On the Bernstein-Walsh-Siciak theorem

by
Rafae PierzchaŁa (Kraków)

Abstract

By the Oka-Weil theorem, each holomorphic function f in a neighbourhood of a compact polynomially convex set $K \subset \mathbb{C}^{N}$ can be approximated uniformly on K by complex polynomials. The famous Bernstein-Walsh-Siciak theorem specifies the Oka-Weil result: it states that the distance (in the supremum norm on K) of f to the space of complex polynomials of degree at most n tends to zero not slower than the sequence $M(f) \rho(f)^{n}$ for some $M(f)>0$ and $\rho(f) \in(0,1)$. The aim of this note is to deduce the uniform version, sometimes called family version, of the Bernstein-Walsh-Siciak theorem, which is due to Pleśniak, directly from its classical (weak) form. Our method, involving the Baire category theorem in Banach spaces, appears to be useful also in a completely different context, concerning Łojasiewicz's inequality.

1. Introduction. For a nonempty set $A \subset \mathbb{C}^{N}$ and $h: A \rightarrow \mathbb{C}^{N^{\prime}}$, we put $\|h\|_{A}:=\sup _{z \in A}|h(z)|$, where $\left|\mid\right.$ denotes the Euclidean norm in $\mathbb{C}^{N^{\prime}}$. If $\emptyset \neq A \subset B \subset \mathbb{C}^{N}$ and $\xi: B \rightarrow \mathbb{C}$, then for each $n \in \mathbb{N}$, put

$$
E_{n}(\xi ; A):=\inf \left\{\|\xi-Q\|_{A}: Q \in \mathbb{C}[Z], \operatorname{deg} Q \leq n\right\}
$$

Throughout the paper $\mathbb{N}:=\{1,2,3, \ldots\}$.
Recall one of the most important results in complex approximation.
Theorem 1.1 (Oka-Weil). Let f be a holomorphic function in a neighbourhood of a (nonempty) compact polynomially convex set $K \subset \mathbb{C}^{N}\left(^{1}\right)$. Then there is a sequence of complex polynomials $P_{n} \in \mathbb{C}[Z]=\mathbb{C}\left[Z_{1}, \ldots, Z_{N}\right]$ such that $\left\|f-P_{n}\right\|_{K} \rightarrow 0$.

This is a generalization of the classical result of Runge (cf. [L]). The proof of the Oka-Weil theorem can be found in most of the books on complex analysis (see for example [H, p. 55]).

The next result is a significant improvement on the Oka-Weil theorem. It is due to Siciak (cf. [S1, S2]), but because of the contributions made in

[^0]one variable, i.e. for $N=1$, by Bernstein and Walsh (cf. [B, W]), it is called the Bernstein-Walsh-Siciak theorem.

Theorem 1.2 (Siciak). Let f be a holomorphic function in a neighbourhood of a (nonempty) compact polynomially convex set $K \subset \mathbb{C}^{N}$. Then

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{E_{n}(f ; K)}<1
$$

This is a weak version of Siciak's result. The full version is actually much stronger. Let us mention, moreover, that the problems of this type, but in the space \mathbb{R}^{N}, were deeply investigated by Baouendi and Goulaouic (cf. [BG1, BG2]).

In 1972, a very precise (uniform) version of Theorem 1.2 was proved by Pleśniak. Suppose that $U \subset \mathbb{C}^{N}$ is a nonempty open set. We will denote by $H^{\infty}(U)$ the Banach space of all bounded and holomorphic functions in U (with the norm $\left\|\|_{U}\right.$). Let a nonempty set $K \subset U$ be compact and polynomially convex.

Theorem 1.3 (Pleśniak). There exist constants $M>0$ and $\rho \in(0,1)$ such that, for all $f \in H^{\infty}(U)$ and $n \in \mathbb{N}$,

$$
E_{n}(f ; K) \leq M\|f\|_{U} \rho^{n}
$$

The original argument of Pleśniak (see [P1, P2]) relied heavily on Siciak's difficult and deep proof of Theorem 1.2 . A more elementary proof, inspired by an idea of Baouendi and Goulaouic [BG2], was given in [P3] (see also [P4]). However, it was essentially based on a more precise version of Theorem 1.2 involving the so-called Siciak extremal function (cf. [S1, S2]). This version along with the theory of the Siciak extremal function allowed Pleśniak to notice first the existence of $\rho \in(0,1)$ independent of f such that the estimate in Theorem 1.3 holds with some $M=M(f)>0$ possibly dependent on f.
2. Proof that Theorem 1.2 implies Theorem 1.3 . Our first purpose is to deduce Theorem 1.3 directly from Theorem 1.2 . We need two elementary lemmata.

