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Holder functions in Bergman type spaces
by

YINGWEI CHEN (Shijiazhuang) and GUANGBIN REN (Hefei)

Abstract. It seems impossible to extend the boundary value theory of Hardy spaces
to Bergman spaces since there is no boundary value for a function in a Bergman space
in general. In this article we provide a new idea to show what is the correct version of
Bergman spaces by demonstrating the extension to Bergman spaces of a result of Hardy—
Littlewood in Hardy spaces, which characterizes the Holder class of boundary values for
a function from Hardy spaces in the unit disc in terms of the growth of its derivative.
To this end, a class of Holder functions in Bergman spaces is introduced in terms of the
modulus of continuity and we establish its characterization in terms of radial derivatives.
The classical result of Hardy—Littlewood in the Hardy space can be thought of as the limit
case, matching the fact that the Hardy space is a limit of Bergman spaces.

1. Introduction. Let H(U) denote the set of holomorphic functions in
the unit disc U in the complex plane C. The Hardy space HP(U) consists of
holomorphic functions f in U such that

1 2m ) 1/p
sup { S |f(rei?)P dH} < 00.
o<r<1 L 27 §
Hardy-Littlewood observed a very close relation between the mean growth
of the derivative f’(z) and the smoothness of the boundary function f(e%).

THEOREM 1.1 ([HL2]). Let f € HP(U), 1 < p < o0, and 0 < a < 1.
Then ‘
Fe) €Ay & My(r, f)=O((1L=r)*"h), r—1"
Here, AL consists of all ¢ € LP[0,27) such that

aplt ) == sup [[0(e"z) — 6(2) 1aiosm) = OU), £ 0%,

Theorem can be interpreted as an equivalence characterization of
Holder functions in Hardy space in terms of the growth of derivatives.
A function f in the Hardy space HP(U) is said to be Holder if its boundary
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function f(e) is Holder in LP[0,27), i.e., f(e??) € AL. We remark that the
modulus of continuity w,(t, @) is a precise way to measure the smoothness
of a boundary function f(e®).

The purpose of this article is to extend the Hardy—Littlewood theorem
to Bergman type spaces in bounded symmetric domains. We shall establish
an equivalent characterization of Holder functions in Bergman type spaces
on bounded symmetric domains in terms of radial derivatives.

In contrast to Hardy space, functions in Bergman type spaces have no
boundary values in general. However, we can define Holder functions in
Bergman type spaces in terms of the modulus of continuity. Thus the mod-
ulus of continuity of a function itself shall be considered in Bergman type
spaces instead of the boundary value of the function in Hardy space. We
refer to [RC, RW|, [WR] for the properties of the modulus of continuity of
holomorphic functions in higher dimensions. We shall see that the result for
the Hardy space in Theorem [I.1]can be thought of as the limit case of results
for weighted Bergman spaces (see Theorem [5.1)).

To state our main result, we need some notation.

Let {2 be a bounded symmetric domain in C™ with the standard Harish-
Chandra realization. Let S be the Shilov boundary of {2 with Lebesgue
measure o normalized so that ¢(S5) = 1.

A positive continuous function ¢ on [0, 1) is normal if there exist 0 <
a <band 0 < rg <1 such that

(i) (1 —7)"%p(r) is non-increasing on [rg, 1) and

lim (1 —7)"%p(r) = 0;

r—1-
(i) (1 —7)~by(r) is non-decreasing on [rg, 1) and

lim (1 —7)"°p(r) = oco.
r—1—

Throughout, a, b, and 7o are taken to be fixed for the normal function ¢.
Let H(£2) be the set of holomorphic functions in {2. For any f € H({2),
we denote

fT(Z) :f(T'Z)7 feih('z) :f(eihz)7
and denote the radial derivative of f by

For 0 < p,q < oo, the Bergman type space H, 4, consists of all f € H({2)
such that
0 an—1 -1 1/p
100 = (§7207 10 = 1) L () M2 (r, £ dr) < o,
0
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where

My(r, 1) = (15001 o)) "

S
As usual, the case of p = 0o or ¢ = 0o is in the limit sense.

DEFINITION 1.2. The modulus of continuity of f is defined as

W(é, f7 Hp,q,cp) = Sllp ||Ahf||Hpq¢ ?
0<h<$é ”

where
Apf(z) = fen(2) = f(2).

