A× is abelian) and
a local diffeomorphism (see [6, Theorem 5.6]), it follows that also A× is regular [18,
Proposition 3].

(5) Then A = lim←−Aq is a projective limit of Banach algebras (where q ranges through
the set of all submultiplicative continuous seminorms on A). Being a Banach–Lie group,
each A×q is regular [16]. Then C∞([0, 1], A) = lim←−C

∞([0, 1], Aq) and evolA× = lim←− evol
A×

q

is a smooth evolution (cf. [1, Lemma 10.3]).
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ments fail however if A is not complete, but merely sequentially complete or
Mackey-complete. By contrast, our more elaborate method does not require
that A be complete: Mackey-completeness suffices.

Remark 1.5. Our Theorem 1.1 is a variant of the (possibly too opti-
mistic) Theorem IV.1.11 announced in the survey [17], and its proof ex-
pands the sketch of proof given there. To avoid the difficulties described in
Remark 1.2, we added condition (∗).

Remark 1.6. Unit groups of Mackey-complete continuous inverse al-
gebras are so-called BCH-Lie groups [6, Theorem 5.6], i.e., they admit an
exponential function which is an analytic diffeomorphism around 0 (see [5],
[17], [18] for information on such groups). Inspiration for the studies came
from an article by Robart [18]. He pursued the (possibly too optimistic)
larger goal to show that every BCH-Lie group with Mackey-complete mod-
elling space is regular. However, there seem to be gaps in his arguments (6).

Remark 1.7. The following questions are open:

(a) Are there examples of Mackey-complete continuous inverse algebras
which satisfy (∗) but are not locally m-convex? Or even:

(b) Does every Mackey-complete continuous inverse algebra satisfy (∗)?

2. Notation and preparatory results

Basic notation. Let N = {1, 2, . . .} and N0 := N∪{0}. If X is a set and
n ∈ N, we writeXn := X×· · ·×X (with n factors). If f : X → Y is a map, we
abbreviate fn := f×· · ·×f : Xn → Y n, (x1, . . . , xn) 7→ (f(x1), . . . , f(xn)). If
(E, ‖ · ‖E) and (F, ‖ · ‖F ) are normed spaces and β : En → F is a continuous
n-linear map, we write ‖β‖op for its operator norm, defined as usual as
sup{‖β(x1, . . . , xn)‖F : x1, . . . , xk ∈ E, ‖x1‖E , . . . , ‖xn‖E ≤ 1}. If E is a
locally convex space, we let P (E) be the set of all continuous seminorms
on E. If p ∈ P (E), we consider the factor space Ep := E/p−1(0) as a
normed space with the norm ‖ · ‖p given by ‖x+p−1(0)‖p := p(x). Then the
canonical map πp : E → Ep, x 7→ x+ p−1(0), is linear and continuous, with
‖πp(x)‖p = p(x).

Weak integrals. Recall that if E is a locally convex space, a ≤ b are

reals and γ : [a, b]→ E a continuous map, then the weak integral
	b
a γ(s) ds

(if it exists) is the unique element of E such that λ(
	b
a γ(s) ds) =

	b
a λ(γ(s)) ds

for each continuous linear functional λ on E. If α : E → F is a continuous

(6) For example, it is unclear whether the limit γu constructed in the proof of [18,
Proposition 7] takes its values in Aut(L) (as observed by K.-H. Neeb), and no explanation
is given how a smooth curve g in the local group with Ad(g) = γu can be obtained.
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linear map between locally convex spaces and
	b
a γ(s) ds (as before) exists

in E, then also
	b
a α(γ(s)) ds exists in F and is given by

(2.1)

b�

a

α(γ(s)) ds = α
( b�
a

γ(s) ds
)

(see, e.g., [10] for this observation). If E is sequentially complete, then	b
a γ(s) ds always exists (cf. [2, Lemma 1.1] or [11, 1.2.3]).

Cr-curves. Let r ∈ N0 ∪{∞}. As usual, a Cr-curve in a locally convex
space E is a continuous function γ : I → E on a non-degenerate interval I
such that the derivatives γ(k) : I → E of order k exist for all k ∈ N with
k ≤ r, and are continuous (see, e.g., [10] for more details). The C∞-curves
are also called smooth curves.

