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Stability of commuting maps and Lie maps

by
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Š. Špenko (Ljubljana) and A. R. Villena (Granada)

Abstract. Let A be an ultraprime Banach algebra. We prove that each approximately
commuting continuous linear (or quadratic) map on A is near an actual commuting con-
tinuous linear (resp. quadratic) map on A. Furthermore, we use this analysis to study
how close are approximate Lie isomorphisms and approximate Lie derivations to actual
Lie isomorphisms and Lie derivations, respectively.

1. Introduction. Commuting maps give rise to the most basic exam-
ples of functional identities. The initial results on such maps were obtained
at the beginning of the 90’s by M. Brešar in a series of papers. These results
have been extremely influential and they have initiated a lot of activity on
this subject by numerous authors. For an excellent account of this topic,
which also includes a comprehensive list of references, we refer the reader to
the survey paper by Brešar [6]. The main reason for analysing commuting
maps is that they are applicable to many areas. This fact was noticed in [5]
for the first time. In that paper Brešar made the first breakthrough in set-
tling Herstein’s conjectures on Lie maps for prime rings by using commuting
quadratic maps. Incidentally, let us mention that the final step in settling
Herstein’s conjectures on Lie maps was made in a trilogy of papers by Bei-
dar, Brešar, Chebotar, and Martindale. For the general theory of functional
identities and their applications we refer the reader to [7].

The goal of the present paper is to obtain metric versions of the classical
algebraic results on commuting maps and their applications to Lie theory.

Recall that a map T from a ring R into itself is said to be commuting
if T (a)a = aT (a) for each a ∈ R. A direct calculation shows that if T is a
continuous linear (or quadratic) operator on a Banach algebra A, then

sup{‖T (a)a− aT (a)‖ : a ∈ A, ‖a‖ = 1} ≤ 2‖T − S‖
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for each commuting continuous linear (resp. quadratic) operator S on A. In
Section 2 we show that the condition that supa∈A, ‖a‖=1 ‖T (a)a−aT (a)‖ is
small implies that T is close to some commuting map. A natural frame-
work for this question is the class of ultraprime Banach algebras, in which
algebraic descriptions of commuting and related maps get particularly nice
forms.

Section 3 is devoted to approximate Lie isomorphisms and approximate
Lie derivations. Given Banach algebras A and B and continuous linear maps
Φ : B → A and ∆ : A→ A, we measure the Lie multiplicativity of Φ and the
Lie derivativity of ∆ through the constants

lmult(Φ) = sup{‖Φ([a, b])− [Φ(a), Φ(b)]‖ : a, b ∈ B, ‖a‖ = ‖b‖ = 1},
lder(∆) = sup{‖∆([a, b])− [∆(a), b]− [a,∆(b)]‖ : a, b ∈ A, ‖a‖ = ‖b‖ = 1},

respectively. We are concerned with whether the conditions of lmult(Φ) and
lder(∆) being small imply that Φ and ∆ are near actual Lie homomorphisms
and Lie derivations, respectively. A related problem on approximate Jordan
isomorphisms naturally appeared in the recent article [2] on approximately
spectrum-preserving maps. In [2] we showed that the classical Herstein theo-
rem on Jordan epimorphisms is stable in the sense that approximate Jordan
epimorphisms are either approximate epimorphisms or approximate anti-
epimorphisms. Here we use similar techniques, but it should be mentioned
that commuting and Lie maps are more demanding in the technical aspect
because of the presence of central maps. Let us also mention that in [3]
we were concerned with the stability of Herstein’s theorems on Jordan epi-
morphisms and Jordan derivations and the question of giving quantitative
estimates of this phenomenon.

In the final section, combining the results obtained with those from [1]
and [11] on the stability of homomorphisms and derivations we will get
ultimate results for L(H), where H is a Hilbert space.

1.1. Preliminaries. All Banach algebras and Banach spaces which we
consider throughout this paper are assumed to be complex.

Let X be a Banach space. By X∗ we denote the topological dual space
of X. For a Banach space Y , let L(X,Y ) denote the Banach space of all
continuous linear operators from X into Y . We write L(X) for L(X,X). We
write L2(X) for the Banach space of all continuous bilinear maps from X×X
into X. By a continuous quadratic map on X we mean a map Q : X → X
of the form Q(x) = F (x, x) (x ∈ X) with F ∈ L2(X). We write Q(X) for
the set of all continuous quadratic maps on X.

We write A + C1 for the “conditional unitization” of a given Banach
algebra A, i.e., A + C1 = A if A has an identity and A + C1 is formed by
adjoining an identity to A otherwise.
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Ultraprimeness is a metric version of primeness which was introduced by
M. Mathieu in [12]. Let A be a Banach algebra. For each a, b ∈ A, we write
Ma,b for the two-sided multiplication operator on A defined by

Ma,b(x) = axb (x ∈ A).

Recall that A is prime if Ma,b = 0 implies a = 0 or b = 0. We define

κ(A) = inf{‖Ma,b‖ : a, b ∈ A, ‖a‖ = ‖b‖ = 1}.

The Banach algebra A is said to be ultraprime if κ(A) > 0. It is clear that
each finite-dimensional prime Banach algebra is ultraprime. For each Ba-
nach space X, the Banach algebra L(X) is ultraprime and, more generally,
every closed subalgebra A of L(X) containing the finite rank operators is ul-
traprime with κ(A) = 1 (cf. [12]). Every prime C∗-algebra is ultraprime [13].

Throughout the paper, we will use ultraproducts of sequences of Banach
algebras as an important tool. From now on, U is a fixed free ultrafilter on N.
For a sequence of Banach spaces (Xn), we write (Xn)U for the ultraproduct
of (Xn) with respect to U . This is the quotient Banach space `∞(N, Xn)/NU ,
where `∞(N, Xn) stands for the space of all bounded sequences (xn) with
xn ∈ Xn (n ∈ N) and NU = {x ∈ `∞(N, Xn) : limU ‖xn‖ = 0}. With a
slight abuse of notation we continue to write (xn) for the equivalence class
it represents; of course, it can be checked that any definition we make is
independent of the choice of representative of the equivalence class. The
norm on (Xn)U is given by ‖x‖ = limU ‖xn‖ for each x = (xn) ∈ (Xn)U . If
(An) is a sequence of Banach algebras, then the ultraproduct (An)U turns
into a Banach algebra with respect to the obvious product ab = (anbn) for
all a = (an),b = (bn) ∈ (An)U . For each n ∈ N, let Tn ∈ L(Xn, Yn) be given
for some Banach space Yn and assume that supn∈N ‖Tn‖ < ∞. Then we
can define (Tn)U ∈ L((Xn)U , (Yn)U ) according to the rule (xn) 7→ (Tn(xn)).
Moreover,

‖(Tn)U‖ = lim
U
‖Tn‖.

In particular, if fn ∈ X∗n (n ∈ N) are given such that supn∈N ‖fn‖ <∞, then
(fn)U ∈ ((Xn)U )∗ is defined through (xn) 7→ limU fn(xn). In the same man-
ner, if Fn ∈ L2(Xn) and Qn ∈ Q(Xn) (n ∈ N) are given with the property
that supn∈N ‖Fn‖ < ∞ and supn∈N ‖Qn‖ < ∞, then (Fn)U ∈ L2((Xn)U )
and (Qn)U ∈ Q((Xn)U ) are defined according to the rules ((xn), (yn)) 7→
(Fn(xn, yn)) and (xn) 7→ (Qn(xn)), respectively. Moreover,

‖(Fn)U‖ = lim
U
‖Fn‖,(1.1)

‖(Qn)U‖ = lim
U
‖Qn‖.(1.2)

We refer the reader to [10] for the basics of ultraproducts.
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2. Stability of commuting maps. Let R be a ring. In what follows,
we write [a, b] = ab− ba for all a, b ∈ R and we denote by Z(R) the centre
of R. A map T : R → R is said to be commuting if

(2.1) [T (a), a] = 0 (a ∈ R).