Lemma 2.1. Suppose that $\emptyset \neq A \subset B \subset \mathbb{C}^{N}$ and denote by $\mathcal{B}(B ; \mathbb{C})$ the Banach space of all bounded functions $\xi: B \rightarrow \mathbb{C}$ (with the norm $\left\|\|_{B}\right.$). Let $n \in \mathbb{N}$. Then
(1) For each $\xi \in \mathcal{B}(B ; \mathbb{C})$ and $\alpha \in \mathbb{C}$,

$$
E_{n}(\alpha \xi ; A)=|\alpha| E_{n}(\xi ; A)
$$

(2) For all $\xi_{1}, \xi_{2} \in \mathcal{B}(B ; \mathbb{C})$,

$$
\left|E_{n}\left(\xi_{1} ; A\right)-E_{n}\left(\xi_{2} ; A\right)\right| \leq E_{n}\left(\xi_{1}-\xi_{2} ; A\right) \leq\left\|\xi_{1}-\xi_{2}\right\|_{B}
$$

In particular, the function $\mathcal{B}(B ; \mathbb{C}) \ni \xi \mapsto E_{n}(\xi ; A) \in \mathbb{R}$ is continuous.

Proof. The equality in (1) and the second inequality in (2) are trivial. By symmetry, it is enough therefore to prove that

$$
E_{n}\left(\xi_{1} ; A\right) \leq E_{n}\left(\xi_{2} ; A\right)+E_{n}\left(\xi_{1}-\xi_{2} ; A\right)
$$

Suppose that $P, Q \in \mathbb{C}[Z]$ are polynomials of degree $\leq n$. Clearly,

$$
E_{n}\left(\xi_{1} ; A\right) \leq\left\|\xi_{1}-(P+Q)\right\|_{A} \leq\left\|\xi_{2}-P\right\|_{A}+\left\|\xi_{1}-\xi_{2}-Q\right\|_{A}
$$

As P, Q are arbitrary, our assertion follows.
As in Theorem 1.3, suppose that $U \subset \mathbb{C}^{N}$ is open and a nonempty set $K \subset U$ is compact and polynomially convex. For $M>0$ and $\rho \in(0,1)$, put

$$
V(M, \rho):=\left\{f \in H^{\infty}(U): \forall n \in \mathbb{N}, E_{n}(f ; K) \leq M\|f\|_{U} \rho^{n}\right\}
$$

Lemma 2.2. The set $V(M, \rho)$ is closed in $H^{\infty}(U)\left(\left(^{2}\right)\right.$.
Proof. Fix $n \in \mathbb{N}$ and $\theta \in \mathbb{R}$. Since the intersection of closed sets is closed, it is enough to prove that the function

$$
H^{\infty}(U) \ni f \mapsto E_{n}(f ; K)-\theta\|f\|_{U} \in \mathbb{R}
$$

is continuous. But this follows immediately from Lemma 2.1.
Note that an equivalent formulation of Theorem 1.3 is the following: there exist $M>0$ and $\rho \in(0,1)$ such that $H^{\infty}(U)=V(M, \rho)$.

Proof that Theorem 1.2 implies Theorem 1.3. It follows from Theorem 1.2 that

$$
H^{\infty}(U)=\bigcup_{k \in \mathbb{N}} V\left(k, 1-(k+1)^{-1}\right)
$$

Baire's theorem, via Lemma 2.2 , implies that for some $l \in \mathbb{N}$ the set $\operatorname{Int}(V(l, \rho))$ is nonempty, where $\rho:=1-(l+1)^{-1}$. Take $f_{0} \in H^{\infty}(U)$ and $r>0$ such that $\left\{f \in H^{\infty}(U):\left\|f-f_{0}\right\|_{U} \leq r\right\} \subset V(l, \rho)$. Put $M:=l\left(1+2 r^{-1}\left\|f_{0}\right\|_{U}\right)$.

