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Projectively invariant Hilbert–Schmidt kernels and
convolution type operators

by

Jaeseong Heo (Seoul)

Abstract. We consider positive definite kernels which are invariant under a multiplier
and an action of a semigroup with involution, and construct the associated projective
isometric representation on a Hilbert C∗-module. We introduce the notion of C∗-valued
Hilbert–Schmidt kernels associated with two sequences and construct the corresponding
reproducing Hilbert C∗-module. We also discuss projective invariance of Hilbert–Schmidt
kernels. We prove that the range of a convolution type operator associated with a Hilbert–
Schmidt kernel coincides with the reproducing Hilbert C∗-module associated with its
convolution kernel. We show that the integral operator associated with a Hilbert–Schmidt
kernel is Hilbert–Schmidt. Finally, we discuss a relation between an integral type operator
and convolution type operator.

1. Introduction. The theory of reproducing kernels is fundamental
and applicable widely in various areas of mathematics [1, 3, 7, 11, 15]. In
particular, reproducing kernel Hilbert spaces have played an important role
in operator theory and applications [1, 7, 11]. For example, if a Hilbert space
of functions has a reproducing kernel, then the kernel is characterized as the
unique solution of an extremal problem [15, 10]. One of the advantages of
reproducing kernel Hilbert spaces is that the norm in such spaces is easily
computed only on the linear span of the kernels, which is a dense set but not
the whole space in general. Schoenberg [16] introduced functions which are
positive definite on the m-dimensional sphere. A class of positive definite
kernels on a closed compact Riemannian manifold provides some method
for solving uniquely a generalized Hermite interpolation problem [12]. Some
kernels in [12] can be regarded as an example of Hilbert–Schmidt kernels
which we are considering in this paper.

Let H be a reproducing kernel Hilbert space consisting of functions on
a set S. The Riesz representation theorem says that for each element s ∈ S,
there is a unique vector φs ∈ H such that f(s) = (f, φs) for all f ∈ H.
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The function κ defined by κ(s, t) = φs(t) is called the reproducing kernel
for H. Moreover, if {φn : n ∈ N} is an orthonormal basis for H, then
the kernel κ is expressed by κ(s, t) =

∑
n∈N φn(s)φn(t). In this paper, we

consider C∗-valued kernels associated with a sequence of positive numbers as
a quantization of such kernels. We will call such a kernel a C∗-valued Hilbert–
Schmidt kernel. We discuss positive definite (Hilbert–Schmidt) kernels which
are projectively invariant under a multiplier and an action of a semigroup
with involution.

The contents of the sections are as follows. In Section 2, we discuss pos-
itive definite von Neumann algebra-valued kernels which are projectively
invariant under an action of a semigroup with involution. We construct
a projective isometric representation on a Hilbert W ∗-module associated
to a unitary multiplier with a 2-cocycle property. In the third section, we
construct a concrete reproducing Hilbert C∗-module associated with a C∗-
valued Hilbert–Schmidt kernel and discuss projective invariance of Hilbert–
Schmidt kernels. Some example is given for a countably generated Hilbert
C∗-module. In the fourth section, we discuss C∗-valued kernels given by
convolution of C∗-valued kernels. We prove that the range of a convolu-
tion type operator associated with a C∗-valued kernel is contained in the
reproducing Hilbert C∗-module associated with the kernel. The range of a
Hilbert–Schmidt kernel coincides with the reproducing Hilbert C∗-module
associated with its convolution kernel. In the last section, we show that the
integral operator associated with a Hilbert–Schmidt kernel is again Hilbert–
Schmidt. Finally, we discuss an inner product of convolution type operators
in the space of square summable sequences on a countable discrete group.

2. Hilbert C∗-modules and positive definite kernels. Let A be a
C∗-algebra. A right A-module X is called a (right) pre-Hilbert A-module if
there is an A-valued mapping 〈·, ·〉X : X × X → A which is linear in the
second variable and has the following properties:

(i) 〈x, x〉X ≥ 0, and equality holds only if x = 0;
(ii) 〈x, y〉X = 〈y, x〉∗X ;

(iii) 〈x, y · b〉X = 〈x, y〉Xb.
If, in addition, X is complete with respect to the norm ‖x‖ = ‖〈x, x〉X‖1/2,
then X is called a (right) Hilbert A-module.

Let X and Y be Hilbert A-modules. We denote by LA(X,Y ) the set
of all right A-module maps T : X → Y for which there is an operator
T ∗ : Y → X, called the adjoint of T , such that

〈Tx, y〉Y = 〈x, T ∗y〉X for x ∈ X and y ∈ Y .
It follows from the uniform boundedness theorem that each operator T in
LA(X,Y ) is bounded. We write LA(X) for LA(X,X), which becomes a
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C∗-algebra with the operator norm. For y ∈ Y and x ∈ X, the operator
θy,x : X → Y defined by θy,x(z) = y〈x, z〉X is called a rank one operator.
We denote by KA(X,Y ) the closed linear span of all rank one operators and
call elements in KA(X,Y ) compact operators.

By a representation of a C∗-algebra B on a Hilbert A-module X, we
mean a ∗-homomorphism π from B into LA(X).

Let X ′ be the set of all bounded A-module maps of X into A. We call a
Hilbert A-module X self-dual if X ' X ′, that is, every bounded A-module
map f : X → A is of the form 〈xf , ·〉 for an element xf ∈ X. One pleasant
property of self-dual Hilbert A-modules is that every bounded module map
between two such modules has an adjoint. Note that self-dual modules have
some properties in common with both Hilbert spaces and von Neumann al-
gebras [13]. For detailed information on Hilbert C∗-modules, we refer to [9].