Let 0 < a < 1. A function f € H,, 4 is said to belong to the a-Hdolder
class A*(Hp q.,) if

w(p, fs Hpqp) = O(p™), p— 0"

Now we can state our main result of which Theorem[I.1lcan be considered
as a limit case.

THEOREM 1.3. Let f € Hy 44, 0<p,q< 00, and 0 < a < 1. Then
fe A (Hpqe) & (21l =01 =p)*h), p—17.

2. Bergman type spaces and radial derivatives. In this section, we
shall give some preliminary results concerning normal functions, Bergman
type spaces and radial derivatives.

As usual, f < g means f < Cg with some positive constant C' indepen-
dent of f and g. Similarly, f ~ g means that f < g and g < f.

LemMA 2.1 (JRK]). For any 0 <t <r <1 and s > 0, we have ¢(r) ~
o(r®) and
e(r) o) o(r) o o)
1—r)~ A=t (1—r)pb~ 1-t)>
With this lemma, one can always take the index ry to be zero in appli-
cations.

Associated to the norm of Bergman type spaces, we introduce a new
quantity
1

1/
(2.1) 1 Uttty = ( § 2IMEC, frar)
P2

where 0 < py < p; < 1 and
D(r) = Bp(r) := r?"HL = 1) P (r).
ClearlY? HfHHp,q,go = ||f||Hp’q7Lp[0,1)'
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LEMMA 2.2. Let 0 <p,q< o0 and f € Hy4,. Then

(2.2) 1 fl 22,0 010,072 S Wl 2y g o [1/4,1/2)-
Proof. We claim that, for 0 < p < oo,
(2.3) O(r) SP(r+1/4), rel0,1/4].

Indeed, by the monotonicity of the functions r2»~1 and ((1 — )~ %p(r))P, it
is sufficient to consider &(r) = (1 — r)P*~1. In this case, both functions in
are equivalent to a non-zero constant.

Therefore, from follows (2.2)) as well as the monotonicity of M(r, f)
whenever 0 < ¢ < oo. The case ¢ = oo follows directly from the maximum
principle, and the case p = oo from the limit process. n

LEMMA 2.3. Suppose that f € H(£2), 0 < pb < 1,0 < ¢ < oo, and
0<r<R<1. Then
1 fl 220 010) S W Hp g 0[R/2,(REr)/2)-

Proof. Since (1 — 7)P*~1 is increasing for any 0 < pb < 1, as shown in

(2.3) we have
P(r) SPR), VO<r<R<I1.
Making a change of variable p = (R + t)/2, we have
(R+7)/2

Hf”l;{p,q,(p[R/z(R—i—r)/Q) = S ¢(p)M5(P, f)dp
R/2

1¢ [(R+t R+t
=\ =2 )mP| =2 f)dt
Vo3 ) (" )

>

~

_ p
()Mt f)dt =fIl, o0 ™

O e 3

LEMMA 24. If 0<p<r <1, then

@@)5@(p+1‘r).

2
Proof. This follows directly from the fact that

1—<p+1;T>Sl—p§2<1—<p+1;T)>.-

LEMMA 2.5. Let 1/4<p<r <1, 0 ¢ [—m,n|. Then

@](p+1;r)a“—p2

. 1
(i) [1—re?? > ﬁ(u —r)2 4+ 6?).

1 2, 2
2@((1—7") +67);
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Proof. Denote p; = p+ (1 —)/2. Notice that

Imée—MQZOn—pV+4mpwP§,

which is an even function of §. We can thus assume that 6 € [0, 7], so that
(i) follows directly from the inequality

P
sinf > 20, Y0<6<
™

|

Statement (ii) can be proved similarly. m

LEMMA 2.6 ([G]). Suppose that 0 <p < 1,0 <r <1, and g is holomor-
phic in the closed unit disc U. Then

( lotreyian)" s @—ryrt § lg(e)P do.