Claim. $\left\{g \in H^{\infty}(U):\|g\|_{U}=r\right\} \subset V(M, \rho)$.
Note that the claim completes the proof, because

$$
H^{\infty}(U)=[0, \infty) \cdot\left\{g \in H^{\infty}(U):\|g\|_{U}=r\right\} \subset[0, \infty) \cdot V(M, \rho)=V(M, \rho)
$$

Take therefore any $g \in H^{\infty}(U)$ such that $\|g\|_{U}=r$. Clearly, f_{0} and $g+f_{0}$ belong to $V(l, \rho)$. Note that $l\left(\left\|f_{0}\right\|_{U}+\left\|g+f_{0}\right\|_{U}\right) \leq M\|g\|_{U}$. Combine this with the inequality $E_{n}(g ; K) \leq E_{n}\left(f_{0} ; K\right)+E_{n}\left(g+f_{0} ; K\right)(c f$ Lemma 2.1) to conclude that $g \in V(M, \rho)$.

The argument presented above allows us to abstract the following lemma.

[^1]Lemma 2.3. Let X be a Banach space over \mathbb{C} or \mathbb{R}. Suppose that a sequence of sets $V_{k} \subset X(k \in \mathbb{N})$ satisfies the following conditions:
(1) $\operatorname{Int}\left(\bigcup_{k \in \mathbb{N}} V_{k}\right) \neq \emptyset$.
(2) For each $k \in \mathbb{N}$ there exist $j_{1}, j_{2} \in \mathbb{N}$ satisfying $\bar{V}_{k} \subset V_{j_{1}}$ and $[0, \infty) \cdot V_{k} \subset V_{j_{2}}$.
(3) For each $j \in \mathbb{N}, x_{0} \in V_{j}$ and $r>0$ there exists $\mu=\mu\left(j, x_{0}, r\right) \in \mathbb{N}$ such that

$$
\left(V_{j}-x_{0}\right) \cap\{x \in X:\|x\|=r\} \subset V_{\mu}
$$

Then $X=V_{k_{0}}$ for some $k_{0} \in \mathbb{N}$.
Proof. We may assume that $\# X>1$, i.e. $X \neq\{0\}$. By Baire's theorem, for some $m \in \mathbb{N}$, Int $\bar{V}_{m} \neq \emptyset$. The assumption (2) implies that there is $j_{0} \in \mathbb{N}$ such that Int $V_{j_{0}} \neq \emptyset$. Therefore $\left\{y \in X:\left\|y-x_{0}\right\| \leq r\right\} \subset V_{j_{0}}$ for some $x_{0} \in V_{j_{0}}$ and $r>0$. By the assumption (3), we can conclude that there exists $\mu \in \mathbb{N}$ such that

$$
\{x \in X:\|x\|=r\}=\left(V_{j_{0}}-x_{0}\right) \cap\{x \in X:\|x\|=r\} \subset V_{\mu}
$$

Since $X=[0, \infty) \cdot\{x \in X:\|x\|=r\} \subset[0, \infty) \cdot V_{\mu}$, it follows by (2) that $X=V_{k_{0}}$ for some $k_{0} \in \mathbb{N}$.

We decided to state the above abstract lemma, because it also finds its application in the next section.
3. A version of Łojasiewicz's inequality. The subject of this section seems to be completely different from the prior part of the article. However, a strong link between these two parts is Lemma 2.3, which gives a uniform estimate in both contexts.

The classical Łojasiewicz inequality (recalled below) is a powerful tool in geometry and analysis. Lemma 2.3 will be used to prove a (uniform) version of this inequality (Proposition 3.1).

We need some definitions and facts from subanalytic geometry (cf. BM, [DS, Hi]). A subset $A \subset \mathbb{R}^{N}$ is said to be semianalytic if each point in \mathbb{R}^{N} has a neighbourhood U such that $A \cap U$ is a finite union of sets of the form

$$
\left\{x \in U: \xi(x)=0, \xi_{1}(x)>0, \ldots, \xi_{q}(x)>0\right\}
$$

 called subanalytic if each point in \mathbb{R}^{N} has a neighbourhood U such that $A \cap U$ is the projection of some relatively compact semianalytic set in $\mathbb{R}^{N+N^{\prime}}=$ $\mathbb{R}^{N} \times \mathbb{R}^{N^{\prime}}$ (cf. $\left.\mathrm{BM}, \mathrm{DS}\right]$). In a similar way we can define semianalytic and subanalytic subsets of any real analytic manifold.

