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On the isotropic constant of marginals

by

Grigoris Paouris (College Station, TX)

Abstract. We show that if µ1, . . . , µm are log-concave subgaussian or supergaussian
probability measures in Rni , i ≤ m, then for every F in the Grassmannian GN,n, where
N = n1 + · · · + nm and n < N , the isotropic constant of the marginal of the product of
these measures, πF (µ1 ⊗ · · · ⊗ µm), is bounded. This extends known results on bounds of
the isotropic constant to a larger class of measures.

1. Introduction. A famous open problem in convex geometry is the
hyperplane conjecture (HC) asking if there exists a constant c > 0 such
that for every n ≥ 1 and any symmetric convex body K of volume 1 in Rn
there exists θ ∈ Sn−1 such that

(1.1) |K ∩ θ⊥| ≥ c.

The question was posed in this form by J. Bourgain in [Bou1]. A classical
reference on the subject is the paper of V. D. Milman and A. Pajor [MP]
(see also [G]). In this paper we will consider an equivalent formulation of
the hyperplane conjecture, given by K. Ball [Ba1]. Let µ be an isotropic
log-concave probability measure on Rn (i.e. the density fµ of µ is of the
form fµ(x) = e−V (x), where V : Rn → [0,∞] is a convex function). Then
the question is whether

(1.2) Lµ := fµ(0)1/n ≤ C,

where C > 0 is an absolute constant. The best known bound is due to
B. Klartag [K2] who proved that Lµ ≤ Cn1/4 (see also [Bou2] and [KM]).

The validity of (HC) has been verified in many cases (see e.g. the ref-
erences in [P3]). In this work we intend to verify the conjecture for a large
class of measures that contains (or more precisely is generated by) the class
of subgaussian and supergaussian log-concave measures. We say that the
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measure µ in Rn is subgaussian (with constant b) if for every θ ∈ Sn−1,

µ
(
{x : |〈x, θ〉| ≥ t

�

Rn
|〈x, θ〉| dµ(x)}

)
≤ 2e−t

2/b2

for all t ≥ 1, and supergaussian (with constant a) if for every θ ∈ Sn−1,

µ
(
{x : |〈x, θ〉| ≥ t

�

Rn
|〈x, θ〉| dµ(x)}

)
≥ 2e−a

2t2

for all 1 ≤ t ≤
√
n/a (see also §4 for more information). There are several

examples of measures that have either the one or the other property (see §4)
and in both cases the (HC) has been verified ([Bou3], [DP], [KM] and [P3]).

However, it is quite easy to construct examples of measures that have
subgaussian and supergaussian directions (e.g. the product of a subgaussian
and a supergaussian measure). Moreover, it is not true that a direction will
be either supergaussian or subgaussian. Actually, the results of [GPV1] show
that if µ is a general log-concave measure in Rn then a “typical” marginal
measure πF (µ) of the measure on the subspace F of dimension k �

√
n has

directions that are neither supergaussian nor subgaussian.

Before we describe the class of measures that we will treat in this pa-
per let us mention another famous conjecture—at first sight unrelated to
the hyperplane conjecture—which was proposed by Kannan, Lovász and Si-
monovits [KLS]. We will use the abbreviation (KLS). In equivalent form,
(KLS) asks if for any isotropic log-concave probability measure µ on Rn
and any smooth function g : Rn → R,

(1.3) varµ(g) := E|g − E(g)|2 ≤ CE‖∇g‖22,

where C > 0 is an absolute constant (see [M] for other equivalent formula-
tions of the question). Recently, Eldan and Klartag [EK] (see also [BN], also
[Ba2]) showed that if (KLS) has a positive answer then (HC) is also true.
More precisely, they showed that a weaker version of the (KLS) conjecture
(the so-called variance conjecture) is sufficient. We refer to [GM] for the best
known bound and more information related to the latter problem.

The validity of (HC) has been verified in many cases (see e.g. the ref-
erences in [P3]); on the contrary, (KLS) has been established in some very
special cases only (1-dimensional log-concave probability measures [Bo], and
indicators of Bn

p [So]). However, it is known that if µ1, µ2 are two proba-
bility measures satisfying (1.3) with the same constant, then so does their
product µ1⊗µ2 (see e.g. [L, p. 98]). Moreover, if µ satisfies (1.3) with some
constant D, then any marginal πF (µ) of µ also satisfies (1.3) with the same
constant. So, combining these two operators one can construct a rich family
of isotropic log-concave probability measures which satisfy (KLS).
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The behavior of the isotropic constant with respect to the two operators
described above is different. It is well known that the isotropic constant
of the product of two measures is bounded by the maximum of the corre-
sponding isotropic constants (see, for example, [G, Lemma 1.6.6]). It is not
known if given an isotropic log-concave probability measure µ on RN and a
subspace F ∈ GN,n one has

(1.5) LπF (µ) ≤ cLµ
for some universal constant c > 0. Actually, (1.5) is another equivalent
formulation of (HC)—see §5 for the details.

