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A unified approach to the strong approximation property
and the weak bounded approximation property

of Banach spaces

by

Aleksei Lissitsin (Tartu)

Abstract. We consider convex versions of the strong approximation property and the
weak bounded approximation property and develop a unified approach to their treatment
introducing the inner and outer Λ-bounded approximation properties for a pair consisting
of an operator ideal and a space ideal. We characterize this type of properties in a general
setting and, using the isometric DFJP-factorization of operator ideals, provide a range of
examples for this characterization, eventually answering a question due to Lima, Lima,
and Oja: Are there larger Banach operator ideals than W yielding the weak bounded
approximation property?

1. Introduction. Let X and Y be Banach spaces (over K, where K =
R or C). We denote by L(X,Y ) the Banach space of all bounded linear
operators from X to Y , and by F(X,Y ) and K(X,Y ) its subspaces of finite-
rank and compact operators, respectively. If X = Y , then we simply write
L(X) for L(X,X), and similarly for other spaces of operators.

A Banach space X is said to have the approximation property (AP) if for
every compact setK ⊂ X and every ε > 0, there exists a finite-rank operator
S ∈ F(X) such that ‖Sx−x‖ < ε for all x ∈ K. The approximation property
is said to be metric if, in addition, S ≤ 1.

In analogy with this basic property, one defines the A-approximation
property, for which the operator S is allowed to belong to an operator idealA.
If X is a Banach lattice and S can be chosen to be positive then X is said to
have the positive approximation property. Let us also mention a very recent
concept, the bounded approximation property for pairs of Banach spaces, due
to Figiel, Johnson, and Pełczyński [FJP].
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The variations of the approximation property described above, as well as
their metric versions, include convex approximation properties. By the latter
concept, occasionally introduced in [LMO] and studied in [LisO], we mean
the following.

Definition. Let X be a Banach space and let A be a convex subset
of L(X) containing 0. The space X has the A-approximation property if for
every compact set K ⊂ X and every ε > 0, there exists an operator S ∈ A
such that ‖Sx− x‖ < ε for all x ∈ K.

Observe, for instance, that the positive approximation property is pre-
cisely the A-approximation property where A is the convex cone of positive
finite-rank operators.

While in general the AP and the metric AP of a Banach space are dif-
ferent properties (see [FJ]), it is an open problem whether the same holds
if the space in question is a dual space. The strong approximation property
introduced by Oja [O2], and the weak bounded approximation property in-
troduced by Lima and Oja [LO] are more fine-grained and sit between the
AP and the metric AP.

The purpose of the present paper is to approach the strong AP and the
weak BAP and their convex versions in a unified way (see Section 5).

In Section 2 we start with the standard descriptions of the notions, post-
poning the proofs until Sections 3 and 5. In Section 3 we recall necessary
tools needed for our techniques and prove Theorem 2.4, which characterizes
the convex approximation property and serves as a template for the results
in Section 5. In Section 4 we consider a range of examples, when the isomet-
ric version of the Davis–Figiel–Johnson–Pełczyński factorization lemma can
be applied. These examples are also suitable for the application of general
theorems from Section 5. Section 6 presents a convex version for the impact
of the Radon–Nikodým property (RNP) on the weak bounded approxima-
tion property due to [O1]. Finally, using simple results from Section 5 and
examples from Section 4, in Section 6 we are able to answer a question due
to [LLO1] (see Remark 6.4 and Problem 6.5).

Our notation is standard. A Banach space X will be regarded as a sub-
space of its bidual X∗∗ under the canonical embedding jX : X → X∗∗.
The identity operator on X is denoted by IX . The closed unit ball and the
unit sphere of X are denoted BX and SX , respectively. The closure of a set
K ⊂ X is denoted by K. The linear span of K is denoted by spanK. For
Banach spaces X and Y , the components of an operator ideal A (see [P]) will
be denoted A(X,Y ), with the convention A(X) := A(X,X); the topology
of uniform convergence on compact sets of X, the strong operator topol-
ogy, and the weak operator topology on the space L(X,Y ) will be denoted
τc(X,Y ), τs(X,Y ), and τw(X,Y ) (or simply τc, τs, and τw), respectively.
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2. Convex versions of the strong AP and the weak bounded AP.
In the following, let X be a Banach space and let A ⊂ L(X) be a convex set
containing 0.

Definition 2.1 (see [O2]). A Banach space X is said to have the strong
approximation property if for every separable reflexive Banach space Z and
for every operator T ∈ K(X,Z), there exists a bounded net (Tα) ⊂ F(X,Z)
such that Tαx→ Tx for all x ∈ X.

We are interested in the following characterization of the strong approx-
imation property.