Example 2.1. The following are typical examples of Hilbert C∗-modules.

(1) Hilbert C-modules are Hilbert spaces over C with scalar multiplica-
tion and inner product which is linear in the second variable.

(2) Every C∗-algebraA itself becomes a HilbertA-module with the inner
product 〈a, b〉 = a∗b and the usual multiplication in A.

(3) Let E = (E0, E1, r, s) be a directed graph where E0 is the set of
vertices, E1 is the set of edges, r is the range map and s is the
source map. We denote by A the C∗-algebra C0(E

0) of continuous
functions f : E0 → C vanishing at infinity. We denote by Cc(E

1) the
space of continuous functions x : E1 → C with finite support. On
the space Cc(E

1) we define multiplication and inner product by

(x · f)(e) = x(e)x(s(e)) and 〈x, y〉(v) =
∑

{e∈E1:s(e)=v}

x(e)y(e).

Then we can obtain a Hilbert A-module X by completing the space
Cc(E

1).
(4) Let A be a C∗-algebra and let H be a Hilbert space with inner

product 〈·, ·〉H which is linear in the second variable. The algebraic
tensor product A⊗H is a pre-Hilbert A-module with A-valued inner
product 〈·, ·〉 defined on elementary tensors as follows:

〈ξ ⊗ a, η ⊗ b〉 = 〈ξ, η〉Ha∗b.

Then the norm closure of A ⊗ H becomes a Hilbert A-module. In
particular, if L2(Ω,µ) is a Hilbert space of square-integrable func-
tions on Ω where (Ω,µ) is a measure space and if A is a C∗-algebra,
then we denote by L2

A(Ω,µ) the norm closure of A ⊗ L2(Ω,µ). If
H is the Hilbert space l2(N) of square-integrable sequences, we will
denote by l2(A) the norm closure of A⊗ l2(N).
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Throughout this paper, Ω, A and X denote a non-empty set, a C∗-
algebra and a Hilbert A-module, respectively, unless specified otherwise.

In numerical analysis, functions of the form φ =
∑n

j=1 λjΦ(·, wj) are
useful for approximation, where {w1, . . . , wn} is a data set and Φ is a kernel
function, when dealing with data dependent spaces of functions of many
variables. With this motivation we start with a short review of C∗-valued
kernels.

A kernel κ : Ω×Ω → A is positive definite if for any n ∈ N, a1, . . . , an ∈
A and w1, . . . , wn ∈ Ω, the sum

∑n
i,j=1 a

∗
iκ(wi, wj)aj is positive in A. Let X

be the self-dual Hilbert A-module generated by A-valued bounded functions
on a topological space Ω. Assume that each evaluation map evw : ψ 7→
ψ(w) ∈ A is continuous, that is, ‖evw(ψ)‖A ≤ Lw‖ψ‖X for some constant
Lw > 0. Then, for each A-valued function ψ and for any w ∈ Ω there
exists an element φw ∈ X such that ψ(w) = 〈φw, ψ〉X . An A-valued kernel
κ : Ω × Ω → A defined by κ(w, v) = 〈φw, φv〉X ∈ A is called a reproducing
kernel on Ω. In this case, we denote by κ(·, v) the function φv ∈ X.

The theorem below says that any C∗-valued positive definite kernel κ
on a non-empty set Ω can be a reproducing kernel of a Hilbert C∗-module.
It has been proved in [2, Proposition 3.1.3] and independently in [8, The-
orem 3.2]. Moreover, a number of interesting results concerning the structure
of type I product systems of Hilbert modules are given in [2].

Theorem 2.2. Let Ω be a non-empty set and let A be a C∗-algebra.
If a kernel κ : Ω × Ω → A is positive definite, then there exists a Hilbert
A-module Xκ of A-valued functions on Ω such that κ is the reproducing
kernel of Xκ.

We call the Hilbert C∗-module Xκ in Theorem 2.2 a reproducing Hilbert
A-module associated with κ. We can see from the construction of Xκ that
the A-submodule generated by the set {κ(·, w) : w ∈ Ω} is dense in Xκ.

In the remainder of this section, we consider von Neumann algebra valued
kernels projectively invariant under semigroup actions. Constantinescu and
Gheondea [4] studied scalar-valued Hermitian kernels which are projectively
invariant under an action of a semigroup with involution.

Let S be a unital semigroup with an involution J , that is, J(J(s)) = s
and J(st) = J(t)J(s) for every s, t ∈ S. We denote by θ an action of S on Ω,
which means that

θ(s, θ(t, v)) = θ(st, v) and θ(e, v) = v

where e is the unit element of S. Let M be a von Neumann algebra with
center Z(M) and let α : S ×Ω → U(Z(M)) be a map satisfying

(2.1) α(st, v)α(st, w)∗ = α(s, θ(t, v))α(s, θ(t, w))∗α(t, v)α(t, w)∗
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where U(Z(M)) is the set of unitaries in the center Z(M) of M. Then we
see that

(2.2) σ(s, t) = α(s, θ(t, v))∗α(t, v)∗α(st, v)

does not depend on v. Moreover, σ has the 2-cocycle property:

(2.3) σ(r, s)σ(rs, t) = σ(r, st)σ(s, t) for all r, s, t ∈ S.
By assuming that α(sJ(s), v) = 1 for all s ∈ S and v ∈ Ω, we get the
equality

(2.4) σ(s, e) = σ(e, s) = 1 for any s ∈ S.
With the notation and the assumption as before, we introduce the fol-

lowing definition. See [6, 4] for scalar-valued versions.

