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On the Bernstein–Walsh–Siciak theorem

by

Rafał Pierzchała (Kraków)

Abstract. By the Oka–Weil theorem, each holomorphic function f in a neighbour-
hood of a compact polynomially convex set K ⊂ CN can be approximated uniformly
on K by complex polynomials. The famous Bernstein–Walsh–Siciak theorem specifies the
Oka–Weil result: it states that the distance (in the supremum norm onK) of f to the space
of complex polynomials of degree at most n tends to zero not slower than the sequence
M(f)ρ(f)n for some M(f) > 0 and ρ(f) ∈ (0, 1). The aim of this note is to deduce the
uniform version, sometimes called family version, of the Bernstein–Walsh–Siciak theorem,
which is due to Pleśniak, directly from its classical (weak) form. Our method, involving
the Baire category theorem in Banach spaces, appears to be useful also in a completely
different context, concerning Łojasiewicz’s inequality.

1. Introduction. For a nonempty set A ⊂ CN and h : A → CN ′ , we
put ‖h‖A := supz∈A |h(z)|, where | | denotes the Euclidean norm in CN ′ . If
∅ 6= A ⊂ B ⊂ CN and ξ : B → C, then for each n ∈ N, put

En(ξ;A) := inf{‖ξ −Q‖A : Q ∈ C[Z], degQ ≤ n}.
Throughout the paper N := {1, 2, 3, . . .}.

Recall one of the most important results in complex approximation.
Theorem 1.1 (Oka–Weil). Let f be a holomorphic function in a neigh-

bourhood of a (nonempty) compact polynomially convex set K ⊂ CN (1).
Then there is a sequence of complex polynomials Pn ∈ C[Z] = C[Z1, . . . , ZN ]
such that ‖f − Pn‖K → 0.

This is a generalization of the classical result of Runge (cf. [L]). The proof
of the Oka–Weil theorem can be found in most of the books on complex
analysis (see for example [H, p. 55]).

The next result is a significant improvement on the Oka–Weil theorem.
It is due to Siciak (cf. [S1, S2]), but because of the contributions made in
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(1) We say that a compact set K ⊂ CN is polynomially convex if K = K̂ := {z ∈ CN :
|P (z)| ≤ ‖P‖K for all polynomials P ∈ C[Z]}.

DOI: 10.4064/sm212-1-4 [55] c© Instytut Matematyczny PAN, 2012



56 R. Pierzchała

one variable, i.e. for N = 1, by Bernstein and Walsh (cf. [B, W]), it is called
the Bernstein–Walsh–Siciak theorem.

Theorem 1.2 (Siciak). Let f be a holomorphic function in a neighbour-
hood of a (nonempty) compact polynomially convex set K ⊂ CN . Then

lim sup
n→∞

n
√
En(f ;K) < 1.

This is a weak version of Siciak’s result. The full version is actually much
stronger. Let us mention, moreover, that the problems of this type, but
in the space RN , were deeply investigated by Baouendi and Goulaouic (cf.
[BG1, BG2]).

In 1972, a very precise (uniform) version of Theorem 1.2 was proved by
Pleśniak. Suppose that U ⊂ CN is a nonempty open set. We will denote by
H∞(U) the Banach space of all bounded and holomorphic functions in U
(with the norm ‖ ‖U ). Let a nonempty set K ⊂ U be compact and polyno-
mially convex.

Theorem 1.3 (Pleśniak). There exist constants M > 0 and ρ ∈ (0, 1)
such that, for all f ∈ H∞(U) and n ∈ N,

En(f ;K) ≤M‖f‖U ρn.
The original argument of Pleśniak (see [P1, P2]) relied heavily on Siciak’s

difficult and deep proof of Theorem 1.2. A more elementary proof, inspired by
an idea of Baouendi and Goulaouic [BG2], was given in [P3] (see also [P4]).
However, it was essentially based on a more precise version of Theorem 1.2
involving the so-called Siciak extremal function (cf. [S1, S2]). This version
along with the theory of the Siciak extremal function allowed Pleśniak to
notice first the existence of ρ ∈ (0, 1) independent of f such that the estimate
in Theorem 1.3 holds with some M =M(f) > 0 possibly dependent on f .

2. Proof that Theorem 1.2 implies Theorem 1.3. Our first purpose
is to deduce Theorem 1.3 directly from Theorem 1.2. We need two elementary
lemmata.