Proposition (see [O2, Proposition 4.6]). A Banach space X has the
strong approximation property if and only if for every Banach space Y and
for every operator T ∈ K(X,Y ), there exists a net (Sα) ⊂ F(X) such that
supα ‖TSα‖ <∞ and TSαx→ Tx for all x ∈ X.

This description allows us to extend the notion to the convex approxi-
mation properties (for which A = F(X) below).

Definition 2.2. We say thatX has the strong A-approximation property
(strong A-AP) if for every Banach space Y and for every operator T ∈
K(X,Y ) there is a net (Sα) ⊂ A such that supα ‖TSα‖ <∞ and TSαx→ Tx
for all x ∈ X.

One can describe the strong A-AP more akin to Definition 2.1 as follows
(see Proposition 5.2 below for the proof in a more general context).

Proposition 2.3. The space X has the strong A-AP if and only if for
every separable reflexive space Z and for every T ∈ K(X,Z) there is a net
(Sα) ⊂ A such that supα ‖TSα‖ <∞ and TSαx→ Tx for all x ∈ X.

Observe that the pointwise convergence (i.e., the convergence in τs(X,Y ))
in Definition 2.2 and Proposition 2.3 can be replaced with the convergence in
τw(X,Y ) or τc(X,Y ) because bounded convex sets have the same closures in
all these three topologies (see, e.g., [Gr, Lemma I.20, p. 178]). Removing the
boundedness condition in the formally strongest such form of Definition 2.2
results in the A-AP. We shall present a proof of the following theorem in
Section 3.

Theorem 2.4. The space X has the A-AP if and only if for every sep-
arable reflexive space Z and for every T ∈ K(X,Z) there is a net (Sα) ⊂ A
such that TSα → T in τc(X,Z).

In the same paper [O2], it was proved that the strong AP shares similar
characterizations with the weak bounded AP, which was introduced in [LO]
and studied, e.g., in [LLO1], [LLO2], [LLO3], [L], and [O4]. The following
definition is based on [LO, Theorem 2.4].
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Definition 2.5. Let λ ≥ 1. A Banach space X has the weak λ-bounded
AP if for every separable reflexive Banach space Z and for every operator
T ∈ K(X,Z), there exists a net (Sα) ⊂ F(X) such that supα ‖TSα‖ ≤ λ‖T‖
and Sα → IX in the topology of compact convergence.

We extend this notion as follows.

Definition 2.6. Let λ ≥ 1. We say that X has the weak λ-bounded
A-approximation property if for every separable reflexive Banach space Z
and for every operator T ∈ K(X,Z) there is a net (Sα) ⊂ A such that
supα ‖TSα‖ ≤ λ‖T‖ and Sα → IX in the topology of compact convergence.

We say that X has the weak metric A-AP if X has the weak 1-bounded
A-AP, and that X has the weak bounded A-AP if X has the weak µ-bounded
A-AP for some µ ≥ 1.

Observe that the weak λ-bounded A-AP of X means that for every sep-
arable reflexive Banach space Z and for every T ∈ K(X,Z) the space X has
the AλT -AP, where

AλT := {S ∈ A : ‖TS‖ ≤ λ‖T‖}.
The following result hints at the link between Definitions 2.2 and 2.6.

Proposition 2.7. Let λ ≥ 1. The following statements are equivalent:

(a) X has the weak λ-bounded A-AP.
(b) For every Banach space Y and for every T ∈ K(X,Y ) there is a net

(Sα) ⊂ AλT such that Sα → IX in τc(X,X).
(c) For every separable reflexive space Z and for every operator T ∈
K(X,Z) there is a net (Sα) ⊂ AλT such that TSα → T in τw(X,Z).

We skip the proof of Proposition 2.7 because it is a consequence of a
more general Theorem 5.3 below, but we provide the following overview as
its corollary.

Corollary 2.8. Consider the following conditions:

(a) X∗ has the A-AP with conjugate operators,
(b) X has the bounded A-AP,
(c1) X has the weak metric A-AP,
(c) X has the weak bounded A-AP,
(d) X has the strong A-AP,
(e) X has the A-AP.

Then (a)⇒(c1)⇒(c)⇒(d)⇒ (e) and (b)⇒(c). If A = F(X), then the impli-
cations (a)⇒(c1), (c1)⇒(c), and (d)⇒(e) are strict.