2.1. Commuting linear maps. Typical examples of commuting addi-
tive maps are provided by the maps of the form

(2.2) T (a) = λa+ µ(a) (a ∈ R)

with λ ∈ Z(R) and µ : R → Z(R) being an additive map. The usual issue
when treating commuting additive maps is to determine which assumptions
on the ring R should be required in order to conclude that all of them are of
the standard form (2.2). M. Brešar found out that actually every commuting
additive map of a prime ring of characteristic different from 2 is of the form
(2.2) if we allow λ and µ(a) (a ∈ R) to belong to the so-called extended
centroid of R rather than to the centre of R [7, Corollary 5.28]. This is
an enlargement of Z(R) and we refer the reader to [7, Appendix A] for
the details about this concept. We will neglect this ring-theoretical device
because of the following property.

Remark 2.1. The centre of any ultraprime Banach algebra A is trivial
(either zero or one-dimensional) [12, Proposition 3.4]. Further, its extended
centroid is nothing but the complex field [12, Corollary 4.7]. On account of
[7, Corollary 5.28], any commuting linear map T : A→ A is of the form (2.2)
with λ ∈ C and µ : A→ Z(A) linear (and clearly µ is continuous whenever
T is continuous).

We now turn our attention to Banach algebras. We measure to what
extent a continuous linear operator T from a Banach algebra A into itself
satisfies condition (2.1) by considering the constant

com(T ) = sup{‖[T (a), a]‖ : a ∈ A, ‖a‖ = 1}.

The subset of L(A) consisting of commuting maps is denoted by LCom(A).
This is a closed linear subspace of L(A). Note that the maps T 7→ com(T )
and T 7→ dist(T,LCom(A)) are seminorms on L(A) which vanish precisely
on LCom(A). Moreover, if T ∈ L(A) and S ∈ LCom(A), then

‖[T (a), a]‖ = ‖[(T − S)(a), a]‖ ≤ 2‖T − S‖ ‖a‖2

for each a ∈ A and therefore

com(T ) ≤ 2 dist(T,LCom(A)) (T ∈ L(A)).

We are interested in whether there is a constant M > 0 such that

dist(T,LCom(A)) ≤M com(T ) (T ∈ L(A)).
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It is worth pointing out that, for each T ∈ L(A), com(T ) is nothing but the
norm of the quadratic map a 7→ [T (a), a] on A. Equality (1.2) then gives the
following useful property.

Lemma 2.2. Let (An) be a sequence of Banach algebras and assume that
Tn ∈ L(An) (n ∈ N) are given with supn∈N ‖Tn‖ <∞. Then

com((Tn)U ) = lim
U

com(Tn).

Lemma 2.3. Let (An) be a sequence of Banach algebras. Then

κ((An)U ) = lim
U
κ(An).

Proof. Write A = (An)U . Let a = (an),b = (bn) ∈ A. Then Ma,b =
(Man,bn) and therefore

‖Ma,b‖ = lim
U
‖Man,bn‖ ≥ lim

U
(κ(An)‖an‖ ‖bn‖) = lim

U
κ(An)‖a‖ ‖b‖.

This clearly implies that κ(A) ≥ limU κ(An).
In order to prove the reverse inequality, for each n∈N, we pick an, bn∈An

with ‖an‖ = ‖bn‖ = 1 and ‖Man,bn‖ ≤ κ(An) + 1/n. We then consider
a,b ∈ A given by a = (an) and b = (bn). We have

‖Ma,b‖ = lim
U
‖Man,bn‖ ≤ lim

U
(κ(An) + 1/n) = lim

U
κ(An).

Lemma 2.4. Let (An) be a sequence of Banach algebras such that (An)U

has an identity. Then {n ∈ N : An has an identity} ∈ U .

Proof. Let 1 = (un) be the identity of A = (An)U . For every n ∈ N,
let Lun and Run denote the operators of left and right multiplication by
un on An, respectively. Then (Lun) and (Run) are the identity operator on
A and therefore limU ‖IAn − Lun‖ = limU ‖IAn −Run‖ = 0. Accordingly,
{n ∈ N : ‖IAn−Lun‖, ‖IAn−Run‖ < 1} ∈ U . On the other hand, the property
‖IAn − Lun‖, ‖IAn − Run‖ < 1 implies that both Lun and Run are bijective
linear maps from An onto itself, which, according to [8, Proposition 2],
implies that An has an identity.

Theorem 2.5. For each K > 0 there exists M > 0 such that

dist(T,LCom(A)) ≤M com(T )

for each Banach algebra A with κ(A) ≥ K and T ∈ L(A).

Proof. Assume towards a contradiction that the assertion in the theorem
is false. Then there exist a constant K > 0, a sequence of Banach algebras
(An) with κ(An) ≥ K (n ∈ N) and a sequence (Fn) with Fn ∈ L(An)
(n ∈ N) such that dist(Fn,LCom(An)) > n com(Fn) (n ∈ N). Set Gn =
dist(Fn,LCom(An))−1Fn (n ∈ N). Then

(2.3) dist(Gn,LCom(An)) = 1 (n ∈ N)
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and

(2.4) com(Gn) < 1/n (n ∈ N).

Since the sequence (Gn) is not necessarily bounded, we replace it with a
bounded one that still satisfies both (2.3) and (2.4). To this end, on account
of (2.3), we can choose a sequence (Hn) with Hn ∈ LCom(An) (n ∈ N) and
limn→∞ ‖Gn −Hn‖ = 1. We then define Tn = Gn −Hn for each n ∈ N. It
is clear that dist(Tn,LCom(An)) = dist(Gn,LCom(An)) (n ∈ N) and then
(2.3) gives

(2.5) dist(Tn,LCom(An)) = 1 (n ∈ N).

Furthermore, com(Tn) = com(Gn) (n ∈ N) and therefore (2.4) yields

(2.6) lim
n→∞

com(Tn) = 0.

We now consider A = (An)U and T = (Tn)U ∈ L(A).

On account of Lemma 2.2 and (2.6), com(T) = 0 and therefore T is
commuting. According to Lemma 2.3, κ(A) = limU κ(An) ≥ K and hence
the Banach algebra A is ultraprime. Remark 2.1 then gives λ ∈ C and a
continuous linear map Φ : A→ Z(A) such that

(2.7) T(a) = λa + Φ(a) (a ∈ A).

Our next goal is to show that Φ = (µn)U for some bounded sequence
(µn) of continuous linear maps µn : An → Z(An) (n ∈ N). We first assume
that A does not have an identity. Then Z(A) = {0} so that Φ = 0 and
hence we can take µn = 0 for each n ∈ N. We now assume that A has an
identity. Let 1 be the identity of A and let ϕ : A→ C be a continuous linear
functional such that Φ(a) = ϕ(a)1 (a ∈ A). On account of Lemma 2.4, we
have U = {n ∈ N : An has an identity} ∈ U . For each n ∈ U , let 1n be the
identity of An. Then κ(An)‖1n‖2 ≤ ‖M1n,1n‖ = 1 and so ‖1n‖ ≤ K−1/2

for each n ∈ U . Define (un) ∈ A by un = 1n for each n ∈ U and un = 0
elsewhere. Then 1 = (un) and (2.7) can be written as

(2.8) lim
U
‖Tn(an)− λan − ϕ(a)un‖ = 0 (a = (an) ∈ A).