[—m,m) [—m,m)

LEMMA 2.7. Let A >0, § >0, and s = min{l,p,q}. If f € Hp, 4, then

(A6f7 PQSO) ()‘+1) (6f7 P‘I@)

Proof. See Lemma 3.3 in [WR] for the special case ¢(r) = (1 —r)® with
a > 0. Its proof is also suitable for general normal functions . m

In [H], Hua constructed a set of holomorphic homogeneous polynomials

. B (n+j-1)!
{9037UJENU{0},U—1,,m]—M s
which is complete and orthogonal on {2 and orthogonal on S. Every f €
H(£2) has a series expansion (see [HM])
oo My
=Y ajup50(2)
7j=0v=1
where the convergence is uniform on compact subsets of (2. The coefficients
are given by the formula
ajo = lm | f(r€)p;u(€) do(€).
r—1 g
For any 3 > 0 and s > 0, we define the fractional radial derivative %°°
as (see [RK])

oo My
(2%°f)(= ZZJ+3 )7 aj,005,0(2)-

j=0v=1

LEMMA 2.8. Let0 <p,g < o0, >0,5>0,t>0, and let © be normal.
Then, for any f € H({2),

1 1
Vri (L —r)"teP (r)ME(r, f) dr o \r'(1 — r)PP=LoP (r) ME (r, 2% f) dr
0 0
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When p = oo, the inequality is understood to be its limit case:
My(r, f) = O™ (r)) & My(r,%2"°f) = O((1 =)~} (r))
asr—1".

Proof. When t = 0, the result is proved in [RK]. The general case follows
from the equivalence

1 1
VPt =) TP ()M (r, f) dr = [ (1= )" P (r) M (r, ) dr.
0 0

One direction of this is clear and the other follows from the change of variable

w=rtlu

LEMMA 2.9. Let 0 < p,qg <00, s >0, and > 0. Let ¢ be normal and
denote Y(r) = (1 —r)Bp(r). If f € H(£2), then

(2.4) w(6, f, Hp,q,0) ~ w(6, R, H, q0)-
Proof. By definition,
Ap(B7 f(2) = BP°f(eM2) = B f(2) = B7°(Anf ().

Lemma [2.§| thus implies that
1

1/p
w(d, f, Hp,q,cp) = Ssup (S 7’2n71(1 - T)il@p(T)qu(T’, Anf) dT’)
0<h<$é 0

1 1/
= sup ([r# 11— )Pl () M (r, 2 (Anf)) dr)
0<h<é 0
1 1/
= sup ([r2 (1= P )M, An(# ™ ) dr)
0<h<é

0
=w(0, % f, Hyyp). m

The maximal theorem of Hardy—Littlewood in Hardy spaces will be used.
LEmMA 2.10 ([D]). Let f € HP(U), 0 < p < o0, and let
F(0) = sup |f(re?)|.
0<r<1
Then F' € LP|0,27] and
| E N zojo,27) < CO S Ee(0ry-
3. Hardy—Littlewood direct theorem. The Hardy-Littlewood di-

rect theorem gives an estimate of the radial derivative Zf in terms of the
modulus of continuity of f.
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THEOREM 3.1. Let 0 < p,q < oo and f € Hp 4. Then

w(l_p7f7H77 )
12ty 010.0) S 1—p o

,  VYpe(0,1).

243

Proof. Let f € H(£2) and denote f¢:(A) = f(A() with A € U and ¢ € S.
Then fe € H(U). Let 1/4 < p < r < 1 and take p; = p+ (1 —7)/2 and

p2=p+ (1 —r)/4. Then
1/4<p<pa<p1 <Ll

For any fixed v > 0, we consider the holomorphic function

_ Jelpr) = feN)

(31) o) = OIS,

VAl < p1.

From the Cauchy formula,

felpr) = fe(N) 1 S fe(p1) — fe(w)
(w — A)(p1 — rw)?

(p1 —rA)Y 2w

|w|=p2
In particular, by taking A = p, we have

felpr) = felp) 1 S fe(lp1) — fe(w)

- (w = p)(pr — rw)? ¥

(pr—rp)  2mi

[w|=p2

=5 7§ (felpr) = fe(pae™®))e”
(

2m ) (p2e? — p)(p1 — rpae?)y
so that
t i0
(3:2) 1fe(p1) = fe(p)l < p2(p1 —rp)7 S [fe(pr) = fe(poe)]

27 (p2 — p) o1 — Tp2ct?|?