Proof. The chain (b)⇒(c)⇒(d)⇒(e) and the implication (c1)⇒(c) are
clear from the definitions, Theorem 2.4, and Proposition 2.7. The implication
(a)⇒(c1) follows from (a)⇒(b) of [LMO, Corollary 11] and Proposition 2.7.
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For (e)6⇒(d), see [O2, Theorem 2.1, (a) 6⇒(c∗), and Proposition 4.6]. For
(c)6⇒(c1), see [LO, Proposition 2.3]. For (c1) 6⇒(a), observe that the weak
metric AP follows from the metric AP but there is a Banach space having
a monotone basis (hence, the metric AP) such that its dual space fails the
AP (hence, also the AP with conjugate operators).

It is an open question whether the implications (c)⇒(d) or (b)⇒(c) of
Corollary 2.8 can be reversed (see, e.g., [O2, Conjecture 3.5] and [O1, Conjec-
ture 1]). The latter question has a partial positive answer (see Corollary 6.7
below).

3. Isometric factorization, τc-continuous functionals, and a proof
of Theorem 2.4. To prove Theorem 2.4, we shall employ the famous Davis–
Figiel–Johnson–Pełczyński factorization lemma, more precisely, its isometric
version due to Lima, Nygaard, and Oja. Let us recall the relevant construc-
tion.

Let a be the unique solution of the equation
∞∑
n=1

an

(an + 1)2
= 1, a > 1.

Let X and Y be Banach spaces and let K be a closed absolutely convex
subset of BX . For each n ∈ N, put Bn = an/2K + a−n/2BX . The gauge of
Bn gives an equivalent norm ‖ · ‖n on X. Set

‖x‖K =
( ∞∑
n=1

‖x‖2n
)1/2

,

define XK = {x ∈ X : ‖x‖K <∞} and CK = {x ∈ X : ‖x‖K ≤ 1}, and let
JK : XK → X denote the identity embedding.

Lemma 3.1 (see [DFJP] and [LNO]). With the notation as above, the
following holds:

(i) XK = (XK , ‖ · ‖K) is a Banach space and ‖JK‖ ≤ 1.
(ii) K ⊂ CK ⊂ BX .
(iii) CK ⊂ Bn for all n ∈ N.
(iv) J∗K(X∗) is norm dense in X∗K .
(v) CK as a subset of X is compact, separable, or weakly compact if and

only if K has the same property.
(vi) The weak topologies defined by X and XK coincide on CK . Hence,

XK is separable or reflexive if and only if K is separable or weakly
compact, respectively.

Suppose T ∈ L(Y,X) with ‖T‖ = 1, let K = T (BX), and let TK : Y → XK

be defined by TKy = Ty for y ∈ Y . Then
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(vii) T = JK ◦ TK with ‖T‖ = ‖JK‖ = 1 and both TK and JK are
separably valued, weakly compact, or compact if and only if T has
the same property.

Another ingredient in proving Theorem 2.4 is Grothendieck’s description
of τc-continuous linear functionals on the space L(X,Y ). Recall (see, e.g., [R,
pp. 21–22]) that for any element u of the projective tensor product X ⊗̂ Y
and for every ε > 0, there exists a representation

u =
∞∑
n=1

xn ⊗ yn

with
∑∞

n=1 ‖xn‖ ‖yn‖ < ‖u‖π + ε. Note that one can actually choose a rep-
resentation, where

∑∞
n=1 ‖xn‖ < ‖u‖π + ε, supn ‖yn‖ ≤ 1, and yn → 0, or

vice versa. The trace functional on X∗ ⊗̂X is defined as

trace(u) =
∞∑
n=1

x∗n(xn)

for u =
∑∞

n=1 x
∗
n ⊗ xn ∈ X∗ ⊗̂ X with

∑∞
n=1 ‖x∗n‖ ‖xn‖ < ∞. It is well

defined and does not depend on the representation of u.

Lemma 3.2 (see, e.g., [LT, Proposition 1.e.3]). Let X and Y be Banach
spaces. There is a surjective linear operator V from Y ∗ ⊗̂ X to the space
(L(X,Y ), τc)

∗ of τc-continuous linear functionals on L(X,Y ) defined by

(V u)(T ) = trace(Tu)

for u ∈ Y ∗ ⊗̂X and T ∈ L(X,Y ).

Combining Lemma 3.2 with the Hahn–Banach theorem one gets a “se-
quential” description of the A-AP.

Lemma 3.3 (see [LMO, Lemma 3]). Let X be Banach space and let A ⊂
L(X) be a convex set. The space X has the A-AP if and only if for all
sequences (x∗n) ⊂ X∗ and (xn) ⊂ X such that

∑∞
n=1 ‖x∗n‖ ‖xn‖ <∞ one has

inf
S∈A

∣∣∣ ∞∑
n=1

x∗n(Sxn − xn)
∣∣∣ = 0.