For each n ∈ U , let fn : An → C be a continuous linear functional such that
fn(un) = 1 and ‖fn‖ = ‖un‖−1 ≤ 1. For each n ∈ N \ U we consider fn to
be the zero functional on An. Further, we define a bounded sequence (ϕn)
of continuous linear functionals ϕn : An → C by

ϕn(a) = fn(Tn(a))− λfn(a) (a ∈ An, n ∈ N).

Our next objective is to prove that ϕ = (ϕn)U , which clearly implies that
Φ = (µn)U , where µn : An → Z(An) is defined by µn(a) = ϕn(a)un for all
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a ∈ An and n ∈ N. Let a = (an) ∈ A. Then for each n ∈ U ,

|ϕn(an)− ϕ(a)| =
∣∣fn(Tn(an)− λan − ϕ(a)un)

∣∣
≤ ‖Tn(an)− λan − ϕ(a)un‖

and hence (2.8) yields ϕ(a) = limU ϕn(an), as claimed.
Finally, (2.7) now reads

lim
U
‖Tn − λIAn − µn‖ = 0.

Since the map λIAn + µn lies in LCom(An) for each n ∈ N, it follows that

lim
U

dist(Tn,LCom(An)) ≤ lim
U
‖Tn − λIAn − µn‖ = 0,

which contradicts (2.5).

2.2. Commuting quadratic maps. M. Brešar characterized commut-
ing traces of biadditive maps on a ring R and applied the result obtained to
describe commutativity preserving maps, Lie isomorphisms, and Lie deriva-
tions [5]. Typical examples of commuting traces of biadditive maps on a ring
R are provided by the maps of the form

(2.9) Q(a) = λa2 + µ(a)a+ ν(a) (a ∈ R)

with λ ∈ Z(R), µ : R → Z(R) an additive map, and ν : R → Z(R) the
trace of a biadditive map. The standard problem in this context is to find
whether every commuting trace of a biadditive map on R is given by the
formula (2.9). It turns out that this is indeed the case if R is a prime ring
of characteristic different from 2 and we allow λ and µ(a), ν(a) (a ∈ R)
to belong to the extended centroid of R rather than to the centre of R
[7, Theorem 5.32]. On account of the central closability, for ultraprime Ba-
nach algebras the above mentioned result reads as follows.

Proposition 2.6. Let A be an ultraprime Banach algebra and let Q ∈
Q(A) be a commuting map. Then there exist λ ∈ C, µ ∈ A∗, and ν ∈ Q(A)
with ν(A) ⊂ Z(A) such that Q(a) = λa2 + µ(a)a+ ν(a) for each a ∈ A.

Proof. If A is commutative, then A is isomorphic to C and the decom-
position of Q obviously holds true.

We now turn to the case where A is not commutative. On account of
Remark 2.1 and [7, Theorem 5.32], Q is of the form (2.9), where λ ∈ C,
µ : A → C is a linear functional, and ν : A → Z(A) is a quadratic map.
In order to show that both µ and ν are continuous we pick u, v ∈ A with
[u, v] 6= 0 and we now observe that

µ(a)[u, v] =
1

2
[Q(a+ u)−Q(a− u)− 2λ(au+ ua)− 2µ(u)a, v] (a ∈ A),

which shows that µ is continuous. Since ν(a) = Q(a)−λa2−µ(a)a (a ∈ A),
it follows that ν is also continuous.
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Let A be a Banach algebra and Q ∈ Q(A). The constant

com(Q) = sup{‖[Q(a), a]‖ : a ∈ A, ‖a‖ = 1}
still makes sense and it measures to what extent Q satisfies condition (2.1).
The subset of Q(A) consisting of commuting maps is denoted by QCom(A).
This is a closed linear subspace of Q(A). Note that the maps Q 7→ com(Q)
and Q 7→ dist(Q,QCom(A)) are seminorms on Q(A) which vanish pre-
cisely on QCom(A). Moreover, if Q ∈ Q(A) and Q′ ∈ QCom(A), then
‖[Q(a), a]‖ = ‖[(Q−Q′)(a), a]‖ ≤ 2‖Q−Q′‖ ‖a‖2 for each a ∈ A and there-
fore

com(Q) ≤ 2 dist(Q,QCom(A)) (Q ∈ Q(A)).

We are interested in whether there is a constant M > 0 such that

dist(Q,QCom(A)) ≤M com(Q) (Q ∈ Q(A)).

In the next theorem we need to measure the commutativity of a given
Banach algebra A. To this end, we introduce the constant

χ(A) = sup{‖ab− ba‖ : a, b ∈ A, ‖a‖ = ‖b‖ = 1}.
This is the norm of the bilinear map (a, b) 7→ [a, b] on A and so (1.1) yields
the following property.

Lemma 2.7. Let (An) be a sequence of Banach algebras. Then

χ((An)U ) = lim
U
χ(An).

Theorem 2.8. For each K > 0 there exists M > 0 such that

dist(Q,QCom(A)) ≤M com(Q)

for each Banach algebra A with κ(A) ≥ K and Q ∈ Q(A).

Proof. This follows by the same method as in Theorem 2.5. Suppose
the assertion of the theorem is false. Then there exist a constant K > 0, a
sequence of Banach algebras (An) with κ(An) ≥ K (n ∈ N), and a sequence
(Qn) with Qn ∈ Q(An) (n ∈ N) such that

(2.10) lim
n→∞

‖Qn‖ = 1, dist(Qn,QCom(An)) = 1 (n ∈ N),

and
lim
n→∞

com(Qn) = 0.

For each n ∈ N, let Fn : An×An → An be the symmetric continuous bilinear
map such that Qn(a) = Fn(a, a) (a ∈ An).

Take A = (An)U , F = (Fn)U ∈ L2(A), and Q = (Qn)U ∈ Q(A). Of
course, F is symmetric and Q(a) = F(a,a) (a ∈ A).

It is a simple matter to check that com(Q) = limU com(Qn) = 0, which
implies that Q is commuting. In fact, Lemma 2.2 still holds true because
the map com is now given by the norm of the trace of a trilinear map and
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(1.2) works for this case. Next, according to Lemma 2.3, A is ultraprime. By
Proposition 2.6, there exist λ∈C, a continuous linear functional M : A→C,
and a continuous quadratic map N : A→ Z(A) such that

(2.11) Q(a) = λa2 + M(a)a + N(a) (a ∈ A).

Further, let G : A ×A → Z(A) be the symmetric bilinear map associated
to N. Linearization of (2.11) gives

(2.12) 2F(a,b) = λ(ab+ba)+(M(b)a+M(a)b)+2G(a,b) (a,b ∈ A).

Our objective is to prove that M = (µn)U and N = (νn)U for some bounded
sequences (µn) of continuous linear functionals µn : An → C and (νn) of
continuous quadratic maps νn : An → Z(An).

We first assume that A is commutative. Then A is trivial so that we
can take M = N = 0 in (2.11). Accordingly, the maps µn = νn = 0 (n ∈ N)
satisfy our requirement.