—T
Since g(\) in (3.1)) is holomorphic in [A| < p1, we have

B =gy = LI e

is holomorphic, so that Lemma |2.6| implies that

(§ Inteya)” S a—om | ae)rds

[—m,m) [—m,m)

for any 0 < t,n < 1. Setting t = pa/p1, we then have

dw, V| < pa.

n
de.

(gmmn—k@w%u®”<( p >l"§m@Q—k@M%

D pr—rpae|y ~ \p1—p2 J g — e
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Inserting this into (3.2)), we obtain

[f¢(p1) = fe(p)"

< <P2>77(P1 —rp)" ( p1 >1_" 7§ |fe(pre™) — felpr)
“\21) (p2—p)" \p1—p2 |p1 — rp1e®| 7

n

de.

—T
We now pick the parameter v = 4/7. Since 1/4 < pa < p1 < 1, p1 —p2 =
p2—p=(1—r)/4, and
1 3
Pl—rp:(l—r)<2+P) <51=r)

we have

(33) ‘fC(Pl) — fC(p)‘n 5 (1 o 7,)3 S ’fC(

—T
forany 1/4<p<r<landpr=p+(1—71)/2.
Now, we apply the Cauchy formula to the holomorphic function

feN)

p1e?) — fe(p1)|”
|1 — reif|4

de

g1(A) = (=) VIAl < p1;
then
fl™ 1 fe(w)
B Gy T ) G M

On taking the derivative on both sides of (3.4) and noticing that

fn =2,
we get
AIO) | rfe) 1 fw)
Apr—7rA)Y  (pr — AL 2w (w—N)2(p1 — rw)?

|w|=p2

for any |\| < pe. Taking A = p, we have

RfeQ) . _rfelp)  _pe 7§ fe(paei®)e?
(

(3:5) plpr —rp)?  (pr—rp)*t 2w

: —)
pae®® — p)?(p1 — rpae®?)y

—T
In particular, by setting f =1,
7r 0

yr _Q € a6

(o1 —rp)*t 2w _SW (p2ei® — p)2(p1 — rpaet®)y
We subtract (3.5 from a suitable multiple of (3.6 to obtain

(3.6)

~pp2(pr—rp)? ¥ (fe(pae®) — felp))e?
Zf(p¢) = =~ | (2c = T2 or = a7

—T
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so that

pp2(p1 —rp)7 t |f<(P2€i9) — Jfe(p)|
RO < = ) i e %

—T

Again from Lemma [2.6] for any 0 < 7 < 1, we have

pp2(p1 — rp)? 77< P1 >1—77 t ‘f(j(plew) - fg(p)|7’
L%f(PC)W S < 27 (pg — p)z ) p1— P2 S lp1 — rplei9|777 .

—Tr

Recalling that 1/4 < p < ps < p1 < 1,

3
pr=p=l=r pr=pp=l=r, pr—rp<(1-7)

we thus obtain

K 0y _
(3.7) \Zf(pQ)|" < (1 — 7")3_77 S ’fg(ﬁae_)rei;;i(m\n 50

forany 1/4<p<r<landpr=p+(1—r)/2.
From Lemma 2.5, we have

™ U

do

df <
S 11— retd[d ~ Sﬂ (1—7)2 + 62)2
IR
1—7"30 ))2’“(1—7”)3'

Since \fc(ﬂle' )= fe(p)|" < | fe(pre? )—fc(Pl)\’“r|f<(p1)—fc(ﬂ)\", it follows

from (3.7 and (3.3| . ) that
\Zf(pO)|" S (1 —7)>"

7§ [fc(pr1e™) = fe(p1)]

|1 — reif]4

do.

—Tr

By replacing n with s = min{1, p, ¢}, we have

@F (O < (1 —ryi | HelereD) — Jelo)l” g

[1 — reif|4

—T
forany 1/4<p<r<landpr=p+(1—r)/2.
We now take the ¢/s-power, integrate over S, and apply Minkowski’s
inequality to get

™ eif) _ s q/s s/q

_ 104
3 |1 — re?|

—Tr

<=0 | (§1£e70) ~ 0l o)™ =

-7 S
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Again we take the p/s-power, integrate over [1/4,r), and apply Minkow-
ski’s inequality as well as Lemma [2.4] to deduce that

(§ o 20d0) "

1/4
c T M (p1, foio — f)dONP/S  \*/P
sa-n( J oo | iler/ ew|4f) ) i)