Proof of Theorem 2.4. Necessity follows from the fact that multiplication
with a bounded linear operator preserves τc-convergence.

Sufficiency. We shall use Lemma 3.3 to show that X has the A-AP. Take
a tensor

∞∑
n=1

x∗n ⊗ xn ∈ X∗ ⊗̂X

such that
∑∞

n=1 ‖xn‖ ≤ 1, x∗n → 0, and ‖x∗n‖ ≤ 1 for all n ∈ N. Let
K := absconv({x∗1, x∗2, . . . }) ⊂ BX∗ .
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Since K is compact, by Lemma 3.1, there is a separable reflexive space Z :=
(X∗)K and a compact operator J := JK : Z → X∗ such that K ⊂ J(BZ)
and ‖J‖ = 1. For every n ∈ N there is zn ∈ BZ such that Jzn = x∗n.

Since J∗jX ∈ K(X,Z∗) and Z∗ is separable and reflexive, the assumption
gives us a net (Sα) ⊂ A such that

(3.1) J∗jXSα → J∗jX in τc(X,Z∗).

Observe that
∞∑
n=1

‖zn‖ ‖xn‖ <∞

and consider the tensor
∑∞

n=1 zn ⊗ xn as a τc-continuous linear functional f
on L(X,Z∗). Then (3.1) yields

inf
S∈A

∣∣∣ ∞∑
n=1

x∗n(Sxn − xn)
∣∣∣ ≤ inf

α

∣∣∣ ∞∑
n=1

(J∗jX(Sαxn − xn))(zn)
∣∣∣

≤ lim
α
|f(J∗jXSα − J∗jX)| = 0,

as needed.

4. Factorization of operator ideals. Let A be an operator ideal and
let A be a space ideal.

Definition 4.1. We say that A is DFJP-factorizable through A if XK ∈
A whenever T ∈ A in Lemma 3.1 above, or simply DFJP-factorizable, when
A = Space(A).

For examples of DFJP-factorizable operator ideals we refer to [H]. Recall
(see, e.g., [S, p. 13] and [H, pp. 398, 404–405]) that A is surjective if, given
Banach spaces X1, X2, Y and operators T ∈ A(X1, Y ) and T ∈ L(X2, Y ),
the inclusion S(BX1) ⊂ T (BX2) implies S ∈ A; A is injective if, given
Banach spaces X, Y1, Y2, an operator T ∈ L(X,Y1) and an injection J ∈
L(Y1, Y2) the inclusion JT ∈ A implies T ∈ A; and A has the

∑
2-property

if, given sequences (Xn) and (Yn) of Banach spaces and an operator T ∈
L(`2(Xn), `2(Yn)) one has T ∈ A whenever inTpm ∈ A(Xn, Ym) for all m
and n (here im : Xm → `2(Xn) and pm : `2(Yn)→ Ym denote the respective
natural injection and natural projection).

The following result is essentially well known (see [H] and [G]). For com-
pleteness, we provide a proof for the isometric case.

Proposition 4.2. Let A be an operator ideal and let T ∈ A(Y,X) be as
in Lemma 3.1 above.

(i) If A is closed and injective, then TK ∈ A.
(ii) If A is closed and surjective, then JK ∈ A.
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(iii) If A is injective, surjective, and has the
∑

2-property, then XK ∈
Space(A) (i.e., A is DFJP-factorizable).

Proof. (i) Since for x ∈ K and an integer N ≥ 1 one has

‖x‖2K ≤
∑
n≤N
‖x‖2n +

∑
n>N

an

(an + 1)2
,

it follows that for any ε > 0 one can find C > 0 such that for all x ∈ K one
has

‖x‖K ≤ C‖x‖+ ε,

which together with [J1, Theorem 20.7.3] implies the claim.
For (ii), combine (iii) of Lemma 3.1 with [J2, Proposition 2.9] (see also

[GG, Lemma 2]).
(iii) If A has the

∑
2-property, then it is closed (see [H, p. 405]). Therefore

JK ∈ A by (ii). Put Xn = XK and Yn = (X, ‖ · ‖n) for all n ∈ N, and let
q1 : `2(Xn) → XK and j : XK → `2(Yn) denote the respective natural
projection and inclusion. Since q1in = 0 if n 6= 1, q1i1 = IXK , and pnj =
JK ∈ A(YK , (Y, ‖ · ‖n)), the

∑
2-property of A gives jq1 ∈ A. Then IXK ∈ A

because A is injective and surjective.

Definition 4.3. We say that an operator ideal A is DFJP-surjective if
JK ∈ A whenever T ∈ A in Lemma 3.1 above.