We now assume that A is not commutative. Then χ(A) > 0 and we can
pick 0 < % < χ(A). From Lemma 2.7, it follows that V = {n ∈ N : % <
χ(An)} ∈ U . For each n ∈ V , we choose bn, cn ∈ An with ‖bn‖ = ‖cn‖ = 1
and % < ‖[bn, cn]‖. Furthermore, for each n ∈ V , we take a continuous linear
functional gn : An → C such that gn([bn, cn]) = 1 and ‖gn‖ = ‖[bn, cn]‖−1
< %−1. For each n ∈ N \ V , we consider gn to be the zero functional on An.
Let b, c ∈ A be given by b = (bn) and c = (cn). On account of (2.12), we
have

M(a)[b, c] = [2F(a,b)− λ(ab + ba)−M(b)a, c] (a ∈ A).

By applying the continuous linear functional (gn)U on (An)U we arrive at

M(a) = lim
U
gn([2Fn(an, bn)− λ(anbn + bnan)−M(b)an, cn])

(a = (an) ∈ A),

which implies that M = (µn)U , where (µn) is the bounded sequence of
continuous linear functionals µn : An → C given by

µn(a) = gn([2Fn(a, bn)− λ(abn + bna)−M(b)a, cn]) (a ∈ An, n ∈ N).

In order to show that N = (νn)U for some bounded sequence (νn) of
continuous quadratic maps νn : An → Z(An) (n ∈ N), we consider two
different cases. First, we assume that A does not have an identity. Then
Z(A) = {0}, so that N = 0 and then we take νn = 0 for each n ∈ N. We
now assume that A has an identity. Let ψ : A→ C be a quadratic functional
such that N(a) = ψ(a)1 (a ∈ A). On account of Proposition 2.4 we find
that U = {n ∈ N : An has an identity} ∈ U . Define un ∈ An and fn ∈ A∗n
as in the proof of Theorem 2.5. Then (2.11) can be written as

lim
U
‖Qn(an)− λa2n − µn(an)an − ψ(a)un‖ = 0 (a = (an) ∈ A),
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which implies that

ψ(a) = lim
U
fn(Qn(an)− λa2n − µn(an)an) (a = (an) ∈ A).

We thus get N = (νn)U , where νn : An → Z(An) is defined by

νn(a) = fn(Qn(a)− λa2 − µn(a)a)un (a ∈ An, n ∈ N).

Finally, (2.11) reads as Q = (Pn)U , where Pn ∈ QCom(An) is defined by

Pn(a) = λa2 + µn(a)a+ νn(a) (a ∈ An, n ∈ N).

Hence

lim
U

dist(Qn,QCom(An)) ≤ lim
U
‖Qn − Pn‖ = 0,

which contradicts (2.10).

3. Stability of Lie maps

3.1. Lie isomorphisms. Recall that an additive map Φ from a ring R
into a ring S is a homomorphism if

Φ(ab) = Φ(a)Φ(b) (a, b ∈ R),

and an antihomomorphism if

Φ(ab) = Φ(b)Φ(a) (a, b ∈ R).

Finally, Φ is said to be a Lie homomorphism if

Φ([a, b]) = [Φ(a), Φ(b)] (a, b ∈ R).

The obvious example of a Lie homomorphism Φ : R → S is a map of the
form

(3.1) Φ = Ψ + τ,

where Ψ : R → S is either a homomorphism or the negative of an antiho-
momorphism and τ : R → Z(S) is an additive map sending commutators
to zero. A basic question is whether every Lie homomorphism arises as de-
scribed in (3.1). As an application of the analysis of the commuting traces
of biadditive maps, M. Brešar showed that if R is any ring and S is a non-
commutative prime ring with characteristic different from 2, then every Lie
isomorphism from R onto S is in the standard form (3.1), where we allow Ψ
and τ to map into appropriate enlargements, namely S + C and C, respec-
tively, where C denotes the extended centroid of S [7, Corollary 6.5]. The
translation of this result to our framework is the following.

Proposition 3.1. Let B be a Banach algebra, let A be an ultraprime
Banach algebra, and let Φ ∈ L(B,A) be a Lie isomorphism. Then Φ =
Ψ + τ1, where Ψ ∈ L(B,A+C1) is either a homomorphism or the negative
of an antihomomorphism and τ ∈ B∗ sends commutators to zero.
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Proof. If A is commutative, then A is isomorphic to C and the claimed
decomposition of Φ obviously holds true.

We now assume that A is not commutative. From [7, Corollary 6.5] and
Remark 2.1 it follows that Φ = Ψ + τ1, where Ψ : B → A + C1 is either a
homomorphism or the negative of an antihomomorphism and τ : B → C is
a linear functional sending commutators to zero. It remains to prove that
both Ψ and τ are continuous. Let us consider only the homomorphism case.
We can take v ∈ B and a ∈ A with [Φ(v), a] 6= 0. It is easily seen that

τ(u)[Φ(v), a] = [−Φ(uv) + Φ(u)Φ(v)− τ(v)Φ(u), a] (u ∈ B).

This implies that τ is continuous. Since Ψ = Φ − τ1 we see that Ψ is con-
tinuous.

Our next concern will be the stability of the above mentioned result.
To treat this issue we introduce the following measures of multiplicativity,
antimultiplicativity, and Lie multiplicativity of a given map Φ ∈ L(B,A),
where A and B are Banach algebras:

mult(Φ) = sup{‖Φ(ab)− Φ(a)Φ(b)‖ : a, b ∈ B, ‖a‖ = ‖b‖ = 1},
amult(Φ) = sup{‖Φ(ab)− Φ(b)Φ(a)‖ : a, b ∈ B, ‖a‖ = ‖b‖ = 1},
lmult(Φ) = sup{‖Φ([a, b])− [Φ(a), Φ(b)]‖ : a, b ∈ B, ‖a‖ = ‖b‖ = 1}.

Further, for f ∈ B∗ we put

‖f‖t = sup{|f([a, b])| : a, b ∈ B, ‖a‖ = ‖b‖ = 1}.
It is worth pointing out that the constants introduced above are nothing
but the norms of the bilinear maps

(a, b) 7→ Φ(ab)− Φ(a)Φ(b),

(a, b) 7→ Φ(ab)− Φ(b)Φ(a),

(a, b) 7→ Φ([a, b])− [Φ(a), Φ(b)],

(a, b) 7→ f([a, b]),

respectively. Consequently, (1.1) yields the following.

Lemma 3.2. Let (An) and (Bn) be sequences of Banach algebras and as-
sume that fn ∈ B∗n and Φn ∈ L(Bn, An) (n ∈ N) are given with supn∈N ‖fn‖
<∞ and supn∈N ‖Φn‖ <∞. Then

mult((Φn)U ) = lim
U

mult(Φn),

amult((Φn)U ) = lim
U

amult(Φn),

lmult((Φn)U ) = lim
U

lmult(Φn),

‖(fn)U‖t = lim
U
‖fn‖t.
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Note that the maps mult, amult, and lmult vanish exactly on the sets
Hom(B,A) of all homomorphisms, AHom(B,A) of all antihomomorphisms,
and LHom(B,A) of all Lie homomorphisms from B into A, respectively. If
A = B then we write briefly Hom(A), AHom(A), and LHom(A) instead
of Hom(A,A), AHom(A,A), and LHom(A,A), respectively. The map ‖ · ‖t
vanishes on the linear space of all continuous linear functionals on B sending
commutators to zero.