Smooth maps. If E and F are real locally convex spaces, U ⊆ E is
an open subset and r ∈ N0 ∪ {∞}, then a function f : U → F is called Cr

if f is continuous, the iterated directional derivatives d(k)f(x, y1, . . . , yk) :=
(Dyk . . . Dy1f)(x) exist for all k ∈ N such that k ≤ r, x ∈ U and y1, . . . , yk
∈ E, and define continuous functions d(k)f : U ×Ek → F . If U is not open,
but is a convex (or locally convex) subset of E with dense interior U0, we say
that f is Cr if f is continuous, f |U0 is Cr and d(k)(f |U0) : U0×Ek → F has
a continuous extension d(k)f : U × Ek → F for each k ∈ N such that k ≤ r.
C∞-maps are also called smooth. We abbreviate df := d(1)f . It is known
that the Chain Rule holds in the form d(f ◦ g)(x, y) = df(g(x), dg(x, y)),
and that compositions of Cr-maps are Cr. Moreover, a C0-curve γ : I → E
is a Cr-curve if and only if it is a Cr-map, in which case γ′(t) = dγ(t, 1) (see
[10] for all of these basic facts; cf. also [15], [16], and [4]).

Analytic maps. If E and F are complex locally convex spaces and
n ∈ N, then a function p : E → F is called a continuous homogeneous
polynomial of degree n ∈ N0 if p(x) = β(x, . . . , x) for some continuous
n-linear map β : En → F (if n = 0, this means a constant function). A map
f : U → F on an open set U ⊆ E is called complex-analytic (or C-analytic)
if it is continuous and for each x ∈ U , there is a 0-neighbourhood Y ⊆ E
with x + Y ⊆ U and continuous homogeneous polynomials pn : E → F of
degree n such that

(∀y ∈ Y ) f(x+ y) =

∞∑
n=0

pn(y)

(see [2], [4] and [10] for further information). Following [16], [4] and [10] (but
deviating from [2]), given real locally convex spaces E,F , we call a function
f : U → F on an open set U ⊆ E real-analytic (or R-analytic) if it extends
to a complex-analytic map V → FC, defined on some open subset V ⊆ EC
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of the complexification of E, such that U ⊆ V . For K ∈ {R,C}, it is known
that compositions of K-analytic maps are K-analytic. Every K-analytic map
is smooth (see, e.g., [10] or [4] for both of these facts).

We shall use the following lemma (proved in Appendix A):

Lemma 2.1. Let E and F be complex locally convex spaces, F̃ be a com-
pletion of F such that F ⊆ F̃ as a dense vector subspace, and pn : E → F be
continuous homogeneous polynomials of degree n for n ∈ N0. Assume that

f(x) :=
∑
n∈N0

pn(x)

converges in F̃ for all x in a balanced, open 0-neighbourhood U ⊆ E, and
f : U → F̃ is continuous. If F is Mackey-complete, then f(x) ∈ F for all
x ∈ U and f : U → F is C-analytic.

Function spaces. If E is a locally convex space and r ∈ N0 ∪ {∞},
let Cr([0, 1], E) be the space of all Cr-maps from [0, 1] to E. We endow
Cr([0, 1], E) with the locally convex vector topology defined by the semi-
norms ‖ · ‖Ck,p given by

‖γ‖Ck,p := max
j=0,...,k

max
t∈[0,1]

p(γ(j)(t))

for p in the set of continuous seminorms on E and k ∈ N0 with k ≤ r. We
abbreviate C([0, 1], E) := C0([0, 1], E). Three folklore lemmas concerning
these function spaces will be used (the proofs can be found in Appendix A):

Lemma 2.2. Let E and F be locally convex spaces, α : E → F be a
continuous linear map, and r ∈ N0 ∪ {∞}. Then also the map

α∗ := Cr([0, 1], α) : Cr([0, 1], E)→ Cr([0, 1], F ), γ 7→ α ◦ γ,

is continuous and linear. If α is a topological embedding (i.e., a homeomor-
phism onto its image), then also α∗ is a topological embedding.