Lemma 2.1. Suppose that ∅ 6= A ⊂ B ⊂ CN and denote by B(B;C) the
Banach space of all bounded functions ξ : B → C (with the norm ‖ ‖B). Let
n ∈ N. Then

(1) For each ξ ∈ B(B;C) and α ∈ C,
En(αξ;A) = |α|En(ξ;A).

(2) For all ξ1, ξ2 ∈ B(B;C),
|En(ξ1;A)− En(ξ2;A)| ≤ En(ξ1 − ξ2;A) ≤ ‖ξ1 − ξ2‖B.

In particular, the function B(B;C) 3 ξ 7→ En(ξ;A) ∈ R is continu-
ous.
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Proof. The equality in (1) and the second inequality in (2) are trivial.
By symmetry, it is enough therefore to prove that

En(ξ1;A) ≤ En(ξ2;A) + En(ξ1 − ξ2;A).

Suppose that P,Q ∈ C[Z] are polynomials of degree ≤ n. Clearly,

En(ξ1;A) ≤ ‖ξ1 − (P +Q)‖A ≤ ‖ξ2 − P‖A + ‖ξ1 − ξ2 −Q‖A.

As P,Q are arbitrary, our assertion follows.

As in Theorem 1.3, suppose that U ⊂ CN is open and a nonempty set
K ⊂ U is compact and polynomially convex. For M > 0 and ρ ∈ (0, 1), put

V (M,ρ) := {f ∈ H∞(U) : ∀n ∈ N, En(f ;K) ≤M‖f‖U ρn}.

Lemma 2.2. The set V (M,ρ) is closed in H∞(U) (2).

Proof. Fix n ∈ N and θ ∈ R. Since the intersection of closed sets is
closed, it is enough to prove that the function

H∞(U) 3 f 7→ En(f ;K)− θ‖f‖U ∈ R

is continuous. But this follows immediately from Lemma 2.1.

Note that an equivalent formulation of Theorem 1.3 is the following: there
exist M > 0 and ρ ∈ (0, 1) such that H∞(U) = V (M,ρ).

Proof that Theorem 1.2 implies Theorem 1.3. It follows from Theorem 1.2
that

H∞(U) =
⋃
k∈N

V (k, 1− (k + 1)−1).

Baire’s theorem, via Lemma 2.2, implies that for some l ∈ N the set
Int(V (l, ρ)) is nonempty, where ρ := 1 − (l + 1)−1. Take f0 ∈ H∞(U)
and r > 0 such that {f ∈ H∞(U) : ‖f − f0‖U ≤ r} ⊂ V (l, ρ). Put
M := l(1 + 2r−1‖f0‖U ).

Claim. {g ∈ H∞(U) : ‖g‖U = r} ⊂ V (M,ρ).

Note that the claim completes the proof, because

H∞(U) = [0,∞) · {g ∈ H∞(U) : ‖g‖U = r} ⊂ [0,∞) · V (M,ρ) = V (M,ρ).

Take therefore any g ∈ H∞(U) such that ‖g‖U = r. Clearly, f0 and g+f0
belong to V (l, ρ). Note that l(‖f0‖U + ‖g + f0‖U ) ≤ M‖g‖U . Combine this
with the inequality En(g;K) ≤ En(f0;K) + En(g + f0;K) (cf. Lemma 2.1)
to conclude that g ∈ V (M,ρ).

The argument presented above allows us to abstract the following lemma.

(2) Clearly, the polynomial convexity assumption on K is not necessary here.
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Lemma 2.3. Let X be a Banach space over C or R. Suppose that a
sequence of sets Vk ⊂ X (k ∈ N) satisfies the following conditions:

(1) Int(
⋃
k∈N Vk) 6= ∅.

(2) For each k ∈ N there exist j1, j2 ∈ N satisfying V k ⊂ Vj1 and
[0,∞) · Vk ⊂ Vj2.

(3) For each j ∈ N, x0 ∈ Vj and r > 0 there exists µ = µ(j, x0, r) ∈ N
such that

(Vj − x0) ∩ {x ∈ X : ‖x‖ = r} ⊂ Vµ.
Then X = Vk0 for some k0 ∈ N.

Proof. We may assume that #X > 1, i.e. X 6= {0}. By Baire’s theorem,
for somem ∈ N, IntV m 6= ∅. The assumption (2) implies that there is j0 ∈ N
such that IntVj0 6= ∅. Therefore {y ∈ X : ‖y − x0‖ ≤ r} ⊂ Vj0 for some
x0 ∈ Vj0 and r > 0. By the assumption (3), we can conclude that there exists
µ ∈ N such that

{x ∈ X : ‖x‖ = r} = (Vj0 − x0) ∩ {x ∈ X : ‖x‖ = r} ⊂ Vµ.
Since X = [0,∞) · {x ∈ X : ‖x‖ = r} ⊂ [0,∞) · Vµ, it follows by (2) that
X = Vk0 for some k0 ∈ N.