To our knowledge, there are two basic choices of assumptions on a map
Φ ∈ L(B,A) that could be required to conclude that Φ is an approxi-
mate Lie homomorphism (i.e. lmult(Φ) is small). The first choice is to con-
sider Φ = Ψ + τ1, where Ψ ∈ L(B,A + C1) and τ ∈ B∗ are such that
min{mult(Ψ), amult(−Ψ)} and ‖τ‖t are small (here we are restricting our-
selves to the case when Z(A) is trivial). This pattern of thinking leads to
introduce the following constants:

smult+(Φ) = inf{mult(Φ− τ1) + ‖τ‖t : τ ∈ B∗},
smult−(Φ) = inf{amult(τ1− Φ) + ‖τ‖t : τ ∈ B∗},

smult(Φ) = min{smult+(Φ), smult−(Φ)}.
The second choice is to assume that dist(Φ,LHom(B,A)) is small.

Proposition 3.3. Let A be an ultraprime Banach algebra. Then there
exists a constant K > 0 such that

lmult(Φ) ≤ K smult(Φ)
and

lmult(Φ) ≤
(
2 + 2‖Φ‖+ 4 dist(Φ,LHom(B,A))

)
dist(Φ,LHom(B,A))

for each Banach algebra B and Φ ∈ L(B,A).

Proof. Let Φ ∈ L(B,A). Pick τ ∈ B∗ and write Ψ = Φ − τ1. For all
a, b ∈ B, we have

Φ([a, b])− [Φ(a), Φ(b)] = Ψ([a, b])− [Ψ(a), Ψ(b)] + τ([a, b])1
and so

‖Φ([a, b])− [Φ(a), Φ(b)]‖ ≤ ‖Ψ([a, b])− [Ψ(a), Ψ(b)]‖+ ‖τ‖t‖1‖ ‖a‖ ‖b‖.
We can write Ψ([a, b])− [Ψ(a), Ψ(b)] in two ways. On the one hand,

Ψ([a, b])− [Ψ(a), Ψ(b)] = (Ψ(ab)− Ψ(a)Ψ(b))− (Ψ(ba)− Ψ(b)Ψ(a)),

which gives ‖Ψ([a, b])− [Ψ(a), Ψ(b)]‖ ≤ 2 mult(Ψ)‖a‖‖b‖. On the other hand,
we have

Ψ([a, b])− [Ψ(a), Ψ(b)] = ((−Ψ)(ba)− (−Ψ)(a)(−Ψ)(b))

− ((−Ψ)(ab)− (−Ψ)(b)(−Ψ)(a)),

which yields ‖Ψ([a, b]) − [Ψ(a), Ψ(b)]‖ ≤ 2 amult(−Ψ)‖a‖ ‖b‖. This proves
the first inequality in the proposition.
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Set Ψ ∈ LHom(B,A) and write Θ = Φ− Ψ . For all a, b ∈ A we have

Φ([a, b])− [Φ(a), Φ(b)] = Θ([a, b]) + [Ψ(a), Ψ(b)]− [Φ(a), Φ(b)]

= Θ([a, b])− [Ψ(a), Θ(b)]− [Θ(a), Φ(b)]

and so

‖Φ([a, b])− [Φ(a), Φ(b)]‖ ≤ (2‖Θ‖+ 2‖Θ‖(‖Ψ‖+ ‖Φ‖))‖a‖ ‖b‖
≤ (2‖Θ‖+ 2‖Θ‖(‖Θ‖+ 2‖Φ‖))‖a‖ ‖b‖.

This gives lmult(Φ) ≤ 2‖Θ‖ + 2‖Θ‖(‖Θ‖ + 2‖Φ‖), which establishes the
second inequality in the proposition.

We are now interested in whether lmult(Φ) being small implies that
smult(Φ) is small. In Section 4 we address the question of whether lmult(Φ)
being small implies that dist(Φ,LHom(B,A)) is also small.

Theorem 3.4. For each K,M, ε > 0 there exists δ > 0 such that if A
and B are Banach algebras with κ(A) ≥ K and Φ ∈ L(B,A) is bijective
with ‖Φ‖, ‖Φ−1‖ ≤M , and lmult(Φ) < δ, then smult(Φ) < ε.

Proof. Suppose the assertion is false. Then there exist K,M, ε > 0,
sequences (An) and (Bn) of Banach algebras, and a sequence (Φn) of bijective
continuous linear maps Φn : Bn → An (n ∈ N) with

κ(An) ≥ K,(3.2)

‖Φn‖, ‖Φ−1n ‖ ≤M,(3.3)

lmult(Φn) < 1/n,(3.4)

smult(Φn) ≥ ε,(3.5)

for each n ∈ N.

Set A = (An)U , B = (Bn)U , and Φ = (Φn)U . From (3.3) it follows
that Φ is bijective with inverse given by (Φ−1n )U . We claim that Φ is a Lie
isomorphism. Indeed, if u = (un),v = (vn) ∈ B, then (3.4) yields

‖Φ([u,v])− [Φ(u), Φ(v)]‖ = lim
U
‖Φn([un, vn])− [Φn(un), Φn(vn)]‖

≤ lim
U

(lmult(Φn)‖un‖‖vn‖) = 0.

Furthermore, according to Lemma 2.3 and (3.2), κ(A) ≥ K and hence A is
ultraprime.

On account of Proposition 3.1, Φ = Ψ + τ1, where Ψ ∈ L(B,A + C1)
is either a homomorphism or the negative of an antihomomorphism and
τ ∈ B∗ vanishes on commutators. Our purpose is to show that Ψ = (Ψn)U

and τ = (τn)U , where Ψn ∈ L(Bn, An + C1) and τn ∈ B∗n for each n ∈ N.
We will consider two cases according to the degree of algebraicity of A.
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We first assume that the degree of algebraicity of A is greater than 2.
For each n ∈ N we define Qn ∈ Q(An) by

Qn(a) = Φn((Φ−1n (a))2) (a ∈ An).

According to (3.3), ‖Qn‖ ≤ M3 (n ∈ N) and therefore we can consider
Q ∈ Q(A) given by Q = (Qn)U . It is clear that Q(a) = Φ(Φ−1(a)2) for each
a ∈ A. Since Φ is a Lie isomorphism, it follows that

[Q(a),a] = Q([Φ−1(a)2, Φ−1(a)]) = 0

for each a ∈ A. Hence Q is commuting. From the proof of Theorem 2.8 it
may be concluded that

(3.6) Q(a) = λa2 + M(a)a + N(a) (a ∈ A)

for some λ ∈ C, M = (µn)U with µn ∈ A∗n (n ∈ N), and N = (νn)U with
νn ∈ Q(An) and νn(An) ⊂ Z(An) (n ∈ N). Taking a = Φ(u) with u ∈ B in
(3.6) we arrive at

(3.7) Φ(u2) = λΦ(u)2 + M(Φ(u))Φ(u) + N(Φ(u)).

On the other hand, we have

Φ(u2) = Ψ(u2) + τ(u2)1 = σΨ(u)2 + τ(u2)1(3.8)

= σΦ(u)2 − 2στ(u)Φ(u) + (στ(u)2 + τ(u2))1 (u ∈ B),

where σ = 1 in the case where Ψ is a homomorphism and σ = −1 in the
case where Ψ is the negative of an antihomomorphism. Comparing (3.7) and
(3.8) we get

(λ−σ)Φ(u)2 +(M(Φ(u))+2στ(u))Φ(u)+N(Φ(u))− (στ(u)2 +τ(u2))1 = 0

for each u ∈ B. This can be written as follows:

(λ− σ)a2 + (M(a) + 2στ(Φ−1(a)))a

+ N(a)− (στ(Φ−1(a))2 + τ(Φ−1(a)2))1 = 0

for each a ∈ A.
We claim that

(3.9) τ(Φ−1(a)) = − 1

2σ
M(a) (a ∈ A).