Clearly, every closed and surjective operator ideal is DFJP-surjective and
every DFJP-surjective operator ideal is surjective.

Whenever A is DFJP-factorizable through A, one has A ⊂ Op(A). If, in
addition, A is DFJP-surjective, then A = A ◦ Op(A); or if A is closed and
injective, then A = Op(A)◦A. The latter property means that given Banach
spaces X, Y and an operator T ∈ A(X,Y ) there are a Banach space Z ∈ A
and operators T1 ∈ L(X,Z) and T2 ∈ A(Z, Y ) such that T = T2T1. Let us
also note that if A is closed and surjective (injective), then Adual is closed
and injective (surjective).

Example 4.4. See [GG, p. 471] for extra examples and references.

• The following operator ideals are closed and surjective: compact oper-
ators K, Grothendieck operators, limited operators, strictly cosingular
operators.
• The following operator ideals are closed and injective: compact op-

erators K, completely continuous operators V, weakly Banach–Saks
operators, strictly singular operators, Radon–Nikodým operators RN ,
absolutely continuous operators.
• The following operator ideals are DFJP-factorizable (see [LNO], [H,

Theorem 2.3] and Proposition 4.2): finite-rank operators F , separa-
ble operators X , weakly compact operators W, Banach–Saks opera-



A unified approach to the strong AP and the weak BAP 207

tors BS, Asplund operators RN dual, Rosenthal operators V−1 ◦K, and
also their intersections. They factor through the space ideals of finite-
dimensional spaces F = Space(F), separable spaces X = Space(X ), re-
flexive spaces W = Space(W), Banach–Saks spaces BS = Space(BS),
Asplund spaces RNdual = Space(RN )dual, and Space(V−1 ◦K), respec-
tively.

• Other pairs (A,A), where A is DFJP-factorizable through A, include,
for instance, (K,X ∩ BS) and (K,X ∩W), that is, compact operators
are DFJP-factorizable through separable reflexive spaces and through
separable Banach–Saks spaces. (Note the strict inclusions K ⊂ X ∩
BS ⊂ X ∩W.)

In the following it will be more convenient to use a version of Lemma 3.1
with a restriction on the set K and not on the operator T . To this end,
consider the following notion due to [S].

Let A be an operator ideal. The corresponding ideal system of sets bA
is defined as follows: given a Banach space X, a set K ⊂ X is in bA(X) if
there is a Banach space Y and T ∈ A(Y,X) such that K ⊂ T (BY ).

The following is an easy observation. Recall that a bornology on a Banach
space X is a covering of X which respects inclusions and finite unions.

Proposition 4.5. Let A be an operator ideal, let A be a space ideal,
and let X and Y be Banach spaces. Then bA(X) is a bornology on X, which
respects set sums, multiplication by a scalar, and absolutely convex hulls.

If A is surjective, then T ∈ A(X,Y ) if and only if T ∈ L(X,Y ) and
T (BX) ∈ bA(Y ).

If A is DFJP-surjective, then bA also respects set closures.
The operator ideal A is DFJP-surjective (respectively, DFJP-factorizable

through A) if and only if K ∈ bA(X) implies JK ∈ A (respectively, XK ∈ A)
in Lemma 3.1 above.

5. Unified approach. In the following, let X be a Banach space, and
let A ⊂ L(X) be convex and contain 0. Let A be an operator ideal and let
A be a space ideal. Let Λ ⊂ [1,∞) be non-empty and let τ be one of the
topologies τc, τs, τw, or the norm topology τ‖·‖.

For the unified investigation of the strong approximation property and
weak bounded approximation property and their flavors consider the follow-
ing general definition.

Definition 5.1.

• We say that X has the τ -inner (or τ -outer) Λ-bounded A-AP for the
pair (A,A) if for every space Y ∈ A and for every operator T ∈ A(X,Y )
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there is λ ∈ Λ and a net (Sα) ⊂ AλT such that Sα → IX (or TSα → T )
in the topology τ .
• If there is no restriction on Banach spaces, i.e., if A = L above, we say

that X has the corresponding property for A.
• If τ = τc we omit “τc-inner” in the definition above. Similarly we just

say “outer” in place of “τc-outer”.
• We say that X has the Λ-bounded A-AP if it has the λ-bounded A-AP

for some λ ∈ Λ.
• If Λ = {λ}, we replace Λ with λ in the above notions.

The definition above is modelled after the definition of “λ-bounded AP for
B” in [LLO1] (see also [O3]), where B is a Banach operator ideal. Our defini-
tion is not consistent with the original Lima–Lima–Oja definition where the
approximating sets are given using the operator ideal norm. For simplicity,
we use instead the usual operator norm. However, for closed Banach opera-
tor ideals these two norms coincide. Therefore, in that case, the definitions
are still consistent.