Our main result states that the isotropic constant is stable under these
two operators if we start with the class of supergaussian and subgaussian
measures:

Theorem 1.1. There exists an absolute constant c > 0 such that the fol-
lowing is true: Let m ≥ 1, a, b > 0 and µ1, . . . , µm be isotropic log-concave
probability measures in Rni such that, for every i ≤ N , µi is either supergaus-
sian with constant a or subgaussian with constant b. Let N := n1 + · · ·+nm,
n < N and F ∈ GN,n be any n-dimensional subspace of RN . Then for any
probability measure of the form µ := πF (

⊗m
i=1 µi) one has

(1.6) Lµ ≤ cmax{a, b},
where c > 0 is an absolute constant.

The paper is organized as follows. In §2 we gather some background ma-
terial. In §3 we investigate the properties of classes of log-concave measures
that are close under the cartesian product and marginal operation (coher-
ent classes of measures). In particular, we show that the largest isotropic
constant of measures in such a class that is created by two different classes
is bounded by the maximum isotropic constant of measures in these two
classes (Proposition 3.5). In §4 we investigate the properties of the classes
of supergaussian and subgaussian measures. In particular, we show that the
isotropic constant of measures in the coherent class that contains the super-
gaussian measures is bounded (Theorem 4.6). Then we conclude the proof
of the main theorem. We conclude in §5 with some applications of the main
theorem and some final remarks.

2. Preliminaries

2.1. Basic notation. We work in Rn, which is equipped with a Eu-
clidean structure 〈·, ·〉. We denote by ‖ · ‖2 the corresponding Euclidean
norm, and write Bn

2 for the Euclidean unit ball, and Sn−1 for the unit
sphere. Volume is denoted by | · |. We write Dn for the Euclidean ball of
volume 1 and σ for the rotationally invariant probability measure on Sn−1.
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The Grassmann manifold Gn,k of k-dimensional subspaces of Rn is equipped
with the Haar probability measure µn,k. Let 1 ≤ k ≤ n and F ∈ Gn,k. We
will denote by PF the orthogonal projection from Rn onto F .

The letters c, c′, c1, c2 etc. denote absolute positive constants which may
change from line to line. Whenever we write a ' b, we mean that there
exist absolute constants c1, c2 > 0 such that c1a ≤ b ≤ c2a. If A ⊆ Rn with
|A| > 0, we write Ã := |A|−1/nA.

2.2. Probability measures. We denote by P[n] the class of all proba-
bility measures in n-dimensional Euclidean spaces which are absolutely con-
tinuous with respect to the Lebesgue measure. We write An for the Borel
σ-algebra in the corresponding n-dimensional Euclidean space. The density
of µ ∈ P[n] is denoted by fµ. We also write P :=

⋃∞
n=1 P[n].

The subclass SP [n] consists of all symmetric measures µ ∈ P[n]; µ is
called symmetric if fµ is an even function on Rn.

The subclass CP [n] consists of all µ ∈ P[n] that have center of mass at
the origin; so, µ ∈ CP [n] if

(2.1)
�

Rn
〈x, θ〉 dµ(x) = 0

for all θ ∈ Sn−1.
Let µ ∈ P[n]. For every 1 ≤ k ≤ n − 1 and F ∈ Gn,k, we define the

F -marginal πF (µ) of µ as follows: for every A ∈ AF ,

(2.2) πF (µ)(A) := µ(P−1
F (A)).

It is clear that πF (µ) ∈ P[dimF ]. Note that, by the definition, for every Borel
measurable function f : Rn → [0,∞) we have

(2.3)
�

F

f(x) dπF (µ)(x) =
�

Rn
f(PF (x)) dµ(x).

The density of πF (µ) is the function

(2.4) fπF (µ)(x) = πF (fµ)(x) =
�

x+F⊥

fµ(y) dy.

Let µ1 ∈ P[n1] and µ2 ∈ P[n2]. We will write µ1 ⊗ µ2 for the measure in
P[n1+n2] which satisfies

(2.5) (µ1 ⊗ µ2)(A1 ×A2) = µ1(A1)µ2(A2)

for all A1 ∈ An1 and A2 ∈ An2 . It is easily checked that fµ1⊗µ2 = fµ1fµ2 .
Moreover, the marginal operator and the product operator “commute”:

Let 1 ≤ ki < Ni, Fi ∈ GNi,ki and µi ∈ PNi for i = 1, 2. Then

(2.6) πF1(µ1)⊗ πF2(µ2) = πF (µ1 ⊗ µ2),

where F := F1 ⊗ F2.
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Let µ ∈ P[n] and λ > 0. We define µ(λ) ∈ P[n] as the measure that has
density fµ(λ)(x) := λnfµ(λx). Moreover, if T ∈ SL(n) we define µ ◦ T ∈ P[n]

as the measure with density fµ◦T (x) := fµ(T−1x).
If µi ∈ P we write µi ⇒ µ for the weak convergence of µi to µ.