Since deg(A) > 2, it follows that λ = σ and

(3.10) (M(a) + 2στ(Φ−1(a)))a ∈ Z(A)

for each a ∈ A. If a ∈ A \Z(A), then (3.10) yields (3.9). Let a ∈ Z(A) and
pick b ∈ A \ Z(A) (such an element exists because dim(Z(A)) ≤ 1). Then
a+ b ∈ A \ Z(A) and therefore

τ(Φ−1(a)) = τ(Φ−1(a + b))− τ(Φ−1(b))

= − 1

2σ
M(a + b) +

1

2σ
M(b) = − 1

2σ
M(a),
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which gives (3.9), as claimed. From (3.9) it may be concluded that τ = (τn)U

and Ψ = (Ψn)U , where

τn = − 1

2σ
µn ◦ Φn : Bn → C, Ψn = Φn +

1

2σ
µn ◦ Φn : Bn → An + C1

for each n ∈ N.
Having established the case where deg(A) > 2, we now turn to the

case where deg(A) ≤ 2. Then A is finite-dimensional (in fact, it is iso-
morphic either to C or to M2(C)). By [4, Theorem 3.1], W = {n ∈ N :
dim(An) = dim(A)} ∈ U . Since Φn is a bijective linear map, it follows that
dim(Bn) = dim(An) = dim(A) for each n ∈ W , and [4, Theorem 3.1] then
gives dim(B) = dim(A). From [10, Theorem 7.1] it follows that τ = (τn)U

for some sequence (τn) with τn ∈ B∗n (n ∈ N). This clearly implies that
Ψ = (Ψn)U where Ψn = Φn − τn ∈ L(Bn, An) (n ∈ N).

Finally, we are in a position to get a contradiction. Having shown that
Ψ = (Ψn)U and τ = (τn)U where Ψn ∈ L(Bn, An +C1) and τn ∈ B∗n for each
n ∈ N, we can now apply Lemma 3.2 to get

mult(Ψ) = lim
U

mult(Φn − τn1), amult(−Ψ) = lim
U

amult(τn1− Φn).

From the definition we see that

mult(Φn − τn1) ≥ smult+(Φn)− ‖τn‖t

and

amult(τn1− Φn) ≥ smult−(Φn)− ‖τn‖t
for each n ∈ N. Since either Ψ is a homomorphism or −Ψ is an antihomo-
morphism, it may be concluded that

0 = min{mult(Ψ), amult(−Ψ)}
= lim
U

min{mult(Φn − τn1), amult(τn1− Φn)}

≥ lim
U

(smult(Φn)− ‖τn‖t) = lim
U

smult(Φn)− lim
U
‖τn‖t.

Since limU ‖τn‖t = ‖τ‖t = 0, it follows that limU smult(Φn) = 0, contrary
to (3.5), and the proof is complete.

3.2. Lie derivations. Let R be a ring and X be an R-bimodule. Recall
that an additive map ∆ : R → X is a derivation if

∆(ab) = ∆(a)b+ a∆(b) (a, b ∈ R)

and it is a Lie derivation if

∆([a, b]) = [∆(a), b] + [a,∆(b)] (a, b ∈ R).

A typical example of a Lie derivation ∆ : R → X is provided by the map

(3.11) Φ = D + τ,
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where D : R → X is a derivation and τ is an additive map from R into
the centre of X sending commutators to zero. A basic problem is to deter-
mine whether every Lie derivation is in the standard form (3.11). M. Brešar
showed that if R is a prime ring with characteristic different from 2, then
every Lie derivation ∆ : R → R is as in (3.11) provided that we allow D
and τ to map into the appropriate enlargements RC+C and C, respectively,
where C is the extended centroid of R [7, Corollary 6.9]. In the context of
ultraprime Banach algebras this result reads as follows.

Proposition 3.5. Let A be an ultraprime Banach algebra and let ∆ ∈
L(A) be a Lie derivation. Then ∆ = D + τ1, where D ∈ L(A,A+ C1) is a
derivation and τ ∈ A∗ sends commutators to zero.

Proof. If A is commutative, then A is isomorphic to C and the proposi-
tion holds true.

We now proceed with the case where A is not commutative. From [7,
Corollary 6.9] and Remark 2.1 it follows that ∆ = D + τ1, where D : A →
A + C1 is a derivation and τ : A → C is a linear functional sending com-
mutators to zero. The only point remaining is the continuity. Since A is not
commutative, we can pick b, c ∈ A with [b, c] 6= 0. It is immediate to check
that

τ(a)[b, c] = [−∆(ab) +∆(a)b+ a∆(b)− τ(b)a, c] (a ∈ A),

which shows that τ is continuous and finally D is continuous because D =
∆− τ1.

Our next objective is to analyse the stability of the preceding result. To
this end, for a given continuous linear map ∆ from a Banach algebra A into
a Banach A-bimodule X, we define the constants

der(∆) = sup{‖∆(ab)−∆(a)b− a∆(b)‖ : ‖a‖ = ‖b‖ = 1},
lder(∆) = sup{‖∆([a, b])− [∆(a), b]− [a,∆(b)]‖ : ‖a‖ = ‖b‖ = 1}.

It should be mentioned that der(∆) and lder(∆) are nothing but the norms
of the bilinear maps

(a, b) 7→ ∆(ab)−∆(a)b− a∆(b),

(a, b) 7→ ∆([a, b])− [∆(a), b]− [a,∆(b)],

respectively. Consequently, (1.1) yields the following.

Lemma 3.6. Let (An) be a sequence of Banach algebras and assume that,
for each n ∈ N, a Banach An-bimodule Xn and ∆n ∈ L(An, Xn) are given
with supn∈N ‖∆n‖ <∞. Then

der((∆n)U ) = lim
U

der(∆n), lder((∆n)U ) = lim
U

lder(∆n).
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The maps ∆ 7→ der(∆) and ∆ 7→ lder(∆) define seminorms on L(A,X)
vanishing on the linear subspaces Der(A,X) consisting of all derivations
and LDer(A,X) consisting of all Lie derivations, respectively. We abbreviate
Der(A,A) to Der(A) and LDer(A,A) to LDer(A). Following the pattern of
the preceding subsection, we associate the following constant to ∆ ∈ L(A):

sder(∆) = inf{der(∆− τ1) + ‖τ‖t : τ ∈ A∗}.
The map ∆ 7→ sder(∆) is a seminorm on L(A).

Proposition 3.7. Let A be an ultraprime Banach algebra. Then there
exists a constant K > 0 with

lder(∆) ≤ K sder(∆) ≤ 3K dist(∆,LDer(A)) (∆ ∈ L(A)).

Proof. Let ∆ ∈ L(A). Pick τ ∈ A∗ and write D = ∆ − τ1. For all
a, b ∈ A, we have

∆([a, b])− [∆(a), b]− [a,∆(b)] = D([a, b])− [D(a), b]− [a,D(b)] + τ([a, b])1

= (D(ab)−D(a)b− aD(b))

− (D(ba)−D(b)a− bD(a)) + τ([a, b])1,

which implies that

‖∆([a, b])− [∆(a), b]− [a,∆(b)]‖ ≤ (2 der(D) + ‖τ‖t‖1‖)‖a‖ ‖b‖,
and therefore lder(∆) ≤ 2 der(D) + ‖τ‖t‖1‖. This establishes the first in-
equality in the proposition.

