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F-bases with brackets and with individual
brackets in Banach spaces

by

Tomasz Kochanek (Katowice)

Abstract. We provide a partial answer to the question of Vladimir Kadets whether
given an F-basis of a Banach space X, with respect to some filter F ⊂ P(N), the coordinate
functionals are continuous. The answer is positive if the character of F is less than p. In this
case every F-basis is an M -basis with brackets which are determined by an element of F .

1. Introduction. Given any filter F of subsets of N and a Banach space
X we say that a sequence (en)∞n=1 is an F-basis for X if for each x ∈ X there
is a unique sequence (an)∞n=1 of scalars such that

x = F- lim
n→∞

n∑
k=1

akek

in the norm topology of X (i.e. for each ε > 0 there is a set A ∈ F such
that ‖x−

∑n
k=1 akek‖ < ε for n ∈ A). In that case we define the coordinate

functionals by e∗n(x) = an and the partial sum projections by Sn(x) =∑n
k=1 e

∗
k(x)ek for n ∈ N. Of course, all these maps are linear.

The present paper is motivated by a question posed by V. Kadets dur-
ing the 4th conference Integration, Vector Measures and Related Topics; he
asked whether it is true in general that the e∗n are continuous. Let us note
that continuity of the coordinate functionals has been usually included in
the definition of F-basis (cf. [1], [3]). Of particular interest is the case where
F = Fst is the filter of statistical convergence defined by

Fst =

{
A ⊂ N : lim

n→∞

1

n
|A ∩ {1, . . . , n}| = 1

}
.

For any filter F of subsets of N let χ(F) stand for its character, that is,
the minimal cardinality of a subfamily of F which generates F :

χ(F) = min{|B| : B ⊂ F , ∀A∈F ∃B∈B B ⊆ A}.
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We will show that the answer to Kadets’ question is positive when the
character of F is less than p, the pseudointersection number, which is the
least cardinal number κ such that P (κ+) is false, where P (κ) is the following
statement:

P (κ): If A is a family of subsets of N such that |A | < κ and A1∩· · ·∩Ak
is infinite for any A1, . . . , Ak ∈ A , then there is an infinite set
B ⊂ N such that B \A is finite for each A ∈ A .

It is known that ω1 ≤ p ≤ c and that p = c provided we assume Martin’s
axiom (this is known as Booth’s lemma; cf. [2, Theorem 11C]). We thus
obtain continuity of the coordinate functionals associated with F-bases for
which χ(F) ≤ ω (i.e. F is countably generated) and, under Martin’s axiom,
for which χ(F) < c. In fact, we will see (Theorem 1) that any F-basis
(en)∞n=1 of a Banach space X, with χ(F) < p, is an M -basis with brackets
(cf. [4]), that is, there is a sequence n1 < n2 < · · · of natural numbers such
that for each x ∈ X we have

x = lim
k→∞

nk∑
j=1

e∗j (x)ej .

Of course, every such basis generates a finite-dimensional Schauder decom-
position of X. The inequality χ(F) < p also implies that {n1 < n2 < · · · }
may be required to be a member of F .

My first proof of continuity of the coordinate functionals worked for
countably generated filters and it was D. H. Fremlin who indicated that
the argument should go through for some models where the Baire Category
Theorem is valid for uncountably many meagre sets. This led me to the
condition χ(F) < p.

In Section 3 we introduce the notion of F-basis with individual brack-
ets, analogous to the one of M -basis with individual brackets (see defini-
tions therein), and we show that many F-bases which arise naturally from
Schauder bases belong to this class (Theorem 2).

It should be mentioned that since the statistical filter Fst is tall (i.e.
every infinite subset of N contains an infinite subset belonging to the dual
ideal of Fst), we have χ(Fst) ≥ p, so the question posed by Kadets remains
unanswered in the case F = Fst.

2. Continuity of coordinate functionals. Hereinafter F stands for
a filter of subsets of N and (en)∞n=1 is an F-basis of a Banach space X unless
otherwise stated. The coordinate functionals and the partial sum projections
corresponding to (en)∞n=1 will be denoted by e∗n and Sn.
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Proposition 1. For every A ∈ F the space

XA =
{
x ∈ X : sup

ν∈A
‖Sν(x)‖ <∞

}
,

equipped with the norm ‖ · ‖A defined by

‖x‖A = sup
ν∈A
‖Sν(x)‖,

is a Banach space.