We decided to state the above abstract lemma, because it also finds its
application in the next section.

3. A version of Łojasiewicz’s inequality. The subject of this section
seems to be completely different from the prior part of the article. However,
a strong link between these two parts is Lemma 2.3, which gives a uniform
estimate in both contexts.

The classical Łojasiewicz inequality (recalled below) is a powerful tool in
geometry and analysis. Lemma 2.3 will be used to prove a (uniform) version
of this inequality (Proposition 3.1).

We need some definitions and facts from subanalytic geometry (cf. [BM,
DS, Hi]). A subset A ⊂ RN is said to be semianalytic if each point in RN
has a neighbourhood U such that A ∩ U is a finite union of sets of the form

{x ∈ U : ξ(x) = 0, ξ1(x) > 0, . . . , ξq(x) > 0},
where ξ, ξ1, . . . , ξq are real analytic functions in U (cf. [Ł]). A set A ⊂ RN is
called subanalytic if each point in RN has a neighbourhood U such that A∩U
is the projection of some relatively compact semianalytic set in RN+N ′

=
RN × RN ′ (cf. [BM, DS]). In a similar way we can define semianalytic and
subanalytic subsets of any real analytic manifold.

In this paper, we are interested in globally subanalytic subsets of RN ,
that is, subanalytic subsets of RN that are also subanalytic as subsets of
the projective space PN (R). Recall that the two notions (subanalytic in RN
and globally subanalytic in RN ) coincide for bounded sets. From now on, we
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will omit the word “globally”, and saying “subanalytic in RN ” we will always
mean “globally subanalytic in RN ”.

Recall the most important (from the point of view of further arguments)
properties of subanalytic sets and maps:

• Any interval in R is subanalytic. A finite union or intersection of sub-
analytic sets is subanalytic. The Cartesian product of subanalytic sets
is subanalytic. If A ⊂ Rm is subanalytic, then so are Rm \ A and
π(A), where π : Rm → Rm′ denotes the natural projection (m′ ≤ m).
Moreover A and IntA are subanalytic.
• If ξ : A → Rq is subanalytic (3), where A ⊂ Rm, then A and {ξ = 0}

are subanalytic. If additionally q = 1, then {ξ > 0} and {ξ < 0} are
subanalytic.
• If ξν : A → R, where A ⊂ Rm, are subanalytic (for ν = 1, 2), then so

are ξ1 + ξ2 and ξ1 · ξ2. Moreover, ξ1/ξ2 is subanalytic on A \ {ξ2 = 0}.
The same is true if ξν : A→ C (ν = 1, 2) (4).
• Polynomials (real and complex) are subanalytic.
• Let f = (f1, . . . , fp) : Ω → Cp be a holomorphic mapping, where
Ω ⊂ CN . Suppose that B ⊂ CN is bounded, subanalytic and B ⊂ Ω.
Then the maps f |B and B 3 z 7→ |f(z)| ∈ [0,∞) are subanalytic.
• Łojasiewicz’s inequality (cf. [Ł, BM, DS]). Let ϕ, φ : E → R be con-

tinuous and subanalytic functions, where E ⊂ Rm is compact. Assume
that {φ = 0} ⊂ {ϕ = 0}. Then |ϕ(x)| ≤ η|φ(x)|α in E for some
η, α > 0.

Fix a nonempty open set Ω ⊂ CN . For any set S ⊂ Ω and p ∈ N, let

IΩ(p;S) := {f = (f1, . . . , fp) : Ω → Cp : fν ∈ H∞(Ω) and
fν = 0 on S, for each ν ≤ p}.

Since IΩ(p;S) is a closed linear subspace of the Banach space B(Ω;Cp) of
all bounded mappings f : Ω → Cp (with the norm ‖ ‖Ω), it follows that
IΩ(p;S) is a Banach space with the induced norm. We will write IΩ(S)
instead of IΩ(1;S).

Proposition 3.1. Assume that φ : E → [0,∞) is a continuous subana-
lytic function, where E ⊂ Ω is compact, and let p ∈ N. Put S := {φ = 0}.
Then there are M > 0 and l ∈ N such that for any f ∈ IΩ(p;S),

|f(z)| ≤M‖f‖Ωφ(z)1/l

whenever z ∈ E.