Lemma 2.3. If E is a locally convex space and r ∈ N0 ∪ {∞}, then the
topology on the space Cr([0, 1], E) is initial with respect to the mappings
(πp)∗ : Cr([0, 1], E)→ Cr([0, 1], Ep), γ 7→ πp ◦ γ, for p ∈ P (E).

Lemma 2.4. If r ∈ N0 ∪ {∞} and E is a locally convex space which is
complete (resp., Mackey-complete), then also Cr([0, 1], E) is complete (resp.,
Mackey-complete).

3. Picard iteration of paths in a topological algebra

Setting 3.1. Let A be a locally convex topological algebra over C, i.e.,
a unital, associative, complex algebra, equipped with a Hausdorff locally
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convex vector topology making the map A×A→ A, (x, y) 7→ xy, continuous.
We assume that condition (∗) from Theorem 1.1 is satisfied (7).

If E is a locally convex space, then a function γ : [0, 1]→ E is a Lipschitz

curve if
{γ(t)−γ(s)

t−s : s 6= t ∈ [0, 1]
}

is bounded in E (cf. [13, p. 9]). For our
current purposes, we endow the space Lip([0, 1], E) of all such curves with
the topology OC0 induced by C0([0, 1], E).

Lemma 3.2 (Picard Iteration). Let A be as in 3.1. If A is sequen-
tially complete and γ ∈ C([0, 1], A), we can define a sequence (ηn)n∈N in
C1([0, 1], A) via

η0(t) := 1, ηn(t) := 1 +

t�

0

ηn−1(tn)γ(tn) dtn for t ∈ [0, 1] and n ∈ N.

Then:

(a) The limit η := ηγ := limn→∞ ηn exists in C1([0, 1], A).

(b) ηn(t) = 1 +
∑n

k=1

	t
0

	tk
0 . . .

	t2
0 γ(t1) · · · γ(tk) dt1 · · · dtk for all n ∈ N0

and t ∈ [0, 1], and thus

(3.1) η(t) = 1 +
∞∑
n=1

t�

0

tn�

0

· · ·
t2�

0

γ(t1) · · · γ(tn) dt1 · · · dtn.

(c) η′(t) = η(t)γ(t) and η(0) = 1.
(d) The map Φ : C([0, 1], A)→ C1([0, 1], A), γ 7→ ηγ, is C-analytic.

If A is not sequentially complete, but Mackey-complete, then the (ηn)n∈N0

can be defined and (a)–(c) hold for each γ ∈ Lip([0, 1], A). Moreover,

(d)′ Φ : (Lip([0, 1], A),OC0)→C1([0, 1], A), γ 7→ ηγ, is C-analytic.

Proof. If A is sequentially complete, set X := C([0, 1], A); otherwise, set

X := Lip([0, 1], A). Let Ã be a completion of A such that A ⊆ Ã. Then the

inclusion map φ : C1([0, 1], A) → C1([0, 1], Ã) is a topological embedding

(Lemma 2.2) and C1([0, 1], Ã) is complete (Lemma 2.4). Hence also the

closure Y ⊆ C1([0, 1], Ã) of the image im(φ) is complete, and thus Y is a
completion of C1([0, 1], A).

To prove (a), (b), (d), (d)′, let γ ∈ X. Then all integrals needed to
define ηn exist, and each ηn is C1, by the Fundamental Theorem of Calculus.
A trivial induction shows that

(3.2) ηn(t) = 1 +

n∑
k=1

t�

0

tk�

0

. . .

t2�

0

γ(t1) · · · γ(tk) dt1 · · · dtk

(7) Note that A is not assumed to be a continuous inverse algebra in this section.
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(as asserted in (b)). Likewise, if n ∈ N and γ1, . . . , γn ∈ X, then the weak
integrals needed to define τn(γ1, . . . , γn) : [0, 1]→ A,

t 7→
t�

0

tn�

0

. . .

t2�

0

γ1(t1) · · · γn(tn) dt1 · · · dtn,

exist and τn(γ1, . . . , γn) is a C1-map. Since τn : X → C1([0, 1], A),
(γ1, . . . , γn) 7→ τn(γ1, . . . , γn), is an n-linear mapping, it follows that the
map σn : X → C1([0, 1], A), σn(γ) := τn(γ, . . . , γ), is a homogeneous poly-
nomial of degree n (and this conclusion also holds for n = 0, if we define
σ0(γ) := 1). If p ∈ P (A), there is q ∈ P (A) and M ∈ [0,∞[ such that