Pick D ∈ LDer(A). Then there exists τ ∈ A∗ sending commutators to
zero such that D − τ1 is a derivation. Accordingly,

sder(∆) ≤ der(∆− τ1) + ‖τ‖t = der(∆− τ1)

≤ der(∆−D) + der(D − τ1) = der(∆−D) ≤ 3‖∆−D‖.
This gives the second inequality in the proposition.

We are interested in whether the three seminorms lder(·), sder(·), and
dist(·,LDer(A)) are actually pairwise equivalent. Our next concern is the
analysis of lder(·) and sder(·). The next section will be concerned with
dist(·,LDer(A)).

Theorem 3.8. For each K,M, ε > 0 there exists δ > 0 such that if A is
a Banach algebra with κ(A) ≥ K and ∆ ∈ L(A) is such that ‖∆‖ ≤M and
lder(∆) < δ, then sder(∆) < ε.

Proof. This follows by the same method as in Theorem 3.4. To obtain a
contradiction, suppose the assertion is false. Then there exist K,M, ε > 0, a
sequence of Banach algebras (An) with κ(An) ≥ K (n ∈ N), and a sequence
(∆n) with ∆n ∈ L(An), ‖∆n‖ ≤ M , lder(∆n) < 1/n, and sder(∆n) ≥ ε
(n ∈ N).
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We then consider A = (An)U and ∆ = (∆n)U ∈ L(A). We claim that ∆
is a Lie derivation on A. Indeed, if a = (an),b = (bn) ∈ A, then

‖∆([a,b])− [∆(a),b]− [a, ∆(b)]‖
= lim
U
‖∆n([an, bn])− [∆n(an), bn]− [an, ∆n(bn)]‖

≤ lim
U

(lder(∆n)‖an‖ ‖bn‖) = 0.

From Lemma 2.3 it follows that A is ultraprime and Proposition 3.5 then
gives ∆ = D + τ1, where D ∈ L(A,A + C1) is a derivation and τ ∈ A∗

vanishes on commutators. Our next concern will be to show that D = (Dn)U

and τ = (τn)U , where Dn ∈ L(An, An + C1) and τn ∈ A∗n for each n ∈ N.
Let us first consider the case when deg(A) > 2. For each n ∈ N we define

Qn ∈ Q(An) by

Qn(a) = ∆n(a2)−∆n(a)a− a∆n(a) (a ∈ An).

Then ‖Qn‖ ≤ 3M (n ∈ N) so that we can consider the map Q = (Qn)U ∈
Q(A). Of course, Q(a) = ∆(a2)−∆(a)a− a∆(a) for each a ∈ A. Since ∆
is a Lie derivation, we see that

0 = ∆([a2,a]) = [∆(a2),a] + [a2, ∆(a)] = [Q(a),a]

for each a ∈ A. Therefore Q is commuting, and from the proof of Theorem
2.8 we deduce that

Q(a) = λa2 + M(a)a + N(a) (a ∈ A)

for some λ ∈ C, M = (µn)U with µn ∈ A∗n (n ∈ N), and N = (νn)U with
νn ∈ Q(An) and νn(An) ⊂ Z(An) (n ∈ N).

We claim that

(3.12) τ(a) = −1

2
M(a) (a ∈ A).

To see this, we now compute ∆(a2) in two ways. On the one hand, we have

∆(a2) = ∆(a)a + a∆(a) + λa2 + M(a)a + N(a).

On the other hand, we have

∆(a2) = D(a2) + τ(a2)1 = D(a)a + aD(a) + τ(a2)1

= ∆(a)a + a∆(a)− 2τ(a)a + τ(a2)1.

We thus get

λa2 + (M(a) + 2τ(a))a + (N(a)− τ(a2)1) = 0

for each a ∈ A. Since deg(A) > 2, it follows that λ = 0 and

(M(a) + 2τ(a))a ∈ Z(A)

for each a ∈ A. If a ∈ A \ Z(A), then the preceding property obviously
gives (3.12). We now fix b ∈ A\Z(A). If a ∈ Z(A), then a+b ∈ A\Z(A)
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and therefore

τ(a) = τ(a + b)− τ(b) = −1

2
M(a + b) +

1

2
M(b) = −1

2
M(a).

From (3.12) it follows that D = (Dn)U and τ = (τn)U where

τn = −1

2
µn ∈ A∗n (n ∈ N)

and

Dn = ∆n −
1

2
µn1 ∈ L(An, An + C1) (n ∈ N).

We now proceed with the case deg(A) ≤ 2. Then A is finite-dimensional
and [10, Theorem 7.1] shows that τ = (τn)U for some sequence (τn) with
τn ∈ A∗n (n ∈ N). This implies that D = (Dn)U where Dn = ∆n − τn ∈
L(An, An + C1) (n ∈ N).

From the definition we see that

sder(∆n) ≤ der(Dn) + ‖τn‖t (n ∈ N)

and therefore

lim
U

sder(∆n) ≤ lim
U

(der(Dn) + ‖τn‖t) = lim
U

der(Dn) + lim
U
‖τn‖t

= lim
U

der(Dn) + ‖τ‖t = lim
U

der(Dn),

which finally gives ε ≤ limU der(Dn). However, since D is a derivation,
Lemma 3.6 gives limU der(Dn) = der(D) = 0, which is impossible.

4. Lie maps on operator algebras. Throughout this section we re-
strict our attention to the Banach algebra L(H) for a Hilbert space H.
Our purpose is to relate lmult and lder to dist(·,LHom(L(H))) and
dist(·,LDer(L(H))). First of all, it should be pointed out that in the case
when H is infinite-dimensional the only linear functional on L(H) send-
ing commutators to zero is the zero functional. This implies that every Lie
automorphism of L(H) is either an automorphism or the negative of an
antiautomorphism of L(H) and every Lie derivation on L(H) is, in fact, a
derivation. We now turn our attention to the stability problem.

Lemma 4.1. Let H be an infinite-dimensional Hilbert space. Then

‖f‖ ≤ 2‖f‖t (f ∈ L(H)∗).

Proof. Let T ∈ L(H). On account of [9, Corollary of Theorem 8], we have
T = [P,Q] + [R,S] with P,Q,R, S ∈ L(H). Further, it is straightforward
to check that the operators constructed in [9, Lemma 2] satisfy the preced-
ing factorization and are such that ‖P‖, ‖R‖ ≤ ‖T‖ and ‖Q‖, ‖S‖ ≤ 1. If
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f ∈ L(H), then

‖f(T )‖ ≤ ‖f([P,Q])‖+ ‖f([R,S])‖
≤ ‖f‖t‖P‖ ‖Q‖+ ‖f‖t‖R‖ ‖S‖ ≤ 2‖f‖t‖T‖,

which proves the lemma.

Theorem 4.2. Let H be an infinite-dimensional separable Hilbert space.
For any M, ε > 0 there exists δ > 0 such that if Φ : L(H) → L(H) is a
bijective continuous linear map with ‖Φ‖, ‖Φ−1‖ ≤ M and lmult(Φ) < δ
then

min{dist(Φ,Hom(L(H))),dist(Φ,−AHom(L(H)))} < ε.

Proof. Suppose, contrary to our claim, that there exist M, ε > 0 and a
sequence (Φn) of bijective continuous linear maps Φn : L(H) → L(H) with
‖Φn‖, ‖Φ−1n ‖ ≤M , limn→∞ lmult(Φn) = 0, and

(4.1)
min {dist(Φn,Hom(L(H))),dist(Φn,−AHom(L(H)))} ≥ ε (n ∈ N).