2.3. Log-concave measures. We denote by L[n] the class of all log-
concave probability measures on Rn. A measure µ on Rn is called log-concave
if for any compact sets A,B and any λ ∈ (0, 1),

µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ.

A function f : Rn → [0,∞) is called log-concave if log f is concave.
It is known that if µ ∈ L[n] and µ(H) < 1 for every hyperplane H, then

µ ∈ P[n] and its density fµ is log-concave (see [Bor]). As an application of
the Prékopa inequality one can check that if f is log-concave then, for every
k ≤ n−1 and F ∈ Gn,k, πF (f) is also log-concave. As before, we write CL[n]

or SL[n] for the classes of centered or symmetric non-degenerate µ ∈ L[n]

respectively.
If µ1, µ2 ∈ L[n] we define their convolution µ1 ∗ µ2 as the measure with

density fµ1∗µ2(x) :=
	
Rn fµ1(y)fµ2(x − y) dy. It follows from the Prékopa

inequality that µ1 ∗ µ2 is well defined and belongs to L[n]. In the notation
given above, one can check that

(2.7) (µ1 ∗ µ2)(
√

2) = πF (µ1 ⊗ µ2),

where F := {(x, y) ∈ R2n : x = y}.

2.4. Convex bodies. A convex body in Rn is a compact convex subset
C of Rn with non-empty interior. We say that C is symmetric if x ∈ C
implies that −x ∈ C. We say that C is centered if

	
C〈x, θ〉 dx = 0 for

every θ ∈ Sn−1. The support function hC : Rn → R of C is defined by
hC(x) = max{〈x, y〉 : y ∈ C}. Note that if K is a convex body in Rn then
the Brunn–Minkowski inequality implies that 1

K̃
∈ L[n].

We denote by K[n] the class of convex bodies in Rn and by K̃[n] the
subclass of bodies of volume 1. Also, CK[n] is the class of centered convex
bodies (bodies with center of mass at the origin) and SK[n] is the class of
origin symmetric convex bodies in Rn.

2.5. Lq-centroid bodies. Let µ ∈ P[n]. For every q ≥ 1 and θ ∈ Sn−1

we define

hZq(µ)(θ) :=
( �

Rn
|〈x, θ〉|qfµ(x) dx

)1/q
,

where fµ is the density of µ. If µ is log-concave then hZq(µ)(θ) <∞ for every

q ≥ 1 and every θ ∈ Sn−1. We define the Lq-centroid body Zq(µ) of µ to be
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the centrally symmetric convex set with support function hZq(µ). One can
check that for any T ∈ SL(n) and λ > 0,

(2.8) Zp((µ ◦ T )(λ)) =
1

λ
T (Zp(µ)).

Note that (2.3) implies that

(2.9) PF (Zp(µ)) = Zp(πF (µ)).

Lq-centroid bodies were introduced, with a different normalization, in [LZ]
(see also [LYZ] where an Lq affine isoperimetric inequality was proved).
Here we follow the normalization (and notation) that appeared in [P1].
The original definition concerned the class of measures µK where µK is
the uniform measure on a body K ∈ K̃[n]. In this case, we also write Zq(K)
instead of Zq(µK).

If K is a compact set in Rn and |K| = 1, it is easy to check that
Z1(K) ⊆ Zp(K) ⊆ Zq(K) ⊆ Z∞(K) for all 1 ≤ p ≤ q ≤ ∞, where Z∞(K) =
conv({K,−K}). Note that if T ∈ SL(n) then Zp(T (K)) = T (Zp(K)). More-
over, it was proved in [P2, Theorem 4.4] that, for all 1 ≤ n < N , K ∈ CK[N ]

and F ∈ GN,n,

(2.10) |PF (Zn(K))|1/n|K ∩ F⊥|1/n ' 1.

For additional information on Lq-centroid bodies, we refer to [P1] and [P2].

2.6. Isotropic probability measures. Let µ be a centered measure
in P[n]. We say that µ is isotropic if Z2(µ) = Bn

2 . Note that if µ ∈ CL[n], then
there exist T ∈ SL(n) and λ > 0 such that (µ ◦ T )(λ) is isotropic. We write
µiso for an “isotropic image” of µ. Note that µiso is unique up to orthogonal
transformations. If µ ∈ CL[n] then we define the isotropic constant of µ

by Lµ := fµiso(0)1/n. We denote by IL the class of isotropic log-concave
measures.

It is known (see [P2, Proposition 3.7]) that if µ ∈ IL[n], then

(2.11) 1/Lµ ' |Zn(µ)|1/n.

A centered convex body K is called isotropic if Z2(K) is a multiple of the
Euclidean ball. We define the isotropic constant of K in CK[n] of volume 1
by

(2.12) LK :=

(
|Z2(K)|
|Bn

2 |

)1/n

.