In this paper, we are interested in globally subanalytic subsets of \mathbb{R}^{N}, that is, subanalytic subsets of \mathbb{R}^{N} that are also subanalytic as subsets of the projective space $\mathbb{P}^{N}(\mathbb{R})$. Recall that the two notions (subanalytic in \mathbb{R}^{N} and globally subanalytic in \mathbb{R}^{N}) coincide for bounded sets. From now on, we
will omit the word "globally", and saying "subanalytic in \mathbb{R}^{N} " we will always mean "globally subanalytic in \mathbb{R}^{N} ".

Recall the most important (from the point of view of further arguments) properties of subanalytic sets and maps:

- Any interval in \mathbb{R} is subanalytic. A finite union or intersection of subanalytic sets is subanalytic. The Cartesian product of subanalytic sets is subanalytic. If $A \subset \mathbb{R}^{m}$ is subanalytic, then so are $\mathbb{R}^{m} \backslash A$ and $\pi(A)$, where $\pi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m^{\prime}}$ denotes the natural projection $\left(m^{\prime} \leq m\right)$. Moreover \bar{A} and $\operatorname{Int} A$ are subanalytic.
- If $\xi: A \rightarrow \mathbb{R}^{q}$ is subanalytic $\left[{ }^{3}\right)$, where $A \subset \mathbb{R}^{m}$, then A and $\{\xi=0\}$ are subanalytic. If additionally $q=1$, then $\{\xi>0\}$ and $\{\xi<0\}$ are subanalytic.
- If $\xi_{\nu}: A \rightarrow \mathbb{R}$, where $A \subset \mathbb{R}^{m}$, are subanalytic (for $\nu=1,2$), then so are $\xi_{1}+\xi_{2}$ and $\xi_{1} \cdot \xi_{2}$. Moreover, ξ_{1} / ξ_{2} is subanalytic on $A \backslash\left\{\xi_{2}=0\right\}$. The same is true if $\xi_{\nu}: A \rightarrow \mathbb{C}(\nu=1,2)\left({ }^{4}\right)$.
- Polynomials (real and complex) are subanalytic.
- Let $f=\left(f^{1}, \ldots, f^{p}\right): \Omega \rightarrow \mathbb{C}^{p}$ be a holomorphic mapping, where $\Omega \subset \mathbb{C}^{N}$. Suppose that $B \subset \mathbb{C}^{N}$ is bounded, subanalytic and $\bar{B} \subset \Omega$. Then the maps $\left.f\right|_{B}$ and $B \ni z \mapsto|f(z)| \in[0, \infty)$ are subanalytic.
- Eojasiewicz's inequality (cf. Ł, BM, DS]). Let $\varphi, \phi: E \rightarrow \mathbb{R}$ be continuous and subanalytic functions, where $E \subset \mathbb{R}^{m}$ is compact. Assume that $\{\phi=0\} \subset\{\varphi=0\}$. Then $|\varphi(x)| \leq \eta|\phi(x)|^{\alpha}$ in E for some $\eta, \alpha>0$.
Fix a nonempty open set $\Omega \subset \mathbb{C}^{N}$. For any set $S \subset \Omega$ and $p \in \mathbb{N}$, let

$$
\begin{aligned}
& \mathcal{I}_{\Omega}(p ; S):=\left\{f=\left(f^{1}, \ldots, f^{p}\right): \Omega \rightarrow \mathbb{C}^{p}: f^{\nu} \in H^{\infty}(\Omega)\right. \text { and } \\
&\left.f^{\nu}=0 \text { on } S, \text { for each } \nu \leq p\right\}
\end{aligned}
$$

Since $\mathcal{I}_{\Omega}(p ; S)$ is a closed linear subspace of the Banach space $\mathcal{B}\left(\Omega ; \mathbb{C}^{p}\right)$ of all bounded mappings $f: \Omega \rightarrow \mathbb{C}^{p}$ (with the norm $\left\|\|_{\Omega}\right.$), it follows that $\mathcal{I}_{\Omega}(p ; S)$ is a Banach space with the induced norm. We will write $\mathcal{I}_{\Omega}(S)$ instead of $\mathcal{I}_{\Omega}(1 ; S)$.