(∀n ∈ N) ‖µn‖p,q ≤Mn,

as a consequence of condition (∗). Applying p to the iterated integral defining
σn(γ)(t), we deduce that

p(σn(γ)(t)) ≤ tn

n!
‖µn‖p,q‖γ‖nC0,q ≤

tnMn

n!
‖γ‖nC0,q

for each t ∈ [0, 1] and thus

(3.3) ‖σn(γ)‖C0,p ≤
Mn

n!
‖γ‖nC0,q.

Also, σ0(γ)′ = 0, σ1(γ)′(t) = γ(t) and

(3.4) σn(γ)′(t) =

t�

0

tn−1�

0

. . .

t2�

0

γ(t1) · · · γ(tn−1)γ(t) dt1 · · · dtn−1

if n ≥ 2, by the Fundamental Theorem of Calculus. Thus σn(γ)′ = σn−1(γ)·γ
for all n ∈ N. Using ηn =

∑n
k=0 σk(γ), we infer that

(3.5) (∀n ∈ N) η′n(t) = ηn−1(t)γ(t),

which will be useful later. By (3.4), also

p(σn(γ)′(t)) ≤ tn−1

(n− 1)!
‖µn‖p,q‖γ‖nC0,q

and thus

(3.6) ‖σn(γ)′‖C0,p ≤
Mn

(n− 1)!
‖γ‖nC0,q.

Combining (3.3) and (3.6), we see that

(3.7) ‖σn(γ)‖C1,p ≤
Mn

(n− 1)!
‖γ‖nC0,q.

Therefore σn : X → C1([0, 1], A) is a continuous homogeneous polynomial.
Moreover, we obtain
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∞∑
n=1

‖σn(γ)‖C1,p ≤
∞∑
n=1

Mn‖γ‖nC0,q

(n− 1)!
= M‖γ‖C0,qe

M‖γ‖C0,q <∞.

This estimate entails that the series
∑∞

n=0 σn(γ) converges absolutely in the
completion Y of C1([0, 1], A). In particular, the limit

Φ(γ) :=
∞∑
n=0

σn(γ) = lim
n→∞

ηn

exists in Y , and defines a function Φ : X → Y . We claim that Φ is continu-
ous. If this is true, then we can exploit that C1([0, 1], A) is Mackey-complete
by Lemma 2.4, and each σn takes its values inside C1([0, 1], A). Thus all hy-
potheses of Lemma 2.1 are satisfied, and we deduce that Φ(γ) ∈ C1([0, 1], A)
for each γ (entailing (a) and (b)), and that the map Φ : X → C1([0, 1], A) is
complex-analytic (establishing (d) and (d)′). To establish the claim, we need

only show that Φ is continuous as a map to C1([0, 1], Ã). Identify p ∈ P (A)

with its continuous extension to a seminorm on Ã. Let πp : Ã→ ((Ã)p, ‖·‖p)
be the canonical map. By Lemma 2.3, Φ will be continuous if the maps
h := (πp)∗ ◦ Φ : X → C1([0, 1], (Ã)p) are continuous. It suffices that h is
continuous on the ball BR := {γ ∈ X : ‖γ‖C0,q < R} for each R > 0.
However,

h(γ) =
∞∑
n=0

πp ◦ σn(γ)

for γ ∈ BR, where

‖πp ◦ σn(γ)‖C1,‖·‖p = ‖σn(γ)‖C1,p ≤
Mn

(n− 1)!
‖γ‖nC0,q ≤

Mn

(n− 1)!
Rn

for n ∈ N, by (3.7). Hence
∞∑
n=0

sup{πp ◦ σn(γ) : γ ∈ BR} ≤ p(1) +MReRM <∞,

entailing that
∑n

k=0((πp)∗ ◦ σn|BR
)→ h|BR

uniformly. Thus h|BR
is contin-

uous, being a uniform limit of continuous functions.
To prove (c), observe that because ηn → η in C1([0, 1], A), we have

η′n → η′ uniformly (and thus pointwise). Letting n→∞ in (3.5), we deduce
that η′(t) = η(t)γ(t).