So, K in CK[n] of volume 1 is isotropic if and only if Z2(K) = LKB
n
2 . Let

K ∈ CK[n] and a > 0. We write µK,a := an1K/a. Note that K is isotropic if
and only if µK,LK = LnK1K/LK is isotropic as a measure.
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We refer to [MP], [G] for additional information on isotropic convex
bodies and to the books [S], [MS] and [Pi] for basic facts from the Brunn–
Minkowski theory and the asymptotic theory of finite-dimensional normed
spaces.

3. Coherent classes of measures. We start with the definition of
coherent classes of measures (see [DP]). Recall that P :=

⋃∞
n=1 P[n].

Definition 3.1. Let C ⊆ P be a class of probability measures. Then C
is called coherent if

1. For all n1, n2 and µ1 ∈ C[n1], µ2 ∈ C[n2] one has µ1 ⊗ µ2 ∈ C[n1+n2].
2. For all n, 1 ≤ k ≤ n− 1, F ∈ Gn,k and µ ∈ C[n] one has πF (µ) ∈ C[k].
3. If µi ∈ C[n], i = 1, 2, . . . , and µi ⇒ µ, then µ ∈ C.

We will say that C is τ -coherent if condition 3 is replaced with the following:

4. If µ ∈ C, λ > 0 and T ∈ SL(n), then (µ ◦ T )(λ) ∈ C.
We also agree that the null class is coherent. Note that if U1 and U2 are

τ -coherent then U1 ∩ U2 is also τ -coherent. Denote C[n] := C ∩ P[n]. Observe
that, by definition, a coherent class is stable under isometric image. Known
results show that the classes SP, CP and L are τ -coherent. Also, I is
coherent (see [DP]).

Let A ⊆ P be a family of probability measures. We define

(3.1) A :=
⋂
{U ⊆ P : U coherent and A ⊆ U}.

It is clear that if A1 ⊆ A2 then A1 ⊆ A2.
Note that the class K :=

⋃∞
n=1{µ ∈ P[n] : µ = 1

K̃
, K ∈ K[n]} is not

coherent since a marginal of µK is not (in general) the uniform measure of
a convex body.

Let A ⊆ CL. Then we define

(3.2) LA := sup{Lµ : µ ∈ A}.
We will need the following fact (which is a corollary of [W, Proposition
2.11]).

Proposition 3.2. Let A ⊆ IL be a family of probability measures and
set C := A. Then, for every n ≥ 1, for every µ ∈ C[n] and ε > 0, there exist

k ∈ N, µi ∈ Ani, i ≤ k, with
∑k

i=1 ni = N and F ∈ GN,n such that

(3.3) |Lµ − Lν | ≤ ε, where ν := πF

( k⊗
i=1

µi

)
.

Proof. Let U ⊆ IL be the smallest class which is closed under products
and marginals and contains A. Then it is proved in [W, Proposition 2.11]
that C is the closure of U with respect to the Lévy metric. So, in order to
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finish the proof, it is enough to observe that Lµ is continuous with respect
to the Lévy metric and use (2.6).

The next proposition follows from the definition of a τ -coherent class
and (2.6).

Proposition 3.3. Let C ⊆ CL be a τ -coherent class and let µ1, µ2 ∈ C[n].
Then µ1 ∗ µ2 ∈ C[n].

The next proposition allows us to work only with symmetric isotropic
log-concave measures. The proof follows an argument of B. Klartag [K1].

Proposition 3.4. Let C ⊆ CL be a τ -coherent class of measures and set
SC := SL ∩ C. Then

LC ≤ e
√

2LSC .

Proof. Let µ ∈ C[n] and let µ̄ the measure with density fµ̄(x) = fµ(−x).
Since C is τ -coherent, µ̄ ∈ C. Also, by Proposition 3.3, µs := µ ∗ µ̄ ∈ C and
it is straightforward to check that µs is also symmetric. Note that Lµ = Lµ̄.
In order to finish the proof it is enough to show that for all µ1, µ2 ∈ CL,

(3.4) Lµ1∗µ2 ≤ e
√

2 min{Lµ1 , Lµ2}.
We may assume that µ1, µ2 are isotropic. Then one can check that

(µ1 ∗ µ2)(
√

2) = (µ1)(
√

2) ∗ (µ1)(
√

2)

is also isotropic. So,

Lnµ1∗µ2 := f(µ1∗µ2)(
√
2)

(0) =
�

Rn
(fµ1)(

√
2)(y)(fµ2)(

√
2)(−y) dy

≤ ‖(fµ2)(
√

2)‖∞ ≤ e
n(fµ2)(

√
2)(0) = (e

√
2)nfµ2(0) ≤ (e

√
2Lµ2)n,

where we have also used a theorem of M. Fradelizi [F] stating that, for any
centered log-concave density f in Rn, one has ‖f‖∞ ≤ enf(0). We work in
the same way to get Lnµ1∗µ2 ≤ (e

√
2Lµ1)n. This proves (3.4).