From Theorem 3.4 we deduce that limn→∞ smult(Φn) = 0. Consequently,
we can assume that either

(4.2) lim
n→∞

smult+(Φn) = 0

or

(4.3) lim
n→∞

smult−(Φn) = 0.

We begin by considering the case when (4.2) holds. Then we get a se-
quence (τn) in L(H)∗ such that limn→∞mult(Φn−τn1)=0 and limn→∞ ‖τn‖t
= 0. From [11, Proposition 6.3] we deduce that there is a sequence (Ψn) in
Hom(L(H)) with limn→∞ ‖Φn− τn1− Ψn‖ = 0. Moreover, from Lemma 4.1
we see that limn→∞ ‖τn‖ = 0, and consequently

lim
n→∞

dist(Φn,Hom(L(H))) ≤ lim
n→∞

‖Φn − Ψn‖ = 0,

which contradicts (4.1).
We now turn to the case when (4.3) holds. Then there exists a sequence

(σn) in L(H)∗ with limn→∞ amult(σn1 − Φn) = 0 and limn→∞ ‖σn‖t = 0.
From [2, Proposition 3.8] it may be concluded that there is a sequence
(Θn) in AHom(L(H)) with limn→∞ ‖σn1 − Φn − Θn‖ = 0. By Lemma 4.1,
limn→∞ ‖σn‖ = 0, and hence

lim
n→∞

dist(Φn,−AHom(L(H))) ≤ lim
n→∞

‖Φn − (−Θn)‖ = 0,

contrary to (4.1).

Lemma 4.3. Let A be an ultraprime Banach algebra, X be a Banach
A-bimodule, and T ∈ L(A,X). Let TI : I → X be the restriction of T to a
nonzero two-sided ideal I of A. Then ‖T‖ ≤ κ(A)−1(der(T ) + 2‖TI‖).
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Proof. Let a, b ∈ A and c ∈ I with ‖a‖ = ‖b‖ = ‖c‖ = 1. Then

‖T (a)bc‖ ≤ ‖T (a)bc+ aT (bc)− T (abc)‖+ ‖T (abc)‖+ ‖aT (bc)‖
≤ der(T ) + 2‖TI‖.

This implies that
‖MT (a),c‖ ≤ der(T ) + 2‖TI‖.

Since κ(A)‖T (a)‖≤‖MT (a),c‖, it follows that

‖T (a)‖ ≤ κ(A)−1(der(T ) + 2‖TI‖)
and this establishes the result.

Lemma 4.4. Let H be a Hilbert space. Then there exists M > 0 such
that

dist(∆,Der(L(H))) ≤M der(∆)

for each continuous linear operator ∆ : L(H)→ L(H).

Proof. Let K(H) and N (H) denote the two-sided ideals of L(H) con-
sisting of the compact linear operators on H and the nuclear operators
on H, respectively. Then K(H) is an amenable Banach algebra, N (H) is
a Banach K(H)-bimodule, and we can identify L(H) as the dual of that
K(H)-bimodule. Consequently, we can apply [1, Theorem 3.1] to get a
constant C > 0 with the property that for every continuous linear map
Γ : K(H)→ L(H) there exists T ∈ L(H) such that

‖Γ − adK(H)(T )‖ ≤ C der(Γ ).

Here, for each T ∈ B(H) we write ad(T ) for the inner derivation on L(H) im-
plemented by T , i.e. ad(T )(S) = [T, S] (S ∈ L(H)), and we write adK(H)(T )
for the restriction of ad(T ) to K(H).

Let ∆ ∈ L(L(H)). Then we apply the preceding property to the restric-
tion ∆K(H) of ∆ to K(H) to get T ∈ L(H) such that

‖∆K(H) − adK(H)(T )‖ ≤ C der(∆K(H)) ≤ C der(∆).

Lemma 4.3 then yields

‖∆− ad(T )‖ ≤ der(∆− ad(T )) + 2C der(∆) = (2C + 1) der(∆),

which implies that dist(∆,Der(L(H))) ≤ (2C + 1) der(∆), as required.

Theorem 4.5. Let H be a Hilbert space. Then there exists M > 0 such
that

dist(∆,Der(L(H))) ≤M lder(∆)

for each continuous linear operator ∆ : L(H)→ L(H).

Proof. Suppose the assertion is false. Then there exists a sequence (Γn)
in L(L(H)) such that dist(Γn,Der(L(H))) = 1 for each n ∈ N and

lim
n→∞

lder(Γn) = 0.
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For each n ∈ N we define ∆n = Γn − δn where δn ∈ Der(L(H)) is chosen so
that limn→∞ ‖∆n‖ = 1. Moreover, we have

(4.4) dist(∆n,Der(L(H))) = dist(Γn,Der(L(H))) = 1 (n ∈ N)

and lder(∆n) = lder(Γn) (n ∈ N), which yields limn→∞ lder(∆n) = 0. From
Theorem 3.8 it follows that limn→∞ sder(∆n) = 0. This implies that there
exists a sequence (τn) in L(H)∗ such that

lim
n→∞

der(∆n − τn1) = 0 and lim
n→∞

‖τn‖t = 0.

From Lemma 4.4 we deduce that there exists a sequence (Dn) in Der(L(H))
with

lim
n→∞

‖∆n − τn1−Dn‖ = 0.

By Lemma 4.1, we have limn→∞ ‖τn‖ = 0. Consequently, limn→∞ ‖∆n−Dn‖
= 0, which contradicts (4.4).

In order to give a full picture about the behaviour of the Lie maps on
B(H) for a Hilbert space H, we now complete the information given in
Theorems 4.2 and 4.5 by considering the finite-dimensional case. It is well-
known that Lie automorphisms and Lie derivations of the matrix algebra
Mn are of the standard form. Actually, every Lie automorphism of Mn is
given by a 7→ uau−1 + α trn(a)1 or a 7→ −uatu−1 + α trn(a)1 for some
invertible u ∈ Mn and α ∈ C, where trn and (·)t stand for the trace and
transposition on Mn, respectively. Every Lie derivation on Mn is given by
ad(v)+α trn 1 for some v ∈Mn and α ∈ C. The stability of both LHom(Mn)
and LDer(Mn) is provided by the following results.

Proposition 4.6. Let A and B be finite-dimensional Banach algebras.
For any M, ε > 0 there exists δ > 0 such that if Φ ∈ L(B,A) with ‖Φ‖ ≤M
and lmult(Φ) < δ then dist(Φ,LHom(B,A)) < ε.

Proof. The proof of [11, Proposition 1.3] carries over almost verbatim.
Let M, ε > 0. Then the set

CM,ε = {T ∈ L(B,A) : ‖T‖ ≤M, dist(T,LHom(B,A)) ≥ ε}

is compact. Further, we consider the decreasing net (Gδ)δ>0 of open sets
given by

Gδ = {T ∈ L(B,A) : lmult(T ) > δ} (δ > 0).

Then

CM,ε ⊂ L(B,A) \ LHom(B,A) =
⋃
δ>0

Gδ.

Consequently, there exists δ > 0 such that CM,ε ⊂ Gδ, which is the desired
conclusion.
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Proposition 4.7. Let A be a finite-dimensional Banach algebra. Then
there exists M > 0 such that

dist(∆,LDer(A)) ≤M lder(∆) for each ∆ ∈ L(A).

Proof. The seminorms dist(·,LDer(A)) and lder(·) on L(A) vanish on
LDer(A) so that both give rise to norms on the quotient L(A)/LDer(A).
Since this linear space is finite-dimensional, it follows that both norms are
equivalent, which proves the proposition.
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