4. Proof of Theorem 1.1. We establish our theorem as a special case
of a more general result (Proposition 4.4). The latter deals with certain
strengthened regularity properties (as used earlier in [7] and [3]):

Definition 4.1. Let G be a Lie group modelled on a locally convex
space, with Lie algebra g, and k ∈ N0 ∪ {∞}.
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(a) G is called strongly Ck-regular if every curve γ ∈ Ck([0, 1], g)
admits an evolution Evol(γ) ∈ C1([0, 1], G) and the mapping
evol : Ck([0, 1], g)→ G, γ 7→ Evol(γ)(1), is smooth.

(b) G is called Ck-regular if each γ ∈ C∞([0, 1], g) has an evolution
and the map evol : (C∞([0, 1], g),OCk) → G, γ 7→ Evol(γ)(1), is
smooth, where OCk denotes the topology induced by Ck([0, 1], g) on
C∞([0, 1], g).

The reader is referred to [8] and [9] for a discussion of these regularity
properties (and applications depending thereon). Both C∞-regularity and
strong C∞-regularity coincide with regularity in the usual sense. If k ≤ l
and G is (strongly) Ck-regular, then G is also (strongly) C l-regular.

Remark 4.2. If A is a continuous inverse algebra, we identify the tan-
gent bundle T (A×) of the open set A× with A× × A in the natural way.
Let η : [0, 1] → A× be a C1-curve and γ : [0, 1] → A be continuous. Then
η′(t) = η(t)γ(t) holds in T (A×) (using η′ : [0, 1] → T (A×), and identifying
the range A of γ with {1} × A ⊆ T1(A

×)) if and only if η′(t) = η(t)γ(t)
holds in A (where the product simply refers to the algebra multiplication,
and η′ : [0, 1]→ A is the derivative of the A-valued C1-curve η).

The next lemma will help us to see that the A-valued map η associated
to γ in Lemma 3.2 actually takes its values in A× if A is a continuous inverse
algebra. Hence η will be the evolution of γ, by Remark 4.2.

Lemma 4.3. Let A be a continuous inverse algebra, γ : [0, 1] → A be
continuous and η : [0, 1]→ A as well as ζ : [0, 1]→ A be C1-curves. Assume
that η(0) = ζ(0) = 1 and

(4.1) η′(t) = η(t)γ(t) and ζ ′(t) = ζ(t)γ(t) for all t ∈ [0, 1].

If ζ([0, 1]) ⊆ A×, then η = ζ.

Proof. Recall from [6, proof of Lemma 3.1] that the differential of the
inversion map ι : A× → A is given by dι(a, b) = −a−1ba−1 for a ∈ A× and
b ∈ A. As a consequence, the derivative of the C1-curve ι ◦ ζ : [0, 1] → A×,
t 7→ ζ(t)−1, is given by

(4.2) (ι ◦ ζ)′(t) = −ζ(t)−1ζ ′(t)ζ(t)−1.

Now consider the C1-curve θ : [0, 1] → A, θ(t) := η(t)ζ(t)−1. Using the
Product Rule, (4.2) and (4.1), we obtain

θ′(t) = η′(t)ζ(t)−1 − η(t)ζ(t)−1ζ ′(t)ζ(t)−1

= η(t)γ(t)ζ(t)−1 − η(t)ζ(t)−1ζ(t)γ(t)ζ(t)−1

= η(t)γ(t)ζ(t)−1 − η(t)γ(t)ζ(t)−1 = 0.

Hence θ(t) = θ(0) = η(0)ζ(0)−1 = 1 for all t ∈ [0, 1] and thus η = ζ.
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Proposition 4.4. Let A be a continuous inverse algebra over K ∈
{R,C} which satisfies the condition (∗) described in Theorem 1.1.

(a) If A is sequentially complete, then A is strongly C0-regular and the
map Evol : C0([0, 1], A)→ C1([0, 1], A×) is K-analytic.

(b) If A is Mackey-complete, then A is C0-regular and strongly C1-
regular. Further, each γ ∈ Lip([0, 1], A) has an evolution Evol(γ) ∈
C1([0, 1], A×), and Evol : (Lip([0, 1], A),OC0) → C1([0, 1], A×) is
K-analytic.