Note also that our “inner” and “outer” terminology is different from those
used in [T] or in [O4].

Let us point out some observations relating to Definition 5.1.

• Let B be an operator ideal such that B ⊂ A and let B be a space ideal
such that B ⊂ A. Then the τ -inner (or τ -outer) Λ-bounded A-AP for
(A,A) implies the corresponding property for (B,B)
• The weak λ-bounded A-AP is the λ-bounded A-AP for (K,X ∩W).
• The τ -outer Λ-bounded A-AP for (A,A) is simply “outer” if τ is any

of the topologies τc, τs, or τw (see the note after Proposition 2.3).
• The strong A-AP is the outer [1,∞)-bounded A-AP for K.
• The Λ-bounded A-AP for (A,A) implies the A-AP. Indeed, 0∈A(X,Y )

for every space Y ∈ A, so for some λ ∈ Λ the space X has the Aλ0 -AP.
But Aλ0 = A.
• The Λ-bounded A-AP for (A,A) implies the respective “τs-inner” prop-

erty, which, in turn, implies the respective “outer” property.
• The outer Λ-bounded A-AP for (K,X∩W) implies the A-AP by The-

orem 2.4.
• The τ‖·‖-outer (1-bounded) A-AP for (K,X ∩W) of X coincides with

the A-AP with conjugate operators of X∗ by [LMO, Corollary 11].
• The outer Λ-bounded A-AP for L coincides with the Λ-bounded A-AP.

Indeed, take T = IX ∈ L(X) in Definition 5.1; then for any λ ≥ 1 one
has

AλT = λBL(X) ∩A.
Consider the following simple factorization result (see Example 4.4 for

its possible applications). Among other things, it yields Proposition 2.3.
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Moreover, it says that we can replace “separable reflexive” with “separable
Banach–Saks” in Proposition 2.3, Theorem 2.4, and Proposition 2.7.

Proposition 5.2. Let A = Op(A) ◦ A. Then X has the τ -inner (or τ -
outer) Λ-bounded A-AP for A if and only if X has the corresponding property
for (A,A).

Proof. We only need to prove sufficiency. Let T ∈ A(X,Y ). By assump-
tion there are Z ∈ A, T1 ∈ A(X,Z), and T2 ∈ L(Z, Y ) such that T = T2T1.
We may assume that ‖T‖ = ‖T2‖‖T1‖ (see [H, Lemma 1.2]). Clearly, if
(Sα) ⊂ L(X), then the τ -convergence T1Sα → T1 implies the τ -convergence
TSα → T. It remains to observe that AλT1 ⊂ AλT for any λ ≥ 1. Indeed, if
S ∈ A and ‖T1S‖ ≤ λ‖T1‖, then

‖TS‖ = ‖T2T1S‖ ≤ ‖T2‖ · λ‖T1‖ = λ‖T‖.
Next we would like to establish some sufficient conditions, when the Λ-

bounded A-AP for A is actually “outer”. Our method (which is an enhanced
version of the proof for Theorem 2.4) seems to work only in the case when
Λ = {λ}. In the following, let λ ≥ 1.

Theorem 5.3. Let Adual be DFJP-surjective and DFJP-factorizable
through Adual, and let K ⊂ Adual. If X has the outer λ-bounded A-AP for
(A,A), then X has the λ-bounded A-AP for (Adual)dual.

Proof. Let Y be a Banach space and let T ∈ (Adual)dual(X,Y ). We may
assume that ‖T‖ = 1. We shall use Lemma 3.3 to show that X has the
AλT -AP.

Take a tensor
∑∞

n=1 x
∗
n⊗xn ∈ X∗⊗̂X such that

∑∞
n=1 ‖xn‖ ≤ 1, x∗n → 0,

and ‖x∗n‖ ≤ 1 for all n ∈ N. Let
K := absconv({x∗1, x∗2, . . . } ∪ T ∗(BY ∗)) ⊂ BX∗ .

Since K belongs to bAdual(X∗) (see Proposition 4.5), by assumption, there is
a space Z := (X∗)K ∈ Adual and an operator J := JK : Z → X∗ such that
J ∈ Adual, K ⊂ J(BZ), and ‖J‖ = 1. For every n ∈ N there is zn ∈ BZ such
that JKzn = x∗n. Moreover, for the astriction TK ∈ L(Y ∗, Z) of T ∗ to Z, we
have T ∗ = JTK and ‖TK‖ = 1.