(3) That is, its graph Γ (ξ) ⊂ Rm+q is subanalytic.
(4) We identify Ck with R2k via the map

Ck 3 z = (z1, . . . , zk) 7→ (Re(z1), Im(z1), . . . ,Re(zk), Im(zk)) ∈ R2k.
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Proof. To shorten notation we put X := IΩ(p;S). For each k ∈ N, let

Vk := {f ∈ X : |f(z)| ≤ k‖f‖Ωφ(z)1/k for all z ∈ E}.

Obviously, Vk is closed in X and C ·Vk = Vk. By Lemma 2.3, it is enough to
prove that:

(1)
⋃
k∈N Vk = X.

(2) For each j ∈ N, f0 ∈ Vj and r > 0 there exists µ = µ(j, f0, r) ∈ N
such that

(Vj − f0) ∩ {g ∈ X : ‖g‖Ω = r} ⊂ Vµ.

Proof of (1). Take any f ∈ X. So f : Ω → Cp is a bounded holomor-
phic mapping such that S = {φ = 0} ⊂ {f1 = 0, . . . , fp = 0}. We use
Łojasiewicz’s inequality along with the fact that the map E 3 z 7→ |f(z)| ∈
[0,∞) is subanalytic to conclude that, for some η, α > 0, |f(z)| ≤ ηφ(z)α for
all z ∈ E. We may assume that ‖f‖Ω > 0, because otherwise f ≡ 0 and then
the situation is trivial. Note that ηφα ≤ k‖f‖Ωφ1/k on E whenever k ∈ N is
sufficiently large. Consequently, f ∈ Vk.

Proof of (2). Fix j ∈ N, f0 ∈ Vj and r > 0. We need to show the existence
of µ ∈ N such that

(f ∈ Vj , ‖f − f0‖Ω = r) ⇒ f − f0 ∈ Vµ.

Assume therefore that f ∈ Vj and ‖f − f0‖Ω = r. We have

• |f0(z)| ≤ j‖f0‖Ωφ(z)1/j for all z ∈ E,
• |f(z)| ≤ j‖f‖Ωφ(z)1/j for all z ∈ E.

Put θ := 1 + 2r−1‖f0‖Ω. For any z ∈ E,

|f(z)− f0(z)| ≤ |f0(z)|+ |f(z)| ≤ j
(
‖f0‖Ω + ‖f‖Ω

)
φ(z)1/j

≤ j(2‖f0‖Ω + ‖f − f0‖Ω)φ(z)1/j = jθ‖f − f0‖Ωφ(z)1/j .

By the above estimates, we see easily that, for µ ∈ N large enough (depending
only on j, f0, r and on φ), f − f0 ∈ Vµ.

Corollary 3.2. Assume that h : Ω → Cm is a holomorphic mapping.
Let K ⊂ Ω be compact and p ∈ N. Put S := {h = 0}. Then there are M > 0
and l ∈ N such that for any f ∈ IΩ(p;S),

|f(z)| ≤M‖f‖Ω|h(z)|1/l

whenever z ∈ K. If moreover K is subanalytic, then we can choose M > 0
and l ∈ N so that the above inequality holds for all f ∈ IΩ(p;S ∩K).

Proof. Let E be a compact subanalytic set (for example, a finite union
of compact boxes) such that K ⊂ E ⊂ Ω. Since the map E 3 z 7→
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|h(z)| ∈ [0,∞) is subanalytic, Proposition 3.1 yields the first part of the
corollary. The second part is proved in the same manner by taking simply
E := K.

Remark 3.3. Without the assumption that K is subanalytic the con-
clusion in the second part of Corollary 3.2 is no longer true.

Example. Put

K := {(t, exp(−t−1)) : t ∈ (0, 1]} ∪ {(0, 0)}, Ω := {|z| < 2} ⊂ C2.

Let h : Ω 3 z 7→ z1z2 ∈ C. Clearly, S ∩ K = {(0, 0)}. Let f : Ω 3 z 7→
z1 ∈ C. Although f ∈ IΩ(S ∩ K), there are no M > 0, l ∈ N such that
|f(z)| ≤M‖f‖Ω|h(z)|1/l for all z ∈ K.

The next result should be regarded, first and foremost, as another illus-
tration of the usefulness of our method (5).

Corollary 3.4. Assume that g : Ω → C is a holomorphic function.
Let Ω0 ⊂ CN be an open, bounded and subanalytic set such that Ω0 ⊂ Ω.
Put S := {g = 0}. Then there are θ > 0 and l ∈ N such that, for any
f ∈ IΩ(S ∩ Ω0), we can find a holomorphic function τ : Ω0 → C satisfying
the following conditions:

(1) f l = τg in Ω0.
(2) τ is subanalytic.
(3) ‖τ‖Ω0 ≤ θ‖f‖lΩ if f = 0 on S ∩ ∂Ω0 (i.e. f ∈ IΩ(S ∩Ω0)).