Proof. If A is sequentially complete, let X := C([0, 1], A); otherwise, let
X := (Lip([0, 1], A),OC0).

We assume first that K = C. Let Φ : X → C1([0, 1], A) be the map-
ping provided by Lemma 3.2. Note that C1([0, 1], A×) ⊆ C1([0, 1], A) is an
identity neighbourhood, Φ(0) = 1 (cf. (3.1)) and Φ is C-analytic (see (d) or
(d)′ of Lemma 3.2) and hence continuous. Therefore, there exists an open
0-neighbourhood Ω ⊆ X such that Φ(Ω) ⊆ C1([0, 1], A×). By Lemma 3.2(c),
Evol(γ) := Φ(γ) is an evolution for γ ∈ Ω. Moreover, evol : Ω → A×,
γ 7→ Evol(γ)(1) = Φ(γ)(1), is C-analytic, since Φ and the continuous linear
point evaluation ev1 : C1([0, 1], A)→ A, ζ 7→ ζ(1), are C-analytic.

If A is sequentially complete, Proposition 1.3.10 in [3] now shows that
A× is strongly C0-regular (8).

If A is Mackey-complete, we see as in the proof of [3, Proposition 1.3.10]
that each γ ∈ Lip([0, 1], A) has an evolution Evol(γ) ∈ C1([0, 1], A×).

In either case, we deduce with Lemmas 3.2 (c) and 4.3 that Evol = Φ. As
a consequence, Evol : X → C1([0, 1], A×) is C-analytic and thus (a) holds. In
the situation of (b), note that also evol := ev1 ◦Evol : Lip([0, 1], A)→ A× is
C-analytic. The inclusion maps (C∞([0, 1], A),OC0) → (Lip([0, 1], A),OC0)
and C1([0, 1], A) → (Lip([0, 1], A),OC0) being continuous linear and hence
C-analytic, it follows that also the maps evol : (C∞([0, 1], A),OC0) → A×

and evol : C1([0, 1], A)→ A× are C-analytic and thus smooth. Hence A× is
C0-regular and strongly C1-regular.

If K = R, then also the complexification AC of A is a continuous inverse
algebra (see, e.g., [6, Proposition 3.4]) with the same completeness proper-
ties. In (a), we can identify XC with C0([0, 1], AC); in the situation of (b),
we can identify XC with Lip([0, 1], AC). For p ∈ P (A), let pC ∈ P (AC) be
the seminorm defined via

pC(a+ ib) := inf
{∑

j

|zj |p(xj) : a+ ib =
∑
j

zjxj , xj ∈ A, zj ∈ C
}

for a, b ∈ A (which satisfies max{p(a), p(b)} ≤ pC(a+ib) ≤ p(a)+p(b)). Then
also AC satisfies (∗), as ‖(µn)C‖pC,qC = ‖µn‖p,q. Let Φ : XC → C1([0, 1], AC)

(8) Compare already [13, p. 409] and [18, Lemma 3] for similar arguments.
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be the complex-analytic map provided by Lemma 3.2 (applied to AC in place
of A). By the complex case just discussed,

Φ = Evol(AC)× : XC → C1([0, 1], (AC)×).

If γ ∈ X, then Φ(γ) takes only values in the closed vector subspace A
of AC = A ⊕ iA, as is clear from (3.1). Hence Φ(γ) ∈ C1([0, 1], A) (see
[10] or [1, Lemma 10.1]) and thus Φ(γ) ∈ C1([0, 1], A×), using the fact
that A ∩ (AC)× = A× for any unital algebra (9). We deduce that the map
Φ|X : X → C1([0, 1], A×) is the evolution map EvolA× of A×. Note that
EvolA× is R-analytic, because Φ : XC → C1([0, 1], A)C is a C-analytic exten-
sion of EvolA× . As ev1 : C1([0, 1], A) → A, ζ 7→ ζ(1), is continuous linear
and so R-analytic, also evolA× := ev1 ◦EvolA× : X → A× is R-analytic (and
hence smooth). In the situation of (a), this completes the proof. In (b),
compose evolA× with the continuous linear inclusion map C1([0, 1], A) →
Lip([0, 1], A) (resp., (C∞([0, 1], A),OC0) → Lip([0, 1], A)) to see that also
the evolution mapping on C1([0, 1], A) (resp., on (C∞([0, 1], A×),OC0)) is
R-analytic and hence C∞.