Let µi ∈ IL[n1], i ≤ m, and N :=
∑m

i=1 ni. Then

(3.5) Lµ1⊗···⊗µm =

m∏
i=1

Lni/Nµi ≤ max{Lµi : i ≤ m}.

Indeed, from the definition it follows that

LNµ1⊗···⊗µm = fµ1⊗···⊗µm(0) =

m∏
i=1

fµi(0) =

m∏
i=1

Lniµi .

We will also need the following

Proposition 3.5. Let A1,A2 ⊆ IL be two coherent classes of measures.
Then

L{A1,A2} ≤ cmax{LA1 , LA2}.
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We need to introduce some additional notation before we give the proof.
Let µ ∈ IL[n] and p > −n. Then we define

Ip(µ) :=
( �

Rn
‖x‖p2 dµ(x)

)1/p
.

Moreover, if δ > 1, we define the quantity (see [DP])

q−c(µ, δ) := max

{
p ≥ 1 : I−p(µ) ≥ 1

δ

√
n

}
.

We will use the following (see [DP, Proposition 5.1 and the proof of Theorem
6.1]):

Proposition 3.6. Let A ⊆ IL be a coherent class of measures. Then
for any n ≥ 1 there exists µ ∈ A[n] such that for any δ > 1,

1. Lµ ≥ c1LA[n]
,

2. Lµ ≤ c2δ

√
n

q−c(µ, δ)
log e

n

q−c(µ, δ)
,

where c1, c2 > 0 are absolute constants.

We also need the following (see [P2, Proposition 4.8]):

Proposition 3.7. Let µ ∈ IL[n]. Then for every p ≥ −n/2,

Ip(µ) ≥ c
√
n

Lµ
,

where c > 0 is an absolute constant.

Proof of Proposition 3.5. Let L := max{LA1 , LA2}. We assume that
L <∞, or else we have nothing to prove. Let n ≥ 1 and let

µ ∈ {A1,A2}[n] =: A[n]

be as in Proposition 3.6. As in Proposition 3.2 we may assume that there
exist N > n, F ∈ GN,n and measures µ(1), . . . , µ(k) ∈ A1, µ(k+1), . . . , µ(m) ∈
A2 such that

(3.6) µ = πF (µ(1) ⊗ · · · ⊗ µ(k) ⊗ µ(k+1) ⊗ · · · ⊗ µ(m)).

However, since A1,A2 are coherent, we see that µ1 := µ(1)⊗ · · · ⊗µ(k) ∈ A1

and µ2 := µ(k+1) ⊗ · · · ⊗ µ(m) ∈ A2. So (3.6) becomes

(3.7) µ = πF (µ1 ⊗ µ2).

We may now assume that µ1 is N1-dimensional and µ2 is N2-dimensional.
Let F1 := PFRN1 and F2 := PFRN2 and n1 := dimF1 and n2 := dimF2.
Since span{F1, F2} ⊇ F we deduce that n ≤ n1 + n2. In particular at least
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one of n1, n2 is greater than n/2. Assume that n1 ≥ n/2. Then

I
−n/4
−n/4 (µ) =

�

F

1

‖x‖n/42

dπF (µ1 ⊗ µ2)(x)

=
�

RN1

�

RN2

1

‖PF (x1, x2)‖n/42

dµ2(x2) dµ1(x1)

=
�

RN1

�

RN2

1

(‖PF1x1‖22 + ‖PF2x2‖22)n/8
dµ2(x2) dµ1(x1)

≤
�

RN1

�

RN2

1

‖PF1x1‖n/42

dµ2(x2) dµ1(x1) =
�

RN1

1

‖PF1x1‖n/42

dµ1(x1)

= I
−n/4
−n/4 (πF1(µ1)) ≤

(
LπF1 (µ1)

c
√
n1

)n/4
≤
(
LA1

c′
√
n

)n/4
,

where we have also used Proposition 3.7. Working similarly in the case when
n2 ≥ n/2 we conclude that

I−n/4(µ) ≥ cmin

{ √
n

LA1

,

√
n

LA2

}
≥
√
n

c′L
.

In other words,

(3.8) q−c(µ, cL) ≥ n

4
.

Then by Proposition 3.6 we get

LA ≤ cLµ ≤ c′L.

4. Supergaussian and subgaussian measures. Let µ ∈ IL[n] and

θ ∈ Sn−1. The subgaussian constant of µ in the direction of θ is defined by

(4.1) ψ̃2,µ(θ) := sup
λ>0

1

λ

(
log

�

Rn
eλ〈x,θ〉 dµ(x)

)1/2
.

We define the subgaussian constant of µ by

(4.2) β2,µ := sup
θ∈Sn−1

ψ̃2,µ(θ).

The usual definition of the subgaussian constant is different:

(4.3) ψ2,µ(θ) := inf
{
λ > 0 :

�

Rn
e|〈x,θ〉|

2/λ2 dµ(x) ≤ 2
}
.

Our modification is justified by the next proposition (see [DP, Propositions
4.5 and 4.9]).