Definition 2.3. Let a unital semigroup S with an involution J act on
a set Ω by θ.

(i) A U(M)-multiplier on S is a function σ : S × S → U(Z(M))
satisfying (2.3) and (2.4).

(ii) A projective isometric σ-representation of S is a map W : S →M,
s 7→Ws, having the following properties:

(a) Ws is an isometry for each s ∈ S.
(b) Wst = σ(s, t)WsWt for all s, t ∈ S.

(iii) A Hermitian kernel κ : Ω ×Ω →M is projectively invariant if

(2.5) κ(v, θ(s, w)) = α(s, w)α(s, θ(J(s), v))∗κ(θ(J(s), v), w)

for all s ∈ S and v, w ∈ Ω.

Let S be a unital semigroup with involution J and let θ be an action of
S on a set Ω such that θ(J(s)s, v) = v for all s ∈ S and v ∈ Ω. Suppose
that α : S × Ω → U(Z(M)) is a map satisfying (2.1) and α(J(s)s, v) = 1
for all s ∈ S, v ∈ Ω, and let σ be given by (2.2).

Theorem 2.4. Let M be a von Neumann algebra and let S be a unital
semigroup with involution J . Assume that θ and α are as above. If a positive
definite kernel κ : Ω ×Ω →M is projectively invariant, then there exists a
Hilbert M-module Yκ and a projective isometric σ-representation W : S →
LM(Yκ) such that

(2.6) κ(v, w) = 〈ϕv, ϕw〉 and ϕθ(s,v) = α(s, v)Wsϕv,

where each ϕv is an M-valued map given by ϕv(w) = κ(v, w).

Proof. By Theorem 2.2, we can construct a Hilbert M-module Yκ and
a map ϕ : Ω →M such that κ(v, w) = 〈ϕv, ϕw〉 for all v, w ∈ Ω. It follows
from (2.1) and α(J(s)s, v) = 1 (s ∈ S) that

β(s) := α(s, v)α(J(s), θ(s, v))
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does not depend on v. Let Ωϕ = {ϕv : v ∈ Ω}. For any s ∈ S, we define a
map Ws : Ωϕ →M by

Wsϕv = α(s, v)∗ϕθ(s,v)

and extend linearly. Then Ws is adjointable and its adjoint is given by
W ∗s = β(s)WJ(s) for s ∈ S.

For any s ∈ S and v, w ∈ Ω, we have

〈Wsϕv,Wsϕw〉 = 〈α(s, v)∗ϕθ(s,v), α(s, w)∗ϕθ(s,w)〉
= α(s, v)〈ϕθ(s,v), ϕθ(s,w)〉α(s, w)∗

= α(s, v)κ(θ(s, v), θ(s, w))α(s, w)∗ = 〈ϕv, ϕw〉,
which implies that Ws is an isometry. Moreover, for any s, t ∈ S we obtain

WsWtϕv = α(t, v)∗Wsα(s, θ(t, v))∗ϕθ(s,θ(t,v))

= α(t, v)∗Wsα(s, θ(t, v))∗ϕθ(st,v)

= α(t, v)∗Wsα(s, θ(t, v))∗α(st, v)Wstϕv = σ(s, t)Wstϕv

where the third equality follows from the definition of W . This completes
the proof.

We assume that α(s, θ(J(s), v))α(J(s), v) = 1 for all s ∈ S and v ∈ Ω.
Then we deduce from (2.1) that α(sJ(s)) = 1 for any s. Moreover, if κ is
projectively invariant, then W ∗s = WJ(s) for any s ∈ S where W is as in
Theorem 2.4.

3. C∗-valued Hilbert–Schmidt kernels. To study the well-posedness
of a generalized Hermite interpolation problem, Narcowich [12] discussed
kernels κ ∈ L2(Mm ×Mm) having an eigenfunction expansion of the form

(3.1) κ(p, q) =
∞∑
j=1

ajFj(p)F̄j(q) with
∞∑
j=1

|aj |2 <∞

where Mm is a closed, compact, connected, orientable, m-dimensional C∞

Riemannian manifold and {Fj} is the set of eigenfunctions corresponding
to eigenvalues of the Laplace–Beltrami operator. The positivity of all coef-
ficients of the kernel κ in (3.1) implies the positive definiteness of the ker-
nel [12]. For example, the heat kernel κt for a manifold Mm is of such form:

κt(p, q) =
∞∑
j=1

e−λjtFj(p)F̄j(q).

Hence the heat kernel κt in C∞(Mm × Mm) is a positive definite kernel
on Mm.

We now define a Hilbert–Schmidt kernel. Let A be a unital C∗-algebra
and let {rn : n ∈ N} be a sequence of positive real numbers. Consider a
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sequence of A-valued functions φn : Ω → A (n ∈ N) with the following
properties:

(a) For all w ∈ Ω,
∑

n∈N rn‖φn(w)‖2 <∞.
(b) Any finite subset of {φn : n ∈ N} is A-linearly independent over

Ω, that is, for any finite subset Λ ⊂ N and given sequence {an}n∈Λ
in A, the equality

∑
n∈Λ φn(w)an = 0 for all w ∈ Ω implies an = 0

for all n ∈ Λ.

Definition 3.1. An A-valued kernel κ on Ω given by

(3.2) κ(v, w) =
∑
n∈N

rnφn(v)∗φn(w) (v, w ∈ Ω)

is called the A-valued Hilbert–Schmidt kernel associated with {rn} and {φn}.