Appendix A. Proofs of the lemmas from Section 2. It is useful
to recall that a locally convex space E is Mackey-complete (in the sense
presented in the introduction) if and only if every Mackey–Cauchy sequence
in E converges, i.e., every sequence (xn)n∈N in E for which there exists a
bounded subset B ⊆ E and a double sequence (rn,m)n,m∈N of real numbers
rn,m ≥ 0 such that xn− xm ∈ rn,mB for all n,m ∈ N, and rn,m → 0 as both
n,m→∞ (cf. [13, Theorem 2.14]).

Proof of Lemma 2.1. Given x ∈ U , there exists r ∈ ]1,∞[ such that
rx ∈ U . Thus

∑∞
n=0 r

npn(x) converges and hence C := {rnpn(x) : n ∈ N0}
is a bounded subset of F . Then also the absolutely convex hull B of C is
bounded. For all n,m ∈ N0, we have

n+m∑
k=0

pk(x)−
n∑
k=0

pk(x) =
n+m∑
k=n+1

pk(x) = r−n−1
n+m∑
k=n+1

rn+1−krkpk(x)

∈ r−n−1
(m−1∑
j=0

(1/r)j
)
B ⊆ r−n−1

1− 1/r
B.

Hence (
∑n

k=0 pk(x))n∈N0 is a Mackey–Cauchy sequence in F and hence con-
vergent. Thus f(x) ∈ F . By [2, Theorems 5.1 and 6.1(i)], f is C-analytic

as a map to F̃ . Hence, if x ∈ U , then f(x + y) =
∑∞

n=0 (1/n!)δnx (f)(y)

for all y in some 0-neighbourhood, where δnxf(y) := d(n)f(x, y, . . . , y) is the

(9) If x, a, b ∈ A and x(a + ib) = (a + ib)x = 1, then xa + ixb = 1 and ax + ibx = 1.
Hence xa = ax = 1, i.e., x−1 = a ∈ A.
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nth Gâteaux differential of f at x. Given y ∈ E, there is s > 0 such that
x + zy ∈ U for all z ∈ C such that |z| ≤ s. For each n ∈ N0, Cauchy’s
Integral Formula for higher derivatives now shows that

δnx (f)(y) =
n!

2πi

2π�

0

f(x+ seity)

(seit)n+1
sieit dt,

which lies in F since the integrand is a Lipschitz curve in F and F is Mackey-
complete (10). Hence each δnx (f) is a continuous homogeneous polynomial
from E to F and thus f is complex-analytic as a map from E to F .

Proof of Lemma 2.2. Let p be a continuous seminorm on F and k ∈ N0

be such that k ≤ r. Then q := p ◦ α is a continuous seminorm on E. Let
γ ∈ Cr([0, 1], E). For each j ∈ N0 such that j ≤ k, we have (α ◦ γ)(j) =
α◦γ(j) and thus ‖(α◦γ)(j)‖C0,p = ‖α◦γ(j)‖C0,p = ‖γ(j)‖C0,p◦α = ‖γ(j)‖C0,q,
entailing that ‖α ◦ γ‖Ck,p = ‖γ‖Ck,q. Hence α∗ is continuous.

If α is an embedding and Q is a continuous seminorm on Cr([0, 1], E),
then there exists k ∈ N0 such that k ≤ r and a continuous seminorm q on E
such that Q ≤ ‖ · ‖Ck,q. Since α is an embedding, there exists a continuous

seminorm p on F such that p(α(x)) ≥ q(x) for all x ∈ E (because α−1 is
continuous linear). Hence ‖(α ◦ γ)(j)‖C0,p = ‖γ(j)‖C0,p◦α ≥ ‖γ(j)‖C0,q for
each j ∈ N0 such that j ≤ k and thus ‖α ◦ γ‖Ck,p ≥ ‖γ‖Ck,q ≥ Q(γ),
entailing that α∗ is a topological embedding.