14 o [1—r

™ 1
/p df
< (1 —=p)3s D 0 — P db
sa-nt | (é ()M (or, fuo = ) dp)
Therefore, from Lemma [2.7]
s w* (0], f, Hp.q.0)
12 N5, o) S (L —=1)°7 S 11— reid|d dt
3—
SO =P w1 =7, f, Hyg) (S) = 7“619‘4
< w (1=, f, Hpgp)
~ (1—r)s ’
ie.
— [ Hpg,
(3.8) |2 fllt, g oi1/a0) S (1 - pq‘P), V1/4d<r<1.
(i) Case pb > 1. When r > 1/2, from Lemma [2.2] and (3.8 we have
(3.9) |2 flt,q000) S NZfH,q 00178 T 128, 00/80)
wd—rf, pqgo)

SN2y oi/ar S T

When r < 1/2, we apply the fact that 1 —r ~ 1, (3.9)) with » = 1/2, and
Lemma [2.7] to get

1/2, f, ,
1 Nt l0) < 19t t017 5“2 )
1 1/s
< (2(1 — + 1> wl =7, f,Hpqe)
< w(l—r,f, pqw)

1—r

(ii) Case 0 < pb < 1. Tt follows from Lemmas and 2.7 and (3.8),
that
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w(l - 12i7 f; Hp,q,w)

121111y 10 S 12 g, 3 1) S

I
-1
w(l—r f, pq,so)' .
~ 1—r
THEOREM 3.2. Let 0 < p,q < oo and f € Hyq,. Then
-, f, 7
@Dl < 2L Hrae) g ooy

1—r ’

Proof. We split the proof into several cases. We denote
NPv‘LQﬂ(r? f) = Hf"’HHp,q,(p'

(i) Case p > 1/a. From Lemma

D p/q 1/p
(o) ao ) dp>

Np,q,s@(rv f)= 1

1
£ (40| dor(¢ ))p/q dt) ’

S (Qeoran 0)""ar)"”

A
E VRS 7 N\ VRS N
B
N—" ~——

=
]

/N

O e 3

H~

—_

“_/;‘

Thus, from Theore

L\ Pw(l =1, f, Hpgp)
(3.10) Mool #0) % (131 ) nof Bras)
(A) When r > 1/2, from we obtain
(3.11) Npgolr 1) < 21 — 1 - Hyae)

(B) When r < 1/2, we have 1 —r ~ 1 so that (3.11)) and Lemma
imply that

qu,w(rv Zf) < Np7q,w(1/27<@f) Sw(l/2, f, prqvw)

1 1/s
< 2(1—T)+1> w(l—=r, f,Hpge)
<W(1—7“ faHpq@).
~ 1—r

(ii) Case 0 < p < 1/a. Take 8 such that 8> 1/p—a > 0. Let s > 0 and
Y(p) = (1 — p)Pp(p). From Lemmas and
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1
Npaplr. 1) = (17710 ) 20 (§ 1500017 d(0)) " dp)
0 S
1
= (12711 - 012 () (197 £ o)) ap)
0 S

QH/pllﬁ *FllEy g 010

As in the proof of case (i), this implies that
w(l—r, R °f pq,¢)

Np7q7§0(r7 f) 1 —r ?
or, by (2.4),
w(l =7, f, Hpq)

This finishes the proof. =

4. Hardy—Littlewood inverse theorem. The Hardy-Littlewood in-
verse theorem provides an estimate of the modulus of continuity of f in
terms of the growth of the radial derivative.

LEMMA 4.1. Let f € H(2) and 0 < h <r < 1.
(i) If g > 1, then

h
(§1£0:¢) = £l =m0 do(c)) " < 7 (§
S 0o S
(i) If 0 < q < 1, then
h

VreQ) = f(r=mQ)do(O) S § (b=t "

s h/2 S

Proof. (i) Assume that ¢ > 1. Since f¢(A\) = f(A() is holomorphic, we
have

(fe(r—1))dt

SB\QJ

h
Fr¢) = f((r=h)¢) =—|
0
(ZI(r=1)0)

t,
r—t

O e

so that the Minkowski inequality yields
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(§1706) = 11 = mopante)) " < ( | (}§ A9 ) o)) "

S S N0

K Rf((r—t
< (|20
0\s

r—t
(ii) For 0 < ¢ < 1, let {hy}72, be a partition of the interval [0, k), i.e

q

da(C)) v dt.