Condition (a) implies that the kernel κ is absolutely summable, so that
it exists for all v, w ∈ Ω and it is obvious that κ is positive definite. We
consider the space

(3.3) X =
{ k∑
n=1

φn(·)an : an ∈ A, k ∈ N
}

of A-valued functions on Ω. By condition (b) on linear independence, all
finite combinations of φn’s have unique coefficients in A. Hence we can
define an A-valued inner product 〈·, ·〉X on X as follows:〈 k∑

n=1

φn(·)an,
l∑

n=1

φn(·)bn
〉
X

=

min{k,l}∑
n=1

a∗nbn
rn

.

It immediately follows from the definition that

〈φn(·), φm(·)〉X =
δnm
rn

1A,

so that X becomes a pre-Hilbert A-module with the A-valued inner product
〈·, ·〉X. Furthermore, we have the norm∥∥∥ k∑

n=1

φn(·)an
∥∥∥
X

=

∥∥∥∥ k∑
n=1

a∗nan
rn

∥∥∥∥1/2.
We see that (

√
rnφn(w))n∈N is (absolutely) Bochner square-integrable for

each w ∈ Ω. Note that this X is in fact isomorphic to the Hilbert C∗-module
l2(A) defined in Example 2.1. Moreover, l2(A) is self-dual if and only if A is
finite-dimensional [5]. The following theorem says that any Hilbert–Schmidt
kernel has a reproducing Hilbert A-module which is spanned by a set of
the form (3.3). We denote by X the completion of X with respect to the
norm ‖ · ‖X.
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Theorem 3.2. Let A be a unital C∗-algebra and let {rn} and {φn} be
sequences satisfying conditions (a) and (b). If κ is the A-valued Hilbert–
Schmidt kernel associated with {rn} and {φn}, then X is the reproducing
Hilbert A-module associated with κ.

Proof. Under condition (a) that
∑

n∈N rn‖φn(w)‖2 < ∞ for all w ∈ Ω,
it follows from the Cauchy–Schwarz inequality that the infinite sum defining

κ(v, w) =
∑
n∈N

rnφn(v)∗φn(w)

converges for all (v, w) ∈ Ω × Ω. Thus, the Hilbert–Schmidt kernel is well-
defined. From the above construction, we see that X is the set of all se-
ries of the form

∑
n∈N φn(·)an where (an) ranges over all sequences with∑

n∈N r
−1
n ‖an‖2 < ∞. By the A-linear independence of {φn}, the sequence

can be regarded as the function
∑

n∈N φn(·)an ∈ X. Thus, the function
κ(·, w) has a representation

∑
n∈N φn(·)∗an where an = rnφn(w) since∑

n∈N

‖an‖2

rn
=
∑
n∈N

rn‖φn(w)‖2 <∞.

For any element
∑k

n=1 φn(·)an ∈ X and w ∈ Ω, we obtain〈
κ(·, v),

k∑
n=1

φn(·)∗an
〉
X

=

k∑
n=1

rnφn(w)∗an
rn

=
k∑

n=1

φn(v)∗an.

Hence, we have the equation 〈κ(·, v), f〉X = f(v) for every f ∈ X and v ∈ Ω,
so that any φ in X can be regarded as an A-valued function on Ω by
〈κ(·, v), φ〉X = φ(v) for all v ∈ Ω. For any v, w in Ω, we have

〈κ(·, v), κ(·, w)〉X =
∑
n∈N

rnφn(v)∗φn(w) = κ(v, w),

where the second equality follows from the joint continuity of the inner
product. Therefore, X is a reproducing Hilbert A-module associated with
the reproducing kernel κ.

A Hilbert A-module X is called countably generated if there is a count-
able set {xn}∞n=1 inX such that the linear span of {xna : a ∈ A, n = 1, 2, . . .}
is dense in X. When A is unital, a set {xn}n∈I in X is called orthonormal
if 〈xn, xm〉 = δnm1A. A set {xn}n∈I in X is called a basis of X if

(i) ‖xn‖ = 1 for all n ∈ I,
(ii) finite sums of the form

∑
n xnan are dense in X,
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(iii) an A-linear combination
∑

n∈J xnan with J ⊆ I is equal to 0 if and
only if every summand xnan is equal to 0 for n ∈ J.

Example 3.3. Let X be a countably generated Hilbert A-module with
an orthonormal basis {xn : n ∈ N} and let {rn : n ∈ N} be a sequence of
positive real numbers. Suppose that

∑
n rn‖〈xn, x〉‖2 <∞ for all x ∈ X. For

each n ∈ N, let φn : X → A be the A-valued map given by φn(y) = 〈xn, y〉.
Now we define an A-valued kernel κ : X ×X → A by

κ(x, y) =

∞∑
n=1

rn〈xn, x〉∗〈xn, y〉 (x, y ∈ X).

It follows from the Cauchy–Schwarz inequality that
∑
rn〈xn, x〉∗〈xn, y〉 is

absolutely summable, so that the kernel κ is well-defined. The orthogonality
of {xn} implies that {φn} satisfies condition (b) in the definition of an
A-valued Hilbert–Schmidt kernel.

By taking Ω = X in Definition 3.1, we can see that κ is an A-valued
Hilbert–Schmidt kernel associated with the sequences {rn} and {φn}. Let

Xκ =
{∑k

n=1〈xn, ·〉an : an ∈ A, k ∈ N
}

. If we define an A-valued inner
product on Xκ by〈 k∑

n=1

〈xn, ·〉an,
l∑

n=1

〈xn, ·〉bn
〉
Xκ

=

min{k,l}∑
n=1

a∗nbn
rn

,

then Xκ is a pre-Hilbert A-module. By Theorem 3.2, the reproducing Hilbert
A-module Xκ is the completion of the space Xκ with respect to the norm
induced by the above inner product.