Proof of Lemma 2.3. Let p ∈ P (E) and k ∈ N0 be such that k ≤ r.
Since p = ‖ · ‖p ◦ πp, we have

‖(πp ◦ γ)(j)‖C0,‖·‖p = ‖πp ◦ γ(j)‖C0,‖·‖p = ‖γ(j)‖C0,‖·‖p◦πp = ‖γ(j)‖C0,p

for each γ ∈ Cr([0, 1], E) and j ∈ {0, 1, . . . , k}, whence ‖(πp)∗(γ)‖Ck,‖·‖p =
‖γ‖Ck,p. The assertion follows.

Remark A.1. Before we turn to the proof of Lemma 2.4, it is useful to
record some simple observations:

(a) It is clear from the definitions that the map

h : Ck([0, 1], E)→ C([0, 1], E)× Ck−1([0, 1], E), γ 7→ (γ, γ′),

is linear and a homeomorphism onto its image, for each k ∈ N.
(b) The image im(h) of h consists of all pairs (γ, η) such that γ(t) =

γ(0) +
	t
0 η(s) ds for each t ∈ [0, 1]. Since point evaluations and

the linear mappings η 7→
	t
0 η(s) ds (with p(

	t
0 η(s) ds) ≤ ‖η‖C0,p)

are continuous, it follows that im(h) is a closed vector subspace of
C([0, 1], E)× Ck−1([0, 1], E).

(10) The integrand is a C∞-curve in F̃ and hence a Lipschitz curve in F̃ , with image
in F .
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Proof of Lemma 2.4. Because direct products of Mackey-complete lo-
cally convex spaces are Mackey-complete, and so are closed vector sub-
spaces, also projective limits of Mackey-complete locally convex spaces are
Mackey-complete. Since C∞([0, 1], E) = lim←−C

k([0, 1], E) (with the appro-
priate inclusion maps as the limit maps), we therefore only need to prove
Mackey-completeness if k := r ∈ N0. Likewise in the case of completeness.

Case k = 0. If E is complete, then also C([0, 1], E) is complete, as is well
known (cf. [12, Chapter 7, Theorem 10]). If E is merely Mackey-complete,

let Ẽ be a completion of E which contains E. Then C([0, 1], Ẽ) is complete.

The inclusion map φ : C([0, 1], E)→ C([0, 1], Ẽ) is a topological embedding,
by Lemma 2.2. If (γn)n∈N is a Mackey–Cauchy sequence in C([0, 1], E),

then (φ ◦ γn)n∈N = (γn)n∈N is a Mackey–Cauchy sequence in C([0, 1], Ẽ),

hence convergent to some γ ∈ C([0, 1], Ẽ). For each t ∈ [0, 1], the point

evaluation εt : C([0, 1], Ẽ) → Ẽ, η 7→ η(t), is continuous and linear. Hence
(γn(t))n∈N is a Mackey–Cauchy sequence in E and hence convergent in E.
Since γn(t) = εt(γn) → εt(γ) = γ(t), we deduce that γ(t) ∈ E. Therefore
γ ∈ C([0, 1], E) and it is clear that γn → γ in C([0, 1], E).

Induction step. If Ck−1([0, 1], E) is (Mackey-)complete, then so is
Ck([0, 1], E), being isomorphic to a closed vector subspace of the (Mackey-)
complete direct product C([0, 1], E)×Ck−1([0, 1], E) (see Remark A.1(b)).
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Progr. Math. 288, Birkhäuser, Boston, 2011, 243–280.

http://dx.doi.org/10.1016/S0723-0869(04)80006-9
http://dx.doi.org/10.1006/jfan.2002.3942
http://dx.doi.org/10.4064/sm153-2-4


When unit groups are regular Lie groups 109
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[11] M. Hervé, Analyticity in Infinite-Dimensional Spaces, de Gruyter, Berlin, 1989.
[12] J. L. Kelley, General Topology, Springer, 1955.
[13] A. Kriegl and P. W. Michor, The Convenient Setting of Global Analysis, Amer.

Math. Soc., Providence, RI, 1997.
[14] E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer.

Math. Soc. 11 (1952).
[15] P. W. Michor, Manifolds of Differentiable Mappings, Shiva Publ., Orpington, 1980.
[16] J. Milnor, Remarks on infinite-dimensional Lie groups, in: Relativité, groupes et
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