O=ho<hi <---<hg<---—h (k— o).

Then
1£(r¢) = F((r = W)OIT <Y D Ifelr = h+ i) = fe(r = B+ hyyr)|
k=0
oo Pr41
<3 (] e-n+ar)’
k=0  hg

<D (bt —h)? sup |fi(r =R+ 1)|%
k=0

hi<t<hpgi1

To estimate its integral over S, we resort to the identity (see [R])
LT i
(4.1) | fdo=| doégjs F(e?¢)do
S S -
and the maximal theorem of Hardy—Littlewood as given in Lemma We
have

1 2m o e
S% S . <Stli€ Oftc((r_ h+t)e)| df do(¢)
S 0 "k k+1
17 9 ion |’
§§q27r§) 5 (7=t hug1)e™) | db do(C)
_ Zf((r = h+ hii1)eQ) |
= v do(¢) df
Af((r —h+ hy1)Q) |
< - do (0).

S
As a result, for 0 < ¢ < 1,

(4.2) VIF(r¢) = F((r = m)O)Ido(Q)
S
S = )|
k=0

S

Rf(r =N+ hg1)Q) |*
— +1 ‘da(().
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Now we set

1
i = (1—2k>h, k=0,1,2,....

(M1 — hie)? = 2(hgy2 — hig1) (B — hgyr)? !
Notice that (h — )71 (0 < ¢ < 1) and

VIZf((r = h+ 1)) do(()

S

Then

are non-decreasing functions of ¢ in [0, h]. This allows us to estimate further
the left side of (4.2) and obtain

VIF(r¢) = F((r = m)O)Ido(C)

s
S Z(h’“r? — hgg1)(h — hg1)?7! S 21 ((r _rh_‘;hkﬂ)o ’qdo—(g)
k=0 !
0o hria q 1 h+hk+1)C)
<> S dtS - do(0)
k=0 hi 11 S
h
< § np || =R OO 4
h/2 5 r—~h

This completes the proof. m

LEMMA 4.2. Let f € H(f2), ¢ >0, and 0 <r < 1. Then
V1£(re™Q) = f(rQ)I? do(¢) S ]} |25 (r¢)|? do(C).
S S
Proof. Notice that
h h

F(re™Q) — FrQ) = § S (felre) db = | (90)(reC) 0
0

0
When ¢ > 1, the Minkowski inequality shows that

h
e - 1)t do(¢) < (121 Q) do(c)) " db)’
S 0o S
= |n|2 |2 £(r¢)|" do(€),
S

where the last step used the rotational invariance of the measure do.



Hélder functions in Bergman type spaces 251

When 0 < ¢ < 1, it is known that (see [J])

2m 2w
(4.3) V1) — F(e)1d0 < | | [F(e")|7 db
0 0
for any F € H(U). From and (4.1), we have
2m

[1£(retc) — F(rO) dor(c) 51 | (e 49) = fe(e ) a0

S

(l)

Ul 0o (c)

DEFINITION 4.3 (see [L]). A function 2(¢) on R is called a modulus of
continuity type function if it has the following properties:

(a) £2(t) » 2(0) =0ast — 0

(b) £2(t) is non-negative and non-decreasing on R™;

(c) £2(t) is subadditive: £2(t1 + to) < 2(t1) + 2(t2) for any t1,ts > 0.

THEOREM 4.4. Let 0 < p,q < oo, p = min{l,p,q}, and f € Hpgq,.
Assume that §2(t) is a modulus of continuity type function such that

1
“w
S ) dt < oo.
t
0
If
201
D, S 2P WO<p<a,
then ,
Rt Vw
(7— f, pq,gp) (S t()dt> s Vo< 1T<1.
0

Proof. From Lemma [2.2]

ARy 4 0i00) S NARFIH, 4 o1/4,1)-
Therefore, the proof reduces to establishing that

et
44 18wl e < (3 ®)
0

1/p
dt) , YO<h<T<I.
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CASE I: 0 < ¢ < 1, p > q. In this case, we have p = min{1,p,q} = q.
(A) Casep >1/a.
(i) We first prove for 7 € [0,1/8]. Now we take

(4.5) O<h<7<1/8, 1/4<r<l.