Remark. Let κ be the A-valued Hilbert–Schmidt kernel associated with
sequences {rn} and {φn} and let Xκ be its reproducing Hilbert A-module.
The set {κ(·, w) : w ∈ Ω} is A-linearly independent over Ω if and only if
for any pairwise distinct w1, . . . , wN ∈ Ω and a1, . . . , aN ∈ A, the equation∑N

i=1 aiφ(wi) = 0 for all φ ∈ Xκ implies that ai = 0 for all i = 1, . . . , N .
Indeed, for any finite Λ ⊂ N, the equation

∑
n∈Λ κ(·, wn)an = 0 is equivalent

to the fact that 〈
∑

n∈Λ κ(·, wn)an, φ〉 =
∑

n∈Λ a
∗
nφ(wn) = 0.

If for any finite subset {w1, . . . , wn} in Ω, there are elements ψ1, . . . , ψn
in Xκ such that ψi(wj) = δij1A, then any finite subset of {κ(·, w) : w ∈ Ω}
is A-linearly independent over Ω. Furthermore, the functions in Xκ separate
the points. Indeed, take N = 1 and a1 = 1A, a2 = −1A. We see that for any
two distinct t1, t2 ∈ Ω there must exist a φ ∈ Xκ so that φ(t1) 6= φ(t2).

Let M be a von Neumann algebra with center Z(M) and let S, θ and
α be as in Definition 2.3. A map φ : Ω →M is called projectively invariant
under θ and α if

(3.4) φ(θ(s, v)) = α(s, v)φ(v) for all s ∈ S and v ∈ Ω.
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In the following proposition, we use the same notation as in Section 2.

Proposition 3.4. Let M be a von Neumann algebra with center Z(M)
and let S, θ and α be as in Definition 2.3. Suppose that

α(s, θ(J(s), v))α(J(s), v) = 1

for all s ∈ S and v ∈ Ω. If each φn : Ω →M is projectively invariant under
θ and α, then the Hilbert–Schmidt kernel k : Ω ×Ω →M given by (3.2) is
also projectively invariant.

Proof. Assume that each φn : Ω → M is projectively invariant under
θ and α. Let s ∈ S and v, w ∈ Ω. By the definition of a Hilbert–Schmidt
kernel, we have

κ(v, θ(s, w)) = α(s, w)
∑
n

rnφn(v)∗φn(w),

κ(θ(J(s), v), w) = α(J(s), v)∗
∑
n

rnφn(v)∗φn(w).

It follows from α(s, θ(J(s), v))α(J(s), v) = 1 that

κ(v, θ(s, w)) = α(s, w)α(s, θ(J(s), v))∗κ(θ(J(s), v), w),

which implies that κ is projectively invariant.

4. C∗-valued convolution type operators. In this section, we denote
by (Ω,µ) a measure space with a positive measure µ. Let L2(Ω,µ) be the
Hilbert space of square-integrable functions on Ω and let A be a unital
C∗-algebra. Recall that L2

A(Ω,µ) is the norm closure of A⊗ L2(Ω,µ) with
the A-valued inner product defined in Example 2.1. Let S(Ω,A) be the
set of A-valued integrable simple functions on Ω. Then S(Ω,A) may be
identified with the subspace A⊗S(Ω) of A⊗ L2(Ω,µ) where S(Ω) is the
set of integrable simple functions on Ω and A⊗S(Ω) is the algebraic tensor
product. It follows from the density of S(Ω) in L2(Ω,µ) that S(Ω,A) is
dense in L2

A(Ω,µ). For any f ∈ S(Ω,A), we have

‖f‖22 =
∥∥∥ �

Ω

f(w)∗f(w) dµ(w)
∥∥∥ ≤ �

Ω

‖f(w)‖2 dµ(w)

where the integral
	
Ω f(w)∗f(w) dµ(w) is in the sense of Bochner. Hence,

the set L2(Ω,A) of square-integrable functions is contained in L2
A(Ω,µ).

The Hilbert A-module L2
A(Ω,µ) can be obtained by completing L2(Ω,A)

with respect to the norm given by ‖f‖2. The following lemma says that
there is an easy way to embed a reproducing Hilbert A-module into a space
L2
A(Ω,µ).
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Lemma 4.1. Let κ : Ω × Ω → A be a positive definite kernel such that
κ(·, ω) is measurable for any ω ∈ Ω. If Xκ is the reproducing Hilbert A-
module associated with κ such that

L(κ)2 :=
�

Ω

‖κ(w,w)‖ dµ(w) <∞,

then there is a continuous linear inclusion map ι of Xκ into L2
A(Ω,µ) with

norm ≤ L(κ).

Proof. Let φ be any element in Xκ. Since Xκ is a reproducing Hilbert
A-module, we find that for any w ∈ Ω,

‖φ(w)‖A = ‖〈κ(·, w), φ(·)〉Xκ‖
≤ ‖φ(·)‖Xκ‖κ(·, w)‖Xκ = ‖φ(·)‖Xκ‖κ(w,w)‖1/2

where the inequality follows from the Cauchy–Schwarz inequality. If we de-
note by ‖ · ‖2 the norm on L2

A(Ω,µ), then

‖φ‖22 ≤
�

Ω

‖φ(w)∗φ(w)‖ dµ ≤
�

Ω

‖φ(·)‖2Xκ‖κ(w,w)‖ dµ.