Proposition 4.1. Let µ ∈ SIL[n]. Then, for every θ ∈ Sn−1,

(4.4) ψ2,µ(θ) ' ψ̃2,µ(θ).
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Moreover, if for some b > 0 and for all n ≥ 1 we define

(4.5) SBG(b)[n] := {µ ∈ IL[n] : β2,µ ≤ b} and SBG(b) :=
∞⋃
n=1

SBG(b)[n],

then SBG(b) is a coherent class.

Let γn be the standard Gaussian distribution. Then there exists a uni-
versal constant cγ such that γn ∈ SBG(cγ)[n].

The fact that if µ is subgaussian with constant b then Lµ is bounded by
a constant c(b) depending only on b was first established by J. Bourgain in
[Bou3]. His estimate c(b) ≤ cb log b has been slightly improved in [DP]. The
best known estimate is due to B. Klartag and E. Milman [KM]:

Theorem 4.2. There exists c > 0 such that for any b ≥ cγ,

(4.6) LSBG(b) ≤ cb.

The assumption that b ≥ cγ is only to guarantee that the class SBG(b)
is not empty. We will need the following consequence of Theorem 4.2.

Proposition 4.3. Let K be an isotropic convex body in RN which is
subgaussian with constant b. Then, for any F ∈ GN,n,

(4.7) |K ∩ F⊥|1/n ≤ cb,

where c > 0 is an absolute constant.

Proof. Note that µK,LK is isotropic (as a measure) and πF (µK,LK ) is
also subgaussian with constant b. So, using Theorem 4.2, we have

(cb)n ≥ πµF (K,LK)(0) = LNK

∣∣∣∣ KLK ∩ F⊥
∣∣∣∣ = LnK |K ∩ F⊥| ≥ cn0 |K ∩ F⊥|.

The uniform measure on the Euclidean ball and the Gaussian measure
are clearly in the class SBG. Moreover, the uniform measure on the unit cube
is also subgaussian. In general for p ∈ [1,∞] we write µp,n for the uniform
measure in Bn

p := {x ∈ Rn : |x1|p + · · ·+ |xn|p ≤ 1}. For 1 ≤ p ≤ q ≤ ∞ we
write

L(n)
[p,q] := {µr,n : p ≤ r ≤ q} and L[p,q] :=

∞⋃
n=1

L(n)
[p,q].

F. Barthe and A. Koldobsky [BK, §6.2] (see also [BGMN]) proved that
there exists c > 0 such that for every n ≥ 1 and p ∈ [2,∞], µp,n ∈ SBG(c).
The next result follows from their result and Proposition 4.1.

Theorem 4.4. There exists c > 0 such that

L[2,∞] ⊆ SBG(c).
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One can check that the previous result cannot be extended to the range
p ∈ [1, 2). In particular µ1,n is subgaussian only with a constant of order

√
n.

But as we will see, the measures µp,n for p ∈ [1, 2] are supergaussian.
Let µ ∈ IL[n]. We say that µ is supergaussian with constant a ≥ LD1 =

1/(2
√

3) if, for all p ≥ 1,

(4.8) Zp(µ) ⊇ Zp(1Dn,a).
An equivalent way to describe (4.8) is to say that, for every 1 ≤ p ≤ n and
θ ∈ Sn−1,

hZp(µ)(θ) ≥
√
p

ca
.

It is not difficult to show the following (see [P3, Proposition 5.1]).

Proposition 4.5. Let µ ∈ IL be supergaussian with constant a ≥
1/(2
√

3). Then
Lµ ≤ ca,

where c > 0 is an absolute constant.

The measure µ∞,n is supergaussian only with a constant of order
√
n. It

is not difficult to see that any log-concave measure is supergaussian with a
constant of order

√
n (see [P3] Proposition 3.2).

It follows from the definition and (2.8) that if µ is supergaussian with
constant a, then πF (µ) is also supergaussian with constant a. However, the
class of supergaussian measures (with constant less than a) is not a coherent
class, because the product of two supergaussian measures fails (in general)
to be supergaussian. (Consider the example of the uniform measure in the
cube.) Assuming a ≥ LD1 we see that the class of supergaussian measures
with constant less than a is non-empty. So, for a ≥ LD1 we define

SPG(a)[n] := {µ ∈ IL[n] : µ is supergaussian with constant a}

SPG(a) :=

∞⋃
n=1

SPG(a)[n].

Let us emphasize that the class SPG contains probability measures that
are not necessarily “supergaussian”.

We will prove the following.