We can write

Apf(r¢) = [f(r¢e™) = £(rQ)| |
< |f(rQ) = F((r = RO+ [f£((r = h)C) — f((r — h)e™ ()]
+ £ (re”¢) — f((r — h)e™¢)]
=: Ay + Ay + As.

Then
3
(4.6) 1AL, oiiyany S 1Ak, g o1/2,0)-
=1

Flrst we shall estimate ||A1l[z,, [1/4,1)- Since r —h > 1/8, it follows

from and Lemmag 4.1 that

h
V1A9do(©) S § (b= [ 12£((r = h+1)0)|" do(C) dt.
s h/2 s

Therefore, from the Minkowski inequality (p > ¢), we have

1 h
_ p/q qa/p
1A%, S (V@) § (= M — et 2 dt) " dr)
1/4 h/2

h 1
< | (h—t)q—l( | o) (r—h+t%f)dr)q/pd.
h/2 1/4

For any ¢t € (h/2,h) with h as well as r as in (4.5, we make a change of
variable

r—h+t=(1—-h+1t)p.
Then
r=p+(1—p)h—t)>p, p>r—h+t>1/16.
Since p > 1/a and r > p > 1/16, we then have

(4.7) B(r) < (1 — pypa-t <(1¢_(72)a> < ®(p).
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The preceding integral can be further estimated by

h 1
/
(=00 (Yoo My (1 = h+ ), ) dp) " at
h/2 0
h
= V(b= ' N, (L= h+t,2f)dt
h/2
< }SL (h — t)q—lw dt
~ h2 (h—t)4
h
q
<| 210 g
t
0
That is,
h 1/q
029(t
(4.9 12400 5 (151 at)
0
With the same approach, we also have
h 1/q
029(t
(4.9) 1As] 1, 4 01/20) S (S t< ) dt) .
0

Finally, we turn to estimating || Az|y, , [1/4,1)- By Lemma we have

142, 4 [1/4,1)
1

= (5 20) ({156 = Q) = £ = e o))" ar) "

1/4 S
‘ 1/p
S (§ ewlnrarp—nz)ydr) .
1/4
Make a change of variable r — h = (1 — h)p. Then
(4.10) r>p>r—h>1/16,

which implies that &(r) < @(p) and so
HAQHHP,M,[l/zL,l) < ’h‘Np,un - hv%f) < Q(h)

Since 27(h) is a modulus of continuity type function, it follows that for
any 0 <t < h (see [DL, L])

29(h) < <}t‘ + 1) 29(t)
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so that
029(h) < 204(t)
h t

Therefore,

h 1/q
04(t
A2l 1,4 o1 /4,1) < £2(R) S (S t( ) dt) .
0

Combining all the results above, we find that holds true for any
T €10,1/8].

(ii) Let 7 € (1/8,1). Due to the properties of the modulus of continuity
and Lemma [2.7] we have

w(, f, pqnp)<°~’(1 /s pq@) (8+1)1/qw(1/8,f,Hp7q7¢)
1/8

(152 (190 a) "
0 0

(B) Casep < 1/a. Takes > 0,3 > 1/p—a >0, and ¢(r) = (1—7)2p(r).
Lemma [2.8] then implies that

1/p

Np7q7w(p7%ﬂ7sf> = (

2(1 —
_vaqm(%f)gi_pp)-

Since p > 1/(B8 + a), we can apply the result of Case (A) to the normal
function . Therefore,

P (1 P () M (or, 87 f) i

12

O e = O ey

r2n=l — r)_lgop(r)Mg(pr, ) dr) Y

w(T, B f Hy ) < <§ mt(t) dt> Uq,

0
so that, by Lemma

w(T, f, Hpgp) S (§th(t) dt)l/q.

0

Case II: 0 < ¢ < 1, p < ¢. In this case, p = min{1,p, ¢} = p. We shall
adopt the same approach as in Case I and only prove the analog of ,
since others are similar.