This means that the embedding ι : Xκ ↪→ L2(Ω,A) has a norm ≤ L(κ).

Let κ be as in Lemma 4.1. For any φ ∈ L2
A(Ω,µ), we define a map

Cκ(φ) : Ω → A by

Cκ(φ)(w) =
�

Ω

κ(v, w)∗φ(v) dµ(v) (w ∈ Ω).

We say that Cκ is the convolution type operator associated with κ, briefly a
convolution type operator.

Remark. Let {rn} and {φn} be sequences satisfying conditions (a)
and (b) given before Definition 3.1.

(1) Suppose that κ(·, w) =
∑∞

n=0 rnφn(·)∗φn(w) is in L2
A(Ω,µ) for each

w ∈ Ω where the sum also converges in the L2
A(Ω,µ) metric. Then

Cκ(φ)(w) =

∞∑
n=0

φn(w)∗
( �

Ω

rnφn(v)φ(v) dµ(v)
)
.

We can see that Cκ(φ) is in Xκ if and only if
∞∑
n=0

‖
	
Ω rnφn(v)φ(v) dµ(v)‖2

rn
=

∞∑
n=0

rn

∥∥∥ �

Ω

φn(v)φ(v) dµ(v)
∥∥∥2 <∞.

(2) Let each map φn be projectively invariant under θ and α and let
φ ∈ L2

M(Ω,µ). If κ : Ω × Ω → M is the Hilbert–Schmidt kernel
given by (3.2), then Cκ(φ) is projectively invariant under θ and α∗

where α∗(s, v) = α(s, v)∗.
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Let F (Xκ) be the linear span of all point evaluation A-valued functions
on Xκ; here, a point evaluation A-valued function δw : Xκ → A is given by
δw(φ) = φ(w) (w ∈ Ω, φ ∈ Xκ). Then each element φ in Xκ satisfies the
inequality

(4.1) ‖χ(φ)‖ ≤ Lφ‖χ‖ for all χ ∈ F (Xκ)

for some constant Lφ. If Xκ is self-dual, then Xκ is the space of functions φ
with a constant Lφ satisfying (4.1). Note that not every bounded A-module
map between Hilbert A-modules has a bounded adjoint [13].

The following theorem says that the convolution type operator Cκ is the
adjoint operator of the embedding ι of Xκ into L2

A(Ω,µ) in Lemma 4.1.

Theorem 4.2. Let κ and L(κ) be as in Lemma 4.1. If the reproduc-
ing Hilbert A-module Xκ is self-dual, then the convolution type operator Cκ
maps L2

A(Ω,µ) into Xκ. Moreover, the norm of Cκ is at most L(κ) and the
equation

〈φ, ι(ψ)〉2 = 〈Cκ(φ), ψ〉Xκ
holds for any φ ∈ L2

A(Ω,µ) and ψ ∈ Xκ where 〈·, ·〉2 and 〈·, ·〉Xκ are the
inner products on L2

A(Ω,µ) and Xκ, respectively.

Proof. Let χ =
∑n

i=1 δwi(·)ai be any element in F (Xκ) with finite sup-
port. Then we have

‖χ(Cκ(φ))‖ =
∣∣∣( n∑

i=1

δwiai

)
[Cκ(φ)]

∣∣∣ =
∣∣∣ n∑
i=1

a∗i [Cκ(φ)](wi)
∣∣∣

=
∣∣∣ �
Ω

[ n∑
i=1

a∗iκ(w,wi)
∗φ(w)

]
dµ(w)

∣∣∣
≤ ‖φ‖2

∥∥∥ n∑
i=1

κ(·, wi)ai
∥∥∥
2
≤ L(κ)‖φ‖2‖χ‖ = Lφ‖χ‖

where Lφ = L(κ) · ‖φ‖2 and the last inequality follows from the self-duality
of Xκ. This inequality implies that Cκ(φ) belongs to Xκ for all φ ∈ L2

A(Ω,µ).
Let w0 be any fixed element in Ω and let ψ be an element of Xκ given

by ψ = κ(·, w0)a0. For any element φ in L2
A(Ω,µ), we have

〈ι(ψ), φ〉2 =
�

Ω

a∗0κ(w,w0)
∗φ(w) dµ(w)

= a∗0Cκ(φ)(w0) = a∗0〈κ(·, w0),Cκ(φ)〉Xκ
= 〈κ(·, w0)a0,Cκ(φ)〉Xκ = 〈ψ,Cκ(φ)〉Xκ .

Since every element in Xκ can be approximated by elements of the form∑n
i=1 κ(·, wi)ai, it follows by continuity that 〈ι(ψ), φ〉2 = 〈ψ,Cκ(φ)〉Xκ for

all ψ ∈ Xκ.
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We now consider a kernel on a countable discrete set. Let S = {s1, s2, . . .}
be a countable discrete set with counting measure ν. If en is the function
on S defined by en(sm) = δnm1A, then each function φ in L2

A(S, ν) can be
expressed as the Fourier expansion

φ(·) =

∞∑
n=1

en(·)〈en, φ〉2

where 〈en(·), φ〉2 =
∑∞

m=1 en(sm)∗φ(sm) = φ(sn). If {rn : n ∈ N} is a
sequence of positive real numbers and if m is a positive integer, then we
have

∑∞
n=1 rn‖en(sm)‖ = rm. It is clear that any finite subset of {en} is

A-linearly independent over S.