Theorem 4.6. There exists c > 0 such that for all a ≥ LD1,

LSPG(a) ≤ ca.
Proof. We write µa,n := 1Dn,a. Let µ ∈ IL[n] be symmetric and super-

gaussian with constant a. Then, for every t ∈ R, for every even integer p ≥ 2
and for all y ∈ Rn,

(4.9)
�

Rn
|〈x, y〉+ t|p dµ(x) ≥

�

Rn
|〈x, y〉+ t|p dµa,n(x).
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Indeed, since µ, µa,n are symmetric,

�

Rn
|〈x, y〉+ t|p dµ(x) =

p∑
i=0

(
p

i

) �

Rn
ti〈x, y〉p−i dµ(x)

=

p∑
i=0, i even

(
p

i

) �

Rn
ti〈x, y〉p−i dµ(x)

=

p/2∑
k=0

(
p

2k

)
|t|2k

�

Rn
|〈x, y〉|p−2k dµ(x)

≥
p/2∑
k=0

(
p

2k

)
|t|2k

�

Rn
|〈x, y〉|p−2k dµa,n(x)

=
�

Rn
|〈x, y〉+ t|p dµa,n(x).

Let n1, . . . , nk ∈ N and let N :=
∑k

i=1 ni. Let µ1 ∈ SILn1 , . . . , µk ∈ SILnk
be supergaussian measures with constant a. Let

µN := µ1 ⊗ · · · ⊗ µk and µ̄a := µn1,a ⊗ · · · ⊗ µnk,a.

Then, for every even integer p ≥ 2 and every ȳ := (y1, . . . , yk) ∈ RN ,
applying k times (4.9) and using Fubini’s theorem, we obtain

�

RN
|〈x̄, ȳ〉|p dµN (x̄) =

�

Rn1
· · ·

�

Rnk

∣∣∣ k∑
i=1

〈xi, yi〉
∣∣∣p dµk(xk) · · · dµ1(x1)

≥
�

Rn1
· · ·

�

Rnk

∣∣∣ k∑
i=1

〈xi, yi〉
∣∣∣p dµnk,a(xk) · · · dµn1,a(x1)

=
�

RN
|〈x̄, ȳ〉|p dµ̄a(x̄).

So, we have shown that

(4.10) Zp(µN ) ⊇ Zp(µ̄a).

Let n ≥ 1 and F ∈ GN,n. Let D := Dn1 × · · · ×Dnk . Then D is isotropic
(in the convex body sense) and subgaussian with some absolute constant
c > 0. So, by Proposition 4.3, we have

(4.11) |D ∩ F⊥|1/n ' 1.

Moreover, for any p > 0,

(4.12) Zp(µ̄a) =
1

a
Zp(D).
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Now, using (2.9), (4.10) and (4.12), we get

(4.13) Zp(πF (µN )) = PF (Zp(µN )) ⊇ PF (Zp(µ̄a)) =
1

a
PF (Zp(D)).

So, for p = n, using (2.11), (4.13), (2.10) and (4.11) we see that

1

LπF (µN )
' |Zn(πF (µN ))|1/n ≥ c

a
|PF (Zn(D))|1/n ≥ c′

a

1

|D ∩ F⊥|1/n
≥ c′′

a
.

In other words,

(4.14) LπF (µN ) ≤ c′′′a.
The result follows from Propositions 3.2 and 3.4.

Theorems 4.2, 4.6 and Proposition 3.5 imply the following reformulation
of Theorem 1.1.

Theorem 4.7. There exist c, c0 > 0 such that, for any a, b ≥ c0,

L{SPG(a),SBG(b)} ≤ cmax{a, b}.

5. Final remarks. The class SPG is quite rich, as the following two
propositions show.

Proposition 5.1. There exists c > 0 such that

IL[1,2] ⊆ SPG(c).

Proof. Given a > 0, let γn,1/a be the centered Gaussian measure in Rn
with variance 1/a. Let B(a)[n] the class of all measures satisfying Zp(µ) ⊇
Zp(γn,1/a) for all p ≥ 1. Then, if µi ∈ Bni , 1 ≤ i ≤ k, and if N :=

∑k
i=1 ni,

working as in the proof of (4.10) we obtain

(5.1) Zp

( k⊗
i=1

µi

)
⊇ Zp(γN,1/a) ⊇ Zp(1Dn,ca)

for all p ≥ 1, where c > 0 is an absolute constant. The first inclusion
combined with (2.8) shows that B(a) :=

⋃∞
n=1 B(a)[n] is a coherent class,

and the second inclusion implies that

(5.2) B(a) ⊆ SPG(ca)

for some c > 0. Let p ∈ [1, 2] and write µp,n for the isotropic log-concave

probability measure with density fµp,n(x) = ap,ne
−‖x‖pp . It is a straightfor-

ward computation to check that µp,1 ∈ B(c1) for some c1 > 0. So (5.1)
implies that µn,p ∈ B(c1).

Let K be a symmetric convex body in Rn, let ‖·‖K be the corresponding
norm to K and let r > 0. We define a probability density gK,r on Rn by

gK,r(x) :=
1

|K|Γ (n+r
r )

e−‖x‖
r
K .
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Then (see [GPV2, Lemma 4.3]), for any q > 0,

(5.3) Zq(gK,r) =

(
Γ (n+q+r

r )

Γ
(
n+r
r

) )1/q

Zq(K̃).

Since gBnp ,p = µp,n, it is not hard to check that, for all q ≤ n,

(5.4) Zq(B̃
n
p ) ' Zq(µp,n).

This shows that, for all q ≤ n,

Zq(µB,p,n) ⊇ c′Zq(B̃p) ⊇ c′′Zq(µp,n) ⊇ c′′′√q Bn
2 .

We have already mentioned that S. Sodin [So] proved that the measures
µp,n for p ∈ [1,∞] (see also [SV]) satisfy KLS with a universal constant
c > 0. So any measure of the form

(5.5) πF (µp1,n1 ⊗ · · · ⊗ µpm,nm),

where p1, . . . , pm ∈ [1,∞], n1 + · · ·+nm = N and F ∈ GN,n, satisfies (KLS)
with the same universal constant c > 0. Therefore, by a result of K. Ball
and V. Nguyen [BN], a measure of the form (5.5) has bounded isotropic
constant. As a by-product of our method we can can give an alternative
proof of this fact. Indeed by Theorems 1.1, 4.4 and Proposition 5.1 we have:

Proposition 5.2. There exists a universal constant c > 0 such that

LL[1,∞]
≤ c.

It was mentioned in the introduction that the main difficulty we had
to overcome in this work was that it is not known whether there exists an
absolute constant a > 0 such that

(5.6) LπF (µ) ≤ aLµ
for all µ ∈ IL[n] and F ∈ Gn,k. In fact, (5.6) is just another equivalent
formulation of (HC). Indeed, if (HC) is true then clearly (5.6) is also true.
The other direction follows from the next proposition.

Proposition 5.3. Let C ⊆ IL be a non-empty coherent class. Assume
that there exists a > 0 such that, for any µ ∈ C, (5.6) holds. Then

(5.7) LC ≤ a.
Proof. Let µ ∈ C[n] satisfy Lµ = LC . Since C is non-empty, we have

γN ∈ C for all N ≥ 1. We define µ1 := µ ⊗ γN . Note that if F = Rn then
πF (µ1) = µ. Moreover, if N is large enough we have

Lµ1 = fµ1(0)1/(n+N) = (fµ(0)fγN (0))1/(n+N)(5.8)

≤ (
√
n)n/(n+N)

(
1√
2π

)N/(n+N)

≤ 1.

Applying (5.6) for πF (µ1) = µ, we get (5.7).
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As we have shown, the class {SBG(c),SPG(c)} is quite rich. A natural
question is whether every log-concave measure lies in this class or at least
is “close” to a measure of this class. Here we choose a distance on measures
that is stable with respect to the notions we are working with (supergaussian
and subgaussian constant) and such that the isotropic constant is stable with
respect to this distance. Let µ1, µ2 ∈ IL[n]. We define

d(µ1, µ2) := inf

{
γ1γ2 :

1

γ1
Zp(µ1) ⊆ Zp(µ2) ⊆ γ2Zp(µ1), ∀p ∈ [1, n]

}
.

Note that the isotropy assumption implies γ1, γ2 ≥ 1. So, as is easy to
check, it follows from (2.11) that if µ1, µ2 ∈ IL[n] and d(µ1, µ2) ≤ γ then
1/(cγ) ≤ Lµ1/Lµ2 ≤ cγ, where c > 0 is an absolute constant.

We are not aware of an example of an isotropic log-concave measure that
is not in the class {SBG(c),SPG(c)}. So we would like to conclude with the
following question. Note that an affirmative answer would also imply that
the hyperplane conjecture is true.

Question. Is it true that there exists a constant c > 0 such that for
every n ≥ 1 and an isotropic log-concave measure µ in Rn there exists
µ1 ∈ {SBG(c),SPG(c)} with d(µ, µ1) ≤ c?
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[GM] O. Guédon and E. Milman, Interpolating thin-shell and sharp large-deviation
estimates for isotropic log-concave measures, Geom. Funct. Anal. 21 (2011),
1043–1068.

[KLS] R. Kannan, L. Lovász and M. Simonovits, Isoperimetric problems for convex
bodies and a localization lemma, Discrete Comput. Geom. 13 (1995), 541–559.

[K1] B. Klartag, An isomorphic version of the slicing problem, J. Funct. Anal. 218
(2005), 372–394.

[K2] B. Klartag, On convex perturbations with a bounded isotropic constant, Geom.
Funct. Anal. 16 (2006), 1274–1290.

[KM] B. Klartag and E. Milman, Centroid bodies and the logarithmic Laplace trans-
form—a unified approach, J. Funct. Anal. 262 (2012), 10–34.

[L] M. Ledoux, The Concentration of Measure Phenomenon, Math. Surveys
Monogr. 89, Amer. Math. Soc., 2001.

[LYZ] E. Lutwak, D. Yang and G. Zhang, Lp affine isoperimetric inequalities, J. Dif-
ferential Geom. 56 (2000), 111–132.

[LZ] E. Lutwak and G. Zhang, Blaschke–Santaló inequalities, J. Differential Geom.
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