We take hy = (1 —(1/2)¥)h as in Lemma (ii). Applying and the
Minkowski inequality, we have



Hélder functions in Bergman type spaces 255

1 o]
”AIHH,,W1/41 S (Z hiy1 — i) qu(T‘—ththw@f))p/q
1/4 k=0
00 1
< (hipr — )P | ()M (r — h+ hyiy, Zf) dr
k=0 1/4
0o hk42 1
<> | (b=t | D )ME(r — b+ hyr, Zf) dr
k=0 hp11 1/4
h 1
<\ (h=typ=t \ d(r)MEP(r — h+t, %) dr
h/2 1/4

We take a change of variable r — h 4+t = (1 — h + t)p. With the same

trick as in Case I, without loss of generality, we can assume p > 1/a, so that
(4.7) holds. Therefore,

" 1/p
1Ay o0y S (] (0= 0P NE, (1= Bt t,220) dt)
h/2
h 1/p
P (h—t) >
< h—tyP gt
< <h§2< G

D 1/p
20"

Case IIT: 0 < p < 1, 1 < ¢ < oo. In this case, p = min{l,p,q} = p.
As in Case II, we only need to prove the analogue of (4.8). From the same
approach as in Case I, it is sufficient to consider assumption (4.5)). With this

assumption, we have r —h > 1/8 and the inequality in Lemma (1) can be
modified as

O ey ¥

s}

(411 (J1F0Q) = £((r = Q)|

S

ao()) "

(V15 - 0017 do(0)) " at
S

IN

Ot > Ot >

(118 = h+ 00 do(0)) " .

S

With (4.11)) in place of the inequality in Lemma [4.1](ii), the desired result
follows with the same proof as in Case II.
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CASE IV: 1 < p < oo,1 < g < oco. In this case, p = min{l,p,q} = 1.
With the same reasoning, we need only prove the analogue of under
assumption (4.5)).

From Lemma [£.1] and the Minkowski inequality, we obtain

1

1A g1 /4.0) = ( S @(r)(S If(r¢) — f((r — h)C)\qu(C)Y/q dr)
S

q 1/q p 1/p
da(C)) dt) dr>

(§ 2)asper—t.21) dr)l/pdt.

1/4
Making a change of variable r —¢ = (1 —t)p, we find that (4.10)) holds, which
yields

1/p

Zf((r—=1)¢)

r—t

h

1A, 4 01/20) S S Npgo(1=t, Zf)dt <

h
Sgt(t)dt.
0 0

The above proof can be modified to apply to the case of p = 0o or ¢ = co.
This completes the proof. m

5. Hardy—-Littlewood theorem. As a direct corollary of Theorems
and [4.4| with £2(¢) = t*, we obtain a slightly stronger result than that in
Theorem [1.3]

THEOREM 5.1. Let 0 < a<1,0<p,q< 00, and f € Hy4,. Then
w(p, f, Hpqp) < Cp®,  Vpe (0,1),
if and only if
(2 1) ol e < CL=p)* Y, ¥pe(0,1),
where the constants C = C(p, q, ) are arbitrary and independent of f.

Because of its own interest, we finally record Theorem in the special
case of the unit ball.

Let B be the unit ball of C" and L% (B, dV3) be the weighted Bergman
space, which consists of all holomorphic functions f on B such that

1/p
1 lzzavs = (§ 17 avsz) ™ < o,
B
where 0 < p < 00, 8 > —1, and dVj = (1 — |2|?)?dV (2) with dV(z) being
the normalized Lebesgue measure in the unit ball.
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The modulus of continuity of f is defined as
» ih » 1/p
w(@, £, LE(B,dVs)) = sup ([1F(e™2) = f2)P aVi(z)) "
0<h<s Mg

Let 0 < @ < 1. A function f € LL(B,dVs) is said to belong to the
a-Holder class A%(LL(B,dVp)) if

w(p, [, LE(B,dVp)) < Cp®,  Vpe(0,1),

where C' is a constant depending on f.
We denote the radial derivative of f as

Z Zl 821

and write (Zf),(z) = Zf(pz).
THEOREM 5.2. Let 0 < a <1, 8> —1, and f(z) € LE(B,dV3). Then
f e AN (LL(B,dVa) < |(Z[)ollLze,avy) = O((1 — PN, p— 1"

It is well known that in some sense the Hardy space HP(U) can be
thought of as the limit of weighted Bergman spaces L5 (U, dVj) as B — —17.
In this way, Theorem is exactly the limit case of Theorem with
B— —1T.
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