Let κ be the A-valued Hilbert–Schmidt kernel associated with the se-
quences {rn} and {en}, that is, κ(s, t) =

∑∞
n=1 rnen(s)∗en(t) where en’s are

as above. By Theorem 3.2, the corresponding reproducing Hilbert A-module
X is the completion of the space

X =
{ k∑
n=1

en(·)an : an ∈ A, k ∈ N
}

with respect to the norm induced by the A-valued inner product

〈φ, ψ〉X =
∞∑
n=1

〈en, φ〉∗2〈en, ψ〉2
rn

=
∞∑
n=1

〈φ, en〉2〈en, ψ〉2
rn

.

Proposition 4.3. Let S, κ, {en} and {rn} be as above. Suppose that the
sequence {rn} is summable and that the corresponding reproducing Hilbert
A-module Xκ is self-dual.

(i) For all φ ∈ L2
A(S, ν), Cκ(φ) ∈ Xκ.

(ii) The convolution type operator Cκ : L2
A(S, ν)→ Xκ is compact.

Proof. (i) For each s ∈ S we have

[Cκ(φ)](s) =

∞∑
n=1

κ(sn, s)
∗φ(sn) =

∞∑
n=1

∞∑
m=1

rnem(s)∗em(sn)φ(sn)

=
∞∑
n=1

rnen(s)∗φ(sn).

Thus, [Cκ(φ)](·) =
∑

n∈N rnen(·)∗φ(sn). By letting an = rnφ(sn), we obtain∑
n∈N

‖an‖2

rn
=
∑
n∈N

rn‖φ(sn)‖2 <∞

since {rn} is summable. It follows from Theorem 4.2 that Cκ(φ) ∈ Xκ for

all φ ∈ L2
A(S, ν).
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(ii) Let κN (s, t) =
∑N

n=1 rnen(s)∗en(t). We define an operator CN on
L2
A(S, ν) by

[CN (φ)](s) =

∞∑
n=1

κN (sn, s)
∗φ(sn) (φ ∈ L2

A(S, ν)).

For any φ ∈ L2
A(S, ν), we have

[CN (φ)](·) =

N∑
n=1

rnen(·)∗φ(sn)

=

N∑
n=1

en〈rnen(·), φ(·)〉2 =

N∑
n=1

θen,rnen(·)(φ).

Since we can regard rnen(·) as an element in L2
A(S, ν), CN is a finite rank

operator. For the summable sequence {rn}, we have

(4.2)
∞∑
n=1

∞∑
m=1

‖κ(sn, sm)‖2 =
∞∑
n=1

∞∑
m=1

∥∥∥∑
l∈N

rlel(sn)∗el(sm)
∥∥∥2 =

∞∑
n=1

r2n.

Since a summable sequence of positive numbers is square-summable, it fol-
lows from (4.2) that the convolution type operator Cκ : L2

A(S, ν) → Xκ is
compact.

For any element φ in L2
A(S, ν), we have

[Cκ(φ)](·) =
∞∑
n=1

rnen(·)∗〈en, φ〉2,

which implies that the convolution type operator Cκ is multiplication of
each Fourier coefficient by rn. That is, Cκ can be regarded as the diagonal
operator with diagonal diag(r1, r2, . . .) with respect to the basis {en}, so that
its compactness is immediate. The operator norm of the convolution type
operator Cκ is supn rn. Moreover, we see that the range of the convolution
type operator Cκ is

Im(Cκ) =
{ ∞∑
n=1

rnen(·)∗〈en, φ〉2 :
∑
n

‖〈en, φ〉2‖2 <∞, φ ∈ L2
A(S, ν)

}
=

{
φ ∈ L2

A(S, ν) :
∑
n

‖〈en, φ〉2‖2

r2n
<∞

}
.

Let κ1 and κ2 be A-valued kernels on a discrete countable set S =
{s1, s2, . . .}. We define the convolution kernel κ1 ∗ κ2 of κ1 and κ2 by

(κ1 ∗ κ2)(s, t) =
∞∑
n=1

κ1(s, sn)∗κ2(t, sn), (s, t ∈ S).
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In particular, if κ1 = κ2 = κ, then K = κ∗κ is called the convolution kernel
of κ.

Let S, {en} and {rn} be as in Proposition 4.3. If κ is the A-valued
Hilbert–Schmidt kernel associated with the sequences {rn} and {en}, then
we have

K(s, t) =

∞∑
n=1

[ ∞∑
m=1

rmem(s)∗em(sn)
]∗[ ∞∑

l=1

rlel(t)
∗el(sn)

]
=
∞∑
n=1

r2nen(s)en(t)∗.

It follows from Theorem 3.2 that the reproducing Hilbert A-module XK

associated with K is the completion of the space of A-valued functions on S
with finite supports with respect to the norm induced by the inner product〈 k∑

n=1

en(·)an,
l∑

n=1

en(·)bn
〉

=

min{k,l}∑
n=1

a∗nbn
r2n

.

This observation yields the following result.

Theorem 4.4. Let S, {en} and {rn} be as in Proposition 4.3. If κ is
an A-valued Hilbert–Schmidt kernel associated with {rn} and {en}, then
the reproducing Hilbert A-module associated with the convolution kernel K
coincides with the range of the convolution type operator Cκ.

Let S and κ be as in Theorem 4.4. Then for any s, t in S we have

Cκ(κ(·, s))(t) =
∞∑
n=1

[ ∞∑
m=1

rmem(sn)∗em(s)
]∗[ ∞∑

l=1

rlel(sn)∗el(t)
]

=
∞∑
n=1

r2nen(s)∗en(t) = K(s, t).

This is the reason why we call Cκ a convolution type operator.