Proof. First, observe that ‖ · ‖A is indeed a norm on XA. Homogeneity
and the triangle inequality are trivial. Moreover, if ‖x‖A = 0 then for each
ε > 0 one may find B ∈ F such that ‖Sν(x)−x‖ < ε for ν ∈ B, but then for
each ν ∈ A∩B, which is non-empty as an element of F , we have Sν(x) = 0.
Hence ‖x‖ < ε and consequently x = 0.

Now, assume (xn)∞n=1 is a Cauchy sequence in (XA, ‖·‖A). Then for every
ε > 0 one may find m ∈ N such that

‖Sν(xm − xn)‖ < ε/3 for each n ≥ m and ν ∈ A.
We may choose ν in such a way that

‖Sν(xm)− xm‖ < ε/3 and ‖Sν(xn)− xn‖ < ε/3.

These three inequalities give ‖xm − xn‖ < ε, which shows that (xn)∞n=1 is a
Cauchy sequence in (XA, ‖ · ‖). Therefore, there exists x0 in the ‖ · ‖-closure
of XA such that

(1) lim
n→∞

‖xn − x0‖ = 0.

Similarly, for every ν ∈ A and m,n ∈ N we have

‖Sν(xm)− Sν(xn)‖ = ‖Sν(xm − xn)‖ ≤ ‖xm − xn‖A,
which shows that (Sν(xn))∞n=1 is a Cauchy sequence in (X, ‖ ·‖), and each of
its elements lies in span{ej}j≤ν . Hence, there is yν ∈ span{ej}j≤ν such that

(2) lim
n→∞

‖Sν(xn)− yν‖ = 0.

For every j ∈ N denote αj = e∗j (yν) for any ν ∈ A, j ≤ ν. This definition
does not depend on the choice of ν. Indeed, if k, ` ∈ A satisfy j ≤ k ≤ `, then
the continuity of e∗j on the finite-dimensional subspace span{ei}i≤` gives

e∗j (yk) = e∗j

(
lim
n→∞

Sk(xn)
)

= lim
n→∞

e∗j (Sk(xn)) = lim
n→∞

e∗j (S`(xn)) = e∗j (y`).

We shall show that

x0 = F-

∞∑
n=1

αnen,

thus, in particular, Sν(x0) = yν for every ν ∈ A. To this end fix any ε > 0 and
choose m ∈ N such that for each n ≥ m we have ‖Sν(xm)− Sν(xn)‖ < ε/3
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(for any ν ∈ A) and ‖xm − xn‖ < ε/3. Now, let B ∈ F be such that for
each ν ∈ B we have ‖Sν(xm)− xm‖ < ε/3. Then A ∩ B ∈ F and for every
ν ∈ A ∩B we get

‖yν − x0‖ =
∥∥∥ lim
n→∞

Sν(xn)− lim
n→∞

xn

∥∥∥
≤ lim

n→∞
‖Sν(xm)− Sν(xn)‖+ ‖Sν(xm)− xm‖

+ lim
n→∞

‖xm − xn‖ ≤ ε,

in view of (1) and (2). This shows that

x0 = F- lim
ν→∞
ν∈A

yν .

Moreover, a similar estimate, for an arbitrary ν ∈ A and m ∈ N chosen as
above, yields

‖yν‖ ≤ ‖x0‖+
1

3
ε+ ‖Sν(xm)‖+ ‖xm‖+

1

3
ε

≤ 2

3
ε+ ‖x0‖+ ‖xm‖A + ‖xm‖,

which implies
sup
ν∈A
‖Sν(x0)‖ = sup

ν∈A
‖yν‖ <∞,

thus x0 ∈ XA. Now, for any n ∈ N we have

‖xn − x0‖A = sup
ν∈A
‖Sν(xn)− Sν(x0)‖ = sup

ν∈A

∥∥∥Sν(xn)− lim
m→∞

Sν(xm)
∥∥∥

≤ lim sup
m→∞

sup
ν∈A
‖Sν(xn)− Sν(xm)‖,

which shows that limn→∞ ‖xn − x0‖A = 0, and consequently (XA, ‖ · ‖A) is
a Banach space.

Proposition 2. If χ(F) < p then there exists a set A ∈ F such that
XA = X.

Proof. For any A ∈ F the identity mapping iA : (XA, ‖ · ‖A)→ (X, ‖ · ‖)
is continuous, since ‖ · ‖A ≥ ‖ · ‖. By Proposition 1 and the Open Mapping
Theorem, either iA is surjective, or its image XA is a meagre subset of
(X, ‖ · ‖).

Let {Aα}α<χ(F) ⊂ F be a family generating F . For every x ∈ X there
exists a set B ∈ F such that supn∈B ‖Sn(x)‖ < ∞, so x ∈ XAα for some
α < χ(F ). Therefore,

X =
⋃

α<χ(F)

XAα ,

and since the Baire Category Theorem is valid for less than p meagre sets in
any Polish space (cf. [2, §22C]), not all the subspaces XAα may be meagre
in (X, ‖ · ‖). Consequently, there is a set A ∈ F with XA = X.
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Example 1. A slight modification of [1, Example 1] shows that in gen-
eral one cannot expect that XA = X for some A ∈ F . Namely, let (en)∞n=1

be the canonical basis of `2 with the coordinate functionals (e∗n)∞n=1. Put also
xn =

∑n
i=1 ei. Then, as shown in [1], (xn)∞n=1 is an Fst-basis of `2 with the

coordinate functionals given by x∗n = e∗n− e∗n+1. They are, of course, contin-
uous, but for any increasing sequence n1 < n2 < · · · of natural numbers we
will define an element x =

∑∞
k=1 akek of `2 such that supk∈N ‖Snk(x)‖ =∞.

To this end choose an increasing subsequence (mj)
∞
j=1 of (nj)

∞
j=1 with

mj > j4 and put

ak =

{
1/ 4
√
k if there is j ∈ N such that k = mj + 1,

0 otherwise.
Repeating the argument from [1, Example 1] we get our claim, which shows
that in this case (`2)A ( `2 for every infinite set A ⊂ N (not only for every
A ∈ Fst).

Theorem 1. If χ(F) < p then any F-basis is an M -basis with brackets
and all the coordinate functionals are continuous. Moreover, the equality

(3) x = lim
k→∞

nk∑
j=1

e∗j (x)ej

holds true for each x ∈ X, where the sequence n1 < n2 < · · · may be chosen
in such a way that {n1, n2, . . .} ∈ F .

Proof. We may assume that F does not contain any finite sets, since
otherwise X would be finite-dimensional.

Let A ∈ F satisfy XA = X. Applying the Open Mapping Theorem to the
operator iA : (XA, ‖ · ‖A)→ (X, ‖ · ‖) we infer that the inverse operator i−1A
is bounded, i.e. there is a constant K < ∞ such that ‖Sν(x)‖ ≤ K‖x‖ for
all x ∈ X and ν ∈ A. This easily implies that all the coordinate functionals
are continuous.

Indeed, fix any j ∈ N and suppose, in search of a contradiction, that
there is a sequence (xn)∞n=1 of elements of X such that ‖xn‖ = 1 for n ∈ N
and e∗j (xn) → ∞. Pick any ν ∈ A, ν ≥ j. Obviously, e1, . . . , eν are linearly
independent and since the finite-dimensional subspace span{ei}i≤ν, i 6=j is
closed, we infer that

δ := inf
{
‖ej + y‖ : y ∈ span{ei}i≤ν, i6=j

}
> 0.

Since

Sν(xn) = e∗j (xn)ej +
ν∑

i=1,i 6=j
e∗i (xn)ei,

we have
‖Sν(xn)‖ ≥ δ · |e∗j (xn)| −−−→

n→∞
∞,

which contradicts the continuity of Sν .
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Now, in order to show that (en)∞n=1 is an M -basis with brackets, one
may simply use the definition of p to produce an infinite set B ⊂ N such
that |B \ Aα| < ω for every Aα in some fixed (centered) family (Aα)α<χ(F)
generating F . Then Sν(x)→ x for every x ∈ X as ν ∈ B, ν →∞. However,
there is no reason why B should be an element of F . Instead one may use
the following argument for which I am grateful to Vladimir Kadets.

Observe that (IdX−Sν)ν∈A is a uniformly bounded sequence of operators
which converges to 0 on the dense subspace of X spanned by the set {en}∞n=1.
Let {n1 < n2 < · · · } be an enumeration of A. Then equality (3) holds for
every x ∈ X. Since e∗n’s are all continuous, the coefficients of every such
expansion are uniquely determined, hence the basis in question is in fact an
M -basis with brackets.

3. F-bases with individual brackets. In view of Theorem 1, the in-
equality χ(F) < p implies that for all x ∈ X one may find a common set
A ∈ F such that Sν(x) converge to x as ν ∈ A and ν → ∞, whereas Ex-
ample 1 shows that this is not possible in general. These two facts motivate
the following definition.

Definition. A sequence (en)∞n=1 of elements of a Banach space X is
called an F-basis with individual brackets if it is an F-basis of X and for
each x ∈ X there is a set A ∈ F (possibly depending on x) such that

lim
ν→∞
ν∈A
‖Sν(x)− x‖ = 0.

This notion is similar to that of M -basis with individual brackets, which
was considered by Kadets [4]. Recall that (en)∞n=1 ⊂ X is called an M -basis
with individual brackets if there is a sequence (e∗n)∞n=1 of functionals such
that (en, e

∗
n)∞n=1 is a Markushevich basis (i.e. a biorthogonal system with

span {en}∞n=1 = X and spanw
∗{e∗n}∞n=1 = X∗) and for each x ∈ X there

exists a sequence n1 < n2 < · · · of natural numbers for which (3) holds
true.

Kadets [4] showed that the space `2 admits an M -basis with individual
brackets which is not an M -basis with brackets. The basis exhibited by
Kadets was in fact an Fs-basis with a summable filter Fs given by

Fs =

{
A ⊂ N :

∑
n∈N\A

(
(n+ 1)

n∑
k=1

1

k

)−1
<∞

}
.

Since Fs is a tall filter, we have χ(Fs) ≥ p, which, in light of Theorem 1, is
not accidental.

Obviously, if F is a P -filter (i.e. for every countable family G ⊂ F there
is a set A ∈ F such that |A \ B| < ω for each B ∈ G) then every F-basis
is an F-basis with individual brackets. The F-bases exhibited in [1] and [4]
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are also examples of F-bases with individual brackets. Those constructions
may be generalised in the following way.

Let X be a Banach space with a Schauder basis (fn)∞n=1 and let (γn)∞n=1

be a sequence of non-zero scalars such that the series
∑∞

n=1 γnfn diverges.
We put

en =

n∑
j=1

γjfj and e∗n =
1

γn
f∗n −

1

γn+1
f∗n+1 for n ∈ N.

Then it may be easily checked that (en, e
∗
n)∞n=1 is a Markushevich basis of X

(the fact that (e∗n)∞n=1 is a total subset of X∗ follows from our supposition
on the series

∑∞
n=1 γnfn). Let (Sn)∞n=1 and (Tn)∞n=1 be the partial sum pro-

jections corresponding to (en)∞n=1 and (fn)∞n=1, respectively. Then

Sn(x) =
n∑
j=1

e∗j (x)ej =
n∑
j=1

(
1

γj
f∗j (x)− 1

γj+1
f∗j+1(x)

) j∑
k=1

γkfk

=
n∑
k=1

n∑
j=k

γk

(
1

γj
f∗j (x)− 1

γj+1
f∗j+1(x)

)
fk

=

n∑
k=1

(
f∗k (x)− γk

γn+1
f∗n+1(x)

)
fk = Tn(x)−

f∗n+1(x)

γn+1

n∑
j=1

γjfj ,

whence

‖Sn(x)− Tn(x)‖ =
|f∗n+1(x)|
|γn+1|

∥∥∥ n∑
j=1

γjfj

∥∥∥ for x ∈ X and n ∈ N.

Consequently, (en)∞n=1 is an F-basis of X, where F is the filter generated
by the sets of the form{

n ∈ N :
|f∗n+1(x)|
|γn+1|

∥∥∥ n∑
j=1

γjfj

∥∥∥ < 1

}
(x ∈ X),

provided only that the intersection of any finite number of these sets is
infinite (this condition, jointly with the fact that (en, e

∗
n)∞n=1 is biorthogonal,

guarantes that every expansion with respect to (en)∞n=1 is unique).

The reason why all the F-bases arising in this manner are F-bases with
individual brackets is that for any x ∈ X and n ∈ N the difference Sn(x)−
Tn(x) involves only the (n + 1)st coordinate of x with respect to the basis
(fn)∞n=1. We shall see that this is a special case of a more general result.

To formulate the announced result we need a piece of notation. Namely,
if (fn, f

∗
n)∞n=1 is a Schauder basis of a Banach space X and T : X → X is
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a finite-rank operator which may be written as

T (x) =

k∑
j=1

f∗nj (x)xj (x ∈ X)

with some non-zero x1, . . . , xk ∈ X and some natural numbers n1 < · · ·
< nk, then we write supp(fn)(T ) for the set {n1, . . . , nk}. If A,B ⊂ N are
finite then we write A < B provided maxA < minB.

Theorem 2. Let (en)∞n=1 be an F-basis of a Banach space X with partial
sum projections (Sn)∞n=1. Suppose that there is a Schauder basis (fn)∞n=1 of
X with partial sum projections (Tn)∞n=1 such that for some set {n1 < n2
< · · · } ∈ F we have

supp(fn)(Sn1 − Tn1) < supp(fn)(Sn2 − Tn2) < · · · .
Then (en)∞n=1 is an F-basis with individual brackets.

Proof. By the definition of F-basis, the set

Dx := {n ∈ N : ‖Sn(x)− Tn(x)‖ < 1}
belongs to F for each x ∈ X.

Fix any x ∈ X. We shall find y ∈ X such that for arbitrarily large M > 0
the inequality

(4) ‖Snj (y)− Tnj (y)‖ ≥M‖Snj (x)− Tnj (x)‖
holds true for all but finitely many j ∈ N. Then setting A = {n1, n2, . . .}∩Dy

yields a set A ∈ F for which

lim
ν→∞
ν∈A
‖Sν(x)− Tν(x)‖ = 0,

which implies that x ∈ X̃A.

Define a sequence 1 ≤ r1 < r2 < · · · by

rj = max supp(fn)(Snj − Tnj ).
Then for each j ∈ N we have

(5) Snj (z)− Tnj (z) =

rj∑
i=rj−1+1

f∗i (z)xi,j (z ∈ X)

for some xi,j ∈ X (we put r0 = 0). We claim that there exists a sequence
1 ≤ ν1 < ν2 < · · · of natural numbers such that if we define a sequence
(λn)∞n=1 by saying that λn = k if and only if rνk−1

< n ≤ rνk (where ν0 = 0),
then the series

(6) y :=

∞∑
n=1

λnf
∗
n(x)fn
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converges in (X, ‖ · ‖). Indeed, we may define (νj)
∞
j=1 inductively by first

choosing ν1 ≥ 1 such that for any ν1 ≤ p ≤ q we have∥∥∥ q∑
n=p

f∗n(x)fn

∥∥∥ < 2−3

and, after defining 1 ≤ ν1 < · · · < νj−1, we pick νj > νj−1 such that for any
νj ≤ p ≤ q we have

‖
q∑

n=p

f∗n(x)fn

∥∥∥ < (j + 1)−3.

Now, if (λn)∞n=1 is defined as above, then for any ε > 0 we may find k ∈ N
so large that

∑
j≥k j

−2 < ε. Then for any m > νk−1 we have∥∥∥ m∑
n=νk−1+1

λnf
∗
n(x)fn

∥∥∥ ≤ ∞∑
j=k

∥∥∥ νj∑
n=νj−1+1

λnf
∗
n(x)fn

∥∥∥
=
∞∑
j=k

j ·
∥∥∥ νj∑
n=νj−1+1

f∗n(x)fn

∥∥∥ < ∞∑
j=k

j−2 < ε,

which shows that the series given by (6) converges.

Now, fix any j ∈ N. There is a unique k ∈ N such that (rj−1, rj ] ⊂
(rνk−1

, rνk ] and for any rj−1 < i ≤ rj we have rνk−1
< i ≤ rνk . Hence for any

such i we have λi = k. Then, by (6), we get f∗i (y) = λif
∗
i (x) = kf∗i (x) for

rj−1 < i ≤ rj , so formula (5) yields

‖Snj (y)− Tnj (y)‖ = k‖Snj (x)− Tnj (x)‖.
Therefore, inequality (4) is valid whenever j satisfies

(rj−1, rj ] ⊂
⋃
k≥M

(rνk−1
, rνk ],

which is true for all but finitely many j ∈ N.

In view of Theorem 2, it is tempting to ask whether there exists any
F-basis that is not an F-basis with individual brackets.
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