Proposition 3.1. Assume that $\phi: E \rightarrow[0, \infty)$ is a continuous subanalytic function, where $E \subset \Omega$ is compact, and let $p \in \mathbb{N}$. Put $S:=\{\phi=0\}$. Then there are $M>0$ and $l \in \mathbb{N}$ such that for any $f \in \mathcal{I}_{\Omega}(p ; S)$,

$$
|f(z)| \leq M\|f\|_{\Omega} \phi(z)^{1 / l}
$$

whenever $z \in E$.
$\left.{ }^{3}\right)$ That is, its graph $\Gamma(\xi) \subset \mathbb{R}^{m+q}$ is subanalytic.
$\left(^{4}\right)$ We identify \mathbb{C}^{k} with $\mathbb{R}^{2 k}$ via the map

$$
\mathbb{C}^{k} \ni z=\left(z_{1}, \ldots, z_{k}\right) \mapsto\left(\operatorname{Re}\left(z_{1}\right), \operatorname{Im}\left(z_{1}\right), \ldots, \operatorname{Re}\left(z_{k}\right), \operatorname{Im}\left(z_{k}\right)\right) \in \mathbb{R}^{2 k}
$$

Proof. To shorten notation we put $X:=\mathcal{I}_{\Omega}(p ; S)$. For each $k \in \mathbb{N}$, let

$$
V_{k}:=\left\{f \in X:|f(z)| \leq k\|f\|_{\Omega} \phi(z)^{1 / k} \text { for all } z \in E\right\} .
$$

Obviously, V_{k} is closed in X and $\mathbb{C} \cdot V_{k}=V_{k}$. By Lemma 2.3, it is enough to prove that:
(1) $\bigcup_{k \in \mathbb{N}} V_{k}=X$.
(2) For each $j \in \mathbb{N}, f_{0} \in V_{j}$ and $r>0$ there exists $\mu=\mu\left(j, f_{0}, r\right) \in \mathbb{N}$ such that

$$
\left(V_{j}-f_{0}\right) \cap\left\{g \in X:\|g\|_{\Omega}=r\right\} \subset V_{\mu} .
$$

Proof of (1). Take any $f \in X$. So $f: \Omega \rightarrow \mathbb{C}^{p}$ is a bounded holomorphic mapping such that $S=\{\phi=0\} \subset\left\{f^{1}=0, \ldots, f^{p}=0\right\}$. We use Łojasiewicz's inequality along with the fact that the map $E \ni z \mapsto|f(z)| \in$ $[0, \infty)$ is subanalytic to conclude that, for some $\eta, \alpha>0,|f(z)| \leq \eta \phi(z)^{\alpha}$ for all $z \in E$. We may assume that $\|f\|_{\Omega}>0$, because otherwise $f \equiv 0$ and then the situation is trivial. Note that $\eta \phi^{\alpha} \leq k\|f\|_{\Omega} \phi^{1 / k}$ on E whenever $k \in \mathbb{N}$ is sufficiently large. Consequently, $f \in V_{k}$.

Proof of (2). Fix $j \in \mathbb{N}, f_{0} \in V_{j}$ and $r>0$. We need to show the existence of $\mu \in \mathbb{N}$ such that

$$
\left(f \in V_{j},\left\|f-f_{0}\right\|_{\Omega}=r\right) \Rightarrow f-f_{0} \in V_{\mu} .
$$

Assume therefore that $f \in V_{j}$ and $\left\|f-f_{0}\right\|_{\Omega}=r$. We have

- $\left|f_{0}(z)\right| \leq j\left\|f_{0}\right\|_{\Omega} \phi(z)^{1 / j}$ for all $z \in E$,
- $|f(z)| \leq j\|f\|_{\Omega} \phi(z)^{1 / j}$ for all $z \in E$.

Put $\theta:=1+2 r^{-1}\left\|f_{0}\right\|_{\Omega}$. For any $z \in E$,

$$
\begin{aligned}
\left|f(z)-f_{0}(z)\right| & \leq\left|f_{0}(z)\right|+|f(z)| \leq j\left(\left\|f_{0}\right\|_{\Omega}+\|f\|_{\Omega}\right) \phi(z)^{1 / j} \\
& \leq j\left(2\left\|f_{0}\right\|_{\Omega}+\left\|f-f_{0}\right\|_{\Omega}\right) \phi(z)^{1 / j}=j \theta\left\|f-f_{0}\right\|_{\Omega} \phi(z)^{1 / j} .
\end{aligned}
$$

By the above estimates, we see easily that, for $\mu \in \mathbb{N}$ large enough (depending only on j, f_{0}, r and on ϕ), $f-f_{0} \in V_{\mu}$.