Since J∗jX ∈ A(X,Z∗) and Z∗ ∈ A, the assumption gives us a net
(Sα) ⊂ AλJ∗jX

such that

(5.1) J∗jXSα → J∗jX in τc(X,Z∗).

Fix α. Note that

(J∗jXSα)
∗jZ = S∗αj

∗
XJ
∗∗jZ = S∗αj

∗
XjX∗J = S∗αJ,

so that the inclusion Sα ∈ AλJ∗jX
implies

‖S∗αJ‖ = ‖(J∗jXSα)∗jZ‖ ≤ ‖J∗jXSα‖ ≤ λ.
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Therefore,
‖TSα‖ = ‖S∗αT ∗‖ = ‖S∗αJTK‖ ≤ λ.

That is, (Sα) ⊂ AλT . Observe that
∞∑
n=1

‖zn‖ ‖xn‖ <∞

and consider the tensor
∑∞

n=1 zn ⊗ xn as a τc-continuous linear functional f
on L(X,Z∗). Then (5.1) gives

inf
S∈AλT

∣∣∣ ∞∑
n=1

x∗n(Sxn − xn)
∣∣∣ ≤ lim

α

∣∣∣ ∞∑
n=1

(J∗jX(Sαxn − xn))(zn)
∣∣∣

= lim
α
|f(J∗jXSα − J∗jX)| = 0,

as needed.

Theorem 5.3 can be applied when A is any closed and injective operator
ideal and A = L, as well as when A = RN and A = RN because RN dual is
DFJP-factorizable.

Corollary 5.4. Let A be completely symmetric and DFJP-surjective,
and let K ⊂ A. Assume that

(i) A is DFJP-factorizable through Adual,

or

(ii) A = Op(A) ◦ A.

Then X has the λ-bounded A-AP for A if and only if X has the outer λ-
bounded A-AP for (A,A).

Corollary 5.4 can be applied to pairs (A,A) such as (L, L), (W,W), (X ∩
W,X ∩W), and (K,X ∩W); in particular it implies Proposition 2.7.

Corollary 5.5. A Banach space X has the τs-inner λ-bounded A-AP
for F if and only if X has the outer λ-bounded A-AP for (F ,F).

Proof. In the proof of Theorem 5.3 consider T ∈ F(X,Y ) and τw-
continuous functionals (i.e., tensors of the form

∑k
n=1 x

∗
n ⊗ xn for k ∈ N).

Then K ∈ bF (X∗), and the rest follows in the same way.

Remark 5.6. Every Banach space has the τs-inner 1-bounded F(X)-AP
for F . Indeed, it easily follows from [O2, Corollary 4.4] that for any Banach
spaces X, Y and an operator T ∈ F(X,Y ) there is a sequence (Sn) ⊂ F(X)
such that TSn → T . That is, every Banach space has the τ‖·‖-outer (1-
bounded) F(X)-AP for F , and Corollary 5.5 implies the claim.
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6. The weak bounded AP and the RNP impact. The impact of
the Radon–Nikodým property on the weak bounded AP was discovered by
Oja in [O1]. The prototype of the following result is [O1, Theorem 2].

Lemma 6.1. Let X and Y be Banach spaces, let A ⊂ L(X) be convex
and contain 0, and let λ ≥ 1. Let X have the weak λ-bounded A-AP. Let
T ∈ L(X,Y ) be such that {TS : S ∈ A} ⊂ K(X,Y ). If X∗∗ or Y ∗ has the
RNP, then X has the AλT -AP.

Proof. We may assume that ‖T‖ = 1. We show that X has the Aλ+δT -AP
for every δ > 0. The claim would then follow because A is convex and
contains 0.

Fix δ > 0, a compact set C ⊂ X, and ε > 0. Define

C = {TS : S ∈ A, ‖Sa− a‖ < ε ∀a ∈ C} ⊂ K(X,Y ).

We need to show that C ∩ (λ + δ)BK(X,Y ) is not empty. Observe that C is
convex and not empty because X has the A-AP, while (λ + δ)BK(X,Y ) is
convex with non-empty interior. Therefore by the Hahn–Banach separation
theorem, it remains to show that

inf
TS∈C

<ϕ(TS) < sup{<ϕ(R) : R ∈ K(X,Y ), ‖R‖ ≤ λ+ δ} = λ+ δ

for every ϕ ∈ (K(X,Y ))∗ with ‖ϕ‖ = 1.
Let ϕ ∈ K(X,Y )∗ with ‖ϕ‖ = 1. Since X∗∗ or Y ∗ has the RNP, from the

theorem of Feder and Saphar (see [FS, Theorem 1]), there is u ∈ Y ∗ ⊗̂X∗∗
such that ‖u‖π = 1 and