Let G be a transformation group acting on the right on a set T . Then
there is a canonical action π of G on the space of A-valued functions given
by the formula

(π(g)φ)(t) = φ(tg) (g ∈ G, t ∈ T )

where φ : T → A is an A-valued function. In many cases, the domain
T of functions admits a transformation group G such that the Hilbert A-
module X of A-valued functions on T is invariant under G, that is, for every
φ, ψ ∈ X,

φ ◦ π(g) ∈ X and 〈π(g) ◦ φ, π(g) ◦ ψ〉X = 〈φ, ψ〉X .
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If X is a self-dual Hilbert A-module of A-valued functions on T with a
unitary representation π of G on X, that is, π(g)φ ∈ X and ‖π(g)φ‖ = ‖φ‖
for all g ∈ G and φ ∈ X, then X is called a (G, π)-Hilbert A-module [8].

Proposition 4.5 ([8]). Let G be a transformation group acting on the
right on a set T and let X be a (G, π)-Hilbert A-module of A-valued functions
on T . Then κ is invariant under G in the sense that κ(sg, tg) = κ(s, t) for
all g ∈ G and s, t ∈ T .

Remark. One can read off some invariance properties inherited by re-
producing kernels κ from their Hilbert A-modules of A-valued functions on
a set T :

(1) Let A be a C∗-algebra and let X be a Hilbert A-module. The invari-
ance on the unit sphere in X under all unitary transformations leads
to the function κ(x, y) = φ(〈x, y〉X) for a function φ : A1 → A where
A1 is the unit ball of a C∗-algebra A. We may regard X as a space
of A-valued functions on X defined by x(y) = 〈x, y〉 for x, y ∈ X.

(2) Let T be the homogeneous space L\G of right cosets of L in G where
G is a connected semisimple Lie group with finite center and L is a
maximal compact subgroup of G. For any s, t in T , set

κ(s, t) = φ(xy−1)

where x ∈ Ls, y ∈ Lt and φ is an A-valued function on G. If φ is
invariant under translation by L on both sides, then κ is well-defined.
Moreover, if φ is positive definite, then κ is a positive definite kernel
which is invariant under right translations.

5. Convolution type operators and integral type operators.
Throughout this section, Γ denotes a countable discrete group, unless spec-
ified otherwise. Given a complex-valued kernel κ : Γ × Γ → C, we define an
operator Iκ by

(5.1) Iκ(φ)(s) =
∑
t∈Γ

κ(s, t)φ(t) for φ ∈ l2(Γ ),

which is called the integral type operator associated with κ.
Let {fn} be an orthonormal basis for l2(Γ ) and {rn} a positive summable

sequence. If κ : Γ × Γ → C is the Hilbert–Schmidt kernel associated with
{rn} and {fn}, then κ(s, ·) can be regarded as an element in l2(Γ ) for each
s ∈ Γ . Indeed,

‖κ(s, ·)‖22 ≤
∑
t∈Γ

(∑
n∈N

rn|fn(s)|2
)(∑

n∈N
rn|fn(t)|2

)
=
(∑
n∈N

rn|fn(s)|2
)(∑

n∈N
rn

)
<∞.
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We have
∑

s,t∈Γ |κ(s, t)|2 ≤
(∑

n∈N rn
)2

< ∞, so that κ can be regarded

as a function in l2(Γ × Γ ). Furthermore, if each fn is projectively invariant
under θ and α, then Iκ(φ) is also projectively invariant for any φ ∈ l2(Γ ).

Proposition 5.1. The integral operator Iκ associated with a Hilbert–
Schmidt kernel κ is a Hilbert–Schmidt operator on l2(Γ ) and the map κ 7→ Iκ
is an isometry. Moreover, Iκ is self-adjoint.

Proof. It follows from Proposition 3.4.16 in [14] that Iκ is a Hilbert–
Schmidt operator on l2(Γ ) and that the map κ 7→ Iκ is an isometry. Since

κ is positive definite, it is conjugate symmetric, that is, κ(s, t) = κ(t, s) for
all s, t ∈ Γ . The self-adjointness of Iκ also follows from Proposition 3.4.16
in [14].

In the following theorem, we see that an integral operator associated
with a positive definite kernel induces an embedding of an l2-space into the
reproducing Hilbert space.

Theorem 5.2. If κ : Γ × Γ → C is a positive definite kernel such
that

∑
s∈Γ κ(s, s) < ∞, then the integral operator Iκ maps l2(Γ ) into the

reproducing Hilbert space Hκ. Moreover,

〈φ, ψ〉2 = 〈Iκ(φ), ψ〉κ for all φ ∈ l2(Γ ) and ψ ∈ Hκ,
〈φ, ψ〉2 = 〈Iκ(ψ), φ〉κ for all φ ∈ Hκ and ψ ∈ l2(Γ ).

Proof. The proof of the first part is the same as that of Theorem 4.2.
The proof of the equations is similar to that of Theorem 4.2, so that we only
give a sketch. Let ψ = κ(s, ·) be in Hκ for some s ∈ Γ . For any φ in l2(G),
we have

〈φ, ψ〉2 =
∑
t∈Γ

φ(t)κ(s, t) = Iκ(φ)(s)

= 〈Iκ(φ), κ(s, ·)〉κ = 〈Iκ(φ), ψ〉κ.
Since any ψ ∈ Hκ can be approximated by linear combinations of κ(s, ·)’s,
the first equation holds by continuity. To prove the second, we need only
consider elements of the form φ = κ(s, ·) in Hκ. For any ψ in l