Corollary 3.2. Assume that $h: \Omega \rightarrow \mathbb{C}^{m}$ is a holomorphic mapping. Let $K \subset \Omega$ be compact and $p \in \mathbb{N}$. Put $S:=\{h=0\}$. Then there are $M>0$ and $l \in \mathbb{N}$ such that for any $f \in \mathcal{I}_{\Omega}(p ; S)$,

$$
|f(z)| \leq M\|f\|_{\Omega}|h(z)|^{1 / l}
$$

whenever $z \in K$. If moreover K is subanalytic, then we can choose $M>0$ and $l \in \mathbb{N}$ so that the above inequality holds for all $f \in \mathcal{I}_{\Omega}(p ; S \cap K)$.

Proof. Let E be a compact subanalytic set (for example, a finite union of compact boxes) such that $K \subset E \subset \Omega$. Since the map $E \ni z \mapsto$
$|h(z)| \in[0, \infty)$ is subanalytic, Proposition 3.1 yields the first part of the corollary. The second part is proved in the same manner by taking simply $E:=K$.

REmARK 3.3. Without the assumption that K is subanalytic the conclusion in the second part of Corollary 3.2 is no longer true.

Example. Put

$$
K:=\left\{\left(t, \exp \left(-t^{-1}\right)\right): t \in(0,1]\right\} \cup\{(0,0)\}, \quad \Omega:=\{|z|<2\} \subset \mathbb{C}^{2}
$$

Let $h: \Omega \ni z \mapsto z_{1} z_{2} \in \mathbb{C}$. Clearly, $S \cap K=\{(0,0)\}$. Let $f: \Omega \ni z \mapsto$ $z_{1} \in \mathbb{C}$. Although $f \in \mathcal{I}_{\Omega}(S \cap K)$, there are no $M>0, l \in \mathbb{N}$ such that $|f(z)| \leq M\|f\|_{\Omega}|h(z)|^{1 / l}$ for all $z \in K$.

The next result should be regarded, first and foremost, as another illustration of the usefulness of our method $\left({ }^{5}\right)$.

Corollary 3.4. Assume that $g: \Omega \rightarrow \mathbb{C}$ is a holomorphic function. Let $\Omega_{0} \subset \mathbb{C}^{N}$ be an open, bounded and subanalytic set such that $\bar{\Omega}_{0} \subset \Omega$. Put $S:=\{g=0\}$. Then there are $\theta>0$ and $l \in \mathbb{N}$ such that, for any $f \in \mathcal{I}_{\Omega}\left(S \cap \Omega_{0}\right)$, we can find a holomorphic function $\tau: \Omega_{0} \rightarrow \mathbb{C}$ satisfying the following conditions:
(1) $f^{l}=\tau g$ in Ω_{0}.
(2) τ is subanalytic.
(3) $\|\tau\|_{\Omega_{0}} \leq \theta\|f\|_{\Omega}^{l}$ if $f=0$ on $S \cap \partial \Omega_{0}$ (i.e. $f \in \mathcal{I}_{\Omega}\left(S \cap \bar{\Omega}_{0}\right)$).

Proof. We will consider two cases depending on whether or not Ω_{0} is connected.

CASE 1: Ω_{0} is connected. If $g \equiv 0$ in Ω_{0}, the situation is trivial (take $\tau \equiv 0)$. Assume then that $S \cap \Omega_{0}$ is nowhere dense in \mathbb{C}^{N}. For each $x \in S \cap \Omega_{0}$, take $r(x)>0$ such that $\left.K(x, 2 r(x)) \subset \Omega_{0}{ }^{6}\right)$. Since Ω_{0} and $S \cap \Omega_{0}$ are subanalytic, we may assume, by the theorem on subanalytic choice (cf. DS, p. 78]), that the map $S \cap \Omega_{0} \ni x \mapsto r(x) \in(0, \infty)$ is subanalytic. Put $B:=\bigcup_{x \in S \cap \Omega_{0}} K(x, r(x))$. Note that B is the image of the set $\{(y, x) \in$ $\left.\mathbb{C}^{N} \times\left(S \cap \Omega_{0}\right):|y-x|-r(x)<0\right\}$ under the projection $(y, x) \mapsto y$. Consequently, B and its closure are subanalytic. We will now prove that $\bar{B} \subset \Omega_{0} \cup \overline{S \cap \Omega_{0}}$.

Take $b \in \bar{B} \cap \partial \Omega_{0}$. We need to show that $b \in \overline{S \cap \Omega_{0}}$. There are sequences $\left(b_{n}\right),\left(c_{n}\right)$ such that $b_{n} \rightarrow b, b_{n} \in K\left(c_{n}, r\left(c_{n}\right)\right)$ and $c_{n} \in S \cap \Omega_{0}$. Note that

$$
\left|b_{n}-b\right| \geq\left|c_{n}-b\right|-\left|c_{n}-b_{n}\right|>2 r\left(c_{n}\right)-r\left(c_{n}\right)=r\left(c_{n}\right)
$$

[^2]Consequently, $r\left(c_{n}\right) \rightarrow 0$. Since $\left|c_{n}-b\right|<r\left(c_{n}\right)+\left|b_{n}-b\right|$, it follows that $c_{n} \rightarrow b$. So $b \in \overline{S \cap \Omega_{0}}$, as desired.

First we will prove (1) and (2). Put $K:=\bar{B}$. Note that $\mathcal{I}_{\Omega}\left(S \cap \Omega_{0}\right)=$ $\mathcal{I}_{\Omega}\left(\overline{S \cap \Omega_{0}}\right)=\mathcal{I}_{\Omega}(S \cap K)$. Take $l \in \mathbb{N}$ as in the second part of Corollary 3.2. Assume that $f \in \mathcal{I}_{\Omega}\left(S \cap \Omega_{0}\right)$. Let $\tau_{0}: \Omega_{0} \backslash S \ni z \mapsto f(z)^{l} / g(z) \in \mathbb{C}$. Clearly, τ_{0} is holomorphic and, by Corollary 3.2, locally bounded in Ω_{0} (use the fact that $S \cap \Omega_{0} \subset \operatorname{Int} K$). By Riemann's removable singularity theorem, τ_{0} extends to a holomorphic function τ in Ω_{0}. Note that τ_{0} is subanalytic. Since $\Gamma(\tau)=\bar{\Gamma}\left(\tau_{0}\right) \cap\left(\Omega_{0} \times \mathbb{C}\right)$, it follows that τ is subanalytic as well ${ }^{7}$).

To obtain (3) we similarly apply the second part of Corollary 3.2 (along with Riemann's removable singularity theorem), but this time we put $K:=\bar{\Omega}_{0}$.

Case 2: Ω_{0} is not connected. Then Ω_{0} (being subanalytic) has only finitely many connected components $\Omega_{0}^{1}, \ldots, \Omega_{0}^{k}$ and each of them is subanalytic. By applying Case 1 to Ω_{0}^{ν} we obtain $\theta_{\nu}>0$ and $l_{\nu} \in \mathbb{N}(\nu=1, \ldots, k)$. Put $\theta:=\max \theta_{\nu}$ and $l:=\max l_{\nu}$. A straightforward argument proves that the constants θ, l have the required properties.

Remark 3.5. In the above corollary, to obtain (1), without any additional assumptions on g, we at least should assume that $\overline{S \cap \Omega_{0}} \cap \partial \Omega=\emptyset$. Clearly, the assumptions in Corollary 3.4 are stronger, but we need them to obtain also (2) and (3).

Example. For each $\nu \in \mathbb{N}$, put $a_{\nu}:=1-2^{-\nu}$. Let $\Omega:=\{|z|<1\} \subset \mathbb{C}$. Put

$$
\begin{aligned}
& g: \Omega \ni z \mapsto \prod_{\nu \in \mathbb{N}}\left(a_{\nu} z-a_{\nu}^{2}\right)^{\nu}\left(a_{\nu} z-1\right)^{-\nu} \in \mathbb{C}, \\
& f: \Omega \ni z \mapsto \prod_{\nu \in \mathbb{N}}\left(a_{\nu} z-a_{\nu}^{2}\right)\left(a_{\nu} z-1\right)^{-1} \in \mathbb{C} .
\end{aligned}
$$

It is easy to check that g and f are bounded holomorphic functions in Ω. Moreover, $S=\left\{1-2^{-\nu}: \nu \in \mathbb{N}\right\}$ and $f \in \mathcal{I}_{\Omega}(S)$. Suppose that $\Omega_{0} \subset \Omega$ is an open set such that $\overline{S \cap \Omega_{0}} \cap \partial \Omega \neq \emptyset$. This means that $1 \in \overline{S \cap \Omega_{0}}$. Obviously, there is no $l \in \mathbb{N}$ such that $f^{l}=\tau g$ in Ω_{0} for any holomorphic function $\tau: \Omega_{0} \rightarrow \mathbb{C}$.

Acknowledgments. I am indebted to the referee for helpful remarks. I would also like to thank Professor Wiesław Pawłucki and Professor Wiesław Pleśniak for discussions and comments about the paper.

This research was partially supported by the project Iuventus Plus 2012-2014.

[^3]
References

[BG1] M. S. Baouendi et C. Goulaouic, Approximation polynomiale de fonctions C^{∞} et analytiques, Ann. Inst. Fourier (Grenoble) 21 (1971), no. 4, 149-173.
[BG2] M. S. Baouendi and C. Goulaouic, Approximation of analytic functions on compact sets and Bernstein's inequality, Trans. Amer. Math. Soc. 189 (1974), 251-261.
[B] S. Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par des polynômes de degré donné, Bruxelles, 1912.
[BM] E. Bierstone and P. Milman, Semianalytic and subanalytic sets, Publ. Math. Inst. Hautes Études Sci. 67 (1988), 5-42.
[DS] Z. Denkowska et J. Stasica, Ensembles sous-analytiques à la polonaise, Hermann, 2007.
[Hi] H. Hironaka, Introduction to Real-Analytic Sets and Real-Analytic Maps, Istituto Matematico "L. Tonelli", Pisa, 1973.
[H] L. Hörmander, An Introduction to Complex Analysis in Several Variables, NorthHolland Math. Library 7, North-Holland, 1990.
[L] N. Levenberg, Approximation in \mathbb{C}^{N}, Surveys Approx. Theory 2 (2006), 92-140.
[Ł] S. Łojasiewicz, Ensembles semi-analytiques, Lecture Notes, IHES, Bures-surYvette, 1965.
[P1] W. Pleśniak, On superposition of quasianalytic functions, Ann. Polon. Math. 26 (1972), 75-86.
[P2] W. Pleśniak, Quasianalytic functions in the sense of Bernstein, Dissertationes Math. 147 (1977), pp. 66.
[P3] W. Pleśniak, Invariance of the L-regularity of compact sets in \mathbb{C}^{N} under holomorphic mappings, Trans. Amer. Math. Soc. 246 (1978), 373-383.
[P4] W. Pleśniak, Multivariate Jackson inequality, J. Comput. Appl. Math. 233 (2009), 815-820.
[S1] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322-357.
[S2] J. Siciak, Extremal plurisubharmonic functions in \mathbb{C}^{n}, Ann. Polon. Math. 39 (1981), 175-211.
[W] J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc. Colloq. Publ. 20, Amer. Math. Soc., 1960.
[Wh] H. Whitney, Complex Analytic Varieties, Addison-Wesley, 1972.

Rafał Pierzchała
Faculty of Mathematics and Computer Science
Jagiellonian University
Łojasiewicza 6
30-348 Kraków, Poland
E-mail: Rafal.Pierzchala@im.uj.edu.pl

[^0]: 2010 Mathematics Subject Classification: 32B20, 41A10, 41A25.
 Key words and phrases: polynomial approximation, Oka-Weil theorem, Bernstein-WalshSiciak theorem, Łojasiewicz's inequality.
 $\left.{ }^{(}{ }^{1}\right)$ We say that a compact set $K \subset \mathbb{C}^{N}$ is polynomially convex if $K=\hat{K}:=\left\{z \in \mathbb{C}^{N}\right.$: $|P(z)| \leq\|P\|_{K}$ for all polynomials $\left.P \in \mathbb{C}[Z]\right\}$.

[^1]: $\left({ }^{2}\right)$ Clearly, the polynomial convexity assumption on K is not necessary here.

[^2]: $\left({ }^{5}\right)$ Especially as part of this corollary can be obtained by using completely different tools-see Wh.
 $\left({ }^{6}\right) K(x, r):=\left\{z \in \mathbb{C}^{N}:|z-x|<r\right\}$.

[^3]: $\left({ }^{7}\right)$ As before, $\Gamma(\xi)$ denotes the graph of ξ.