ϕ(R) = trace(R∗∗u)

for all R ∈ K(X,Y ). Pick a representation

u =

∞∑
n=1

y∗n ⊗ x∗∗n ∈ Y ∗ ⊗̂X∗∗

such that 1 ≥ ‖y∗n‖ → 0 and
∑∞

n=1 ‖x∗∗n ‖ < 1 + δ/λ.
Let K := {T ∗y∗1, T ∗y∗2, . . . } ⊂ BX∗ . Since K is compact, by Lemma 3.1,

we can construct a separable reflexive Banach space Z, sitting insideX∗, such
that the embedding operator J ∈ K(Z,X∗) has norm 1, andK ⊂ J(BZ). For
all n ∈ N let zn ∈ BZ be such that Jzn = T ∗y∗n. We have J∗jX ∈ K(X,Z∗).
By assumption we can find S ∈ A such that ‖J∗jXS‖ ≤ λ and ‖Sa−a‖ < ε
for all a ∈ C. Since Z∗ is reflexive, we get

‖J∗S∗∗‖ = ‖J∗∗∗j∗∗X S∗∗‖ ≤ λ
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and

|ϕ(TS)| =
∣∣∣ ∞∑
n=1

(S∗∗x∗∗n )(T ∗y∗n)
∣∣∣ = ∣∣∣ ∞∑

n=1

(J∗S∗∗x∗∗n )(zn)
∣∣∣

≤ λ
∞∑
n=1

‖x∗∗n ‖ < λ

(
1 +

δ

λ

)
= λ+ δ,

as required.

As an immediate consequence of Lemma 6.1 we obtain the next theorem.
Recall that (A−1 ◦ K)(X) consists of all operators S ∈ L(X) such that for
every Banach space Y and for every T ∈ A(X,Y ) one has TS ∈ K(X,Y ).

Theorem 6.2. Let X be a Banach space, let A be an operator ideal, let
A be a convex subset of (A−1 ◦ K)(X) containing 0, and let λ ≥ 1. Let X
have the weak λ-bounded A-AP. Then:

(i) X has the λ-bounded A-AP for (A,RNdual);
(ii) if X∗∗ has the RNP, then X has the λ-bounded A-AP for A.
Apart from the case when A consists of compact operators (see below),

Theorem 6.2 can be applied, for instance, when A = V. Observe that W ⊂
V−1 ◦ K (see [P, p. 61]).

In the case when A ⊂ K(X), Theorem 6.2 allows us to nicely describe
the weak λ-bounded A-AP.

Corollary 6.3. Let X be a Banach space, let A be a convex subset of
K(X) containing 0, and let λ ≥ 1. The following properties are equivalent
for X:

(a) weak λ-bounded A-AP,
(b) outer λ-bounded A-AP for (K,X ∩ BS),
(c) λ-bounded A-AP for K.
(d) λ-bounded A-AP for W,
(e) λ-bounded A-AP for RN dual.

Proof. Implication (a)⇒(e) follows from (i) of Theorem 6.2, the fact that
RN dual factors through RNdual, and Proposition 5.2; (b)⇔(c) follows from
Corollary 5.4, while (e)⇒(d)⇒(c)⇒(a) are obvious.

Remark 6.4. In the case when A = F(X), the equivalences (a)⇔(c)⇔
(d) ⇔ “outer λ-bounded A-AP for (K,X ∩ W)” have been established in
[LO, Theorem 2.4]. Note that the equivalence (a)⇔(e) answers the following
question.

Problem 6.5 (see [LLO1, Problems 5.1 and 5.2]). Are there larger Ba-
nach operator ideals than W yielding the weak bounded approximation prop-
erty? Does RN dual yield the weak bounded approximation property?
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We would like to point out a related open problem.

Problem 6.6 (see [O3, Problem 5.5]). Describe the λ-bounded F(X)-AP
for RN , V, or U (U denotes the operator ideal of unconditionally summing
operators).

The fact that the impact of the Radon–Nikodým property enables one
to pass from the weak λ-bounded A-AP to the λ-bounded A-AP was first
established in [O1, Corollary 1] for A = F(X). In [LisO, Theorem 5.1] it was
noticed that the same proof actually holds in the case when A ⊂ K(X). The
following corollary is essentially the latter result.

Corollary 6.7. Let X be a Banach space and let A be a convex subset
of K(X) containing 0. If X∗ or X∗∗ has the RNP, then the weak λ-bounded
A-AP and the λ-bounded A-AP are equivalent for X.

Proof. The case when X∗∗ has the RNP follows from Theorem 6.2(ii).
The case whenX∗ has the RNP follows from Lemma 6.1 applied to T = IX .
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