Proof. We will consider two cases depending on whether or not Ω0 is
connected.

Case 1: Ω0 is connected. If g ≡ 0 in Ω0, the situation is trivial (take
τ ≡ 0). Assume then that S∩Ω0 is nowhere dense in CN . For each x ∈ S∩Ω0,
take r(x) > 0 such that K(x, 2r(x)) ⊂ Ω0 (6). Since Ω0 and S ∩ Ω0 are
subanalytic, we may assume, by the theorem on subanalytic choice (cf. [DS,
p. 78]), that the map S ∩ Ω0 3 x 7→ r(x) ∈ (0,∞) is subanalytic. Put
B :=

⋃
x∈S∩Ω0

K(x, r(x)). Note that B is the image of the set {(y, x) ∈
CN × (S ∩ Ω0) : |y − x| − r(x) < 0} under the projection (y, x) 7→ y.
Consequently, B and its closure are subanalytic. We will now prove that
B ⊂ Ω0 ∪ S ∩Ω0.

Take b ∈ B∩∂Ω0. We need to show that b ∈ S ∩Ω0. There are sequences
(bn), (cn) such that bn → b, bn ∈ K(cn, r(cn)) and cn ∈ S ∩Ω0. Note that

|bn − b| ≥ |cn − b| − |cn − bn| > 2r(cn)− r(cn) = r(cn).

(5) Especially as part of this corollary can be obtained by using completely different
tools—see [Wh].

(6) K(x, r) := {z ∈ CN : |z − x| < r}.
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Consequently, r(cn) → 0. Since |cn − b| < r(cn) + |bn − b|, it follows that
cn → b. So b ∈ S ∩Ω0, as desired.

First we will prove (1) and (2). Put K := B. Note that IΩ(S ∩ Ω0) =
IΩ(S ∩Ω0) = IΩ(S ∩K). Take l ∈ N as in the second part of Corollary 3.2.
Assume that f ∈ IΩ(S ∩ Ω0). Let τ0 : Ω0 \ S 3 z 7→ f(z)l/g(z) ∈ C.
Clearly, τ0 is holomorphic and, by Corollary 3.2, locally bounded in Ω0 (use
the fact that S ∩ Ω0 ⊂ IntK). By Riemann’s removable singularity theo-
rem, τ0 extends to a holomorphic function τ in Ω0. Note that τ0 is suban-
alytic. Since Γ (τ) = Γ (τ0) ∩ (Ω0 × C), it follows that τ is subanalytic as
well (7).

To obtain (3) we similarly apply the second part of Corollary 3.2 (along
with Riemann’s removable singularity theorem), but this time we put
K := Ω0.

Case 2: Ω0 is not connected. Then Ω0 (being subanalytic) has only
finitely many connected components Ω1

0 , . . . , Ω
k
0 and each of them is suban-

alytic. By applying Case 1 to Ων
0 we obtain θν > 0 and lν ∈ N (ν = 1, . . . , k).

Put θ := max θν and l := max lν . A straightforward argument proves that
the constants θ, l have the required properties.

Remark 3.5. In the above corollary, to obtain (1), without any addi-
tional assumptions on g, we at least should assume that S ∩Ω0 ∩ ∂Ω = ∅.
Clearly, the assumptions in Corollary 3.4 are stronger, but we need them to
obtain also (2) and (3).

Example. For each ν ∈ N, put aν := 1− 2−ν . Let Ω := {|z| < 1} ⊂ C.
Put

g : Ω 3 z 7→
∏
ν∈N

(aνz − a2ν)ν(aνz − 1)−ν ∈ C,

f : Ω 3 z 7→
∏
ν∈N

(aνz − a2ν)(aνz − 1)−1 ∈ C.

It is easy to check that g and f are bounded holomorphic functions in Ω.
Moreover, S = {1 − 2−ν : ν ∈ N} and f ∈ IΩ(S). Suppose that Ω0 ⊂ Ω
is an open set such that S ∩Ω0 ∩ ∂Ω 6= ∅. This means that 1 ∈ S ∩Ω0.
Obviously, there is no l ∈ N such that f l = τg in Ω0 for any holomorphic
function τ : Ω0 → C.
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(7) As before, Γ (ξ) denotes the graph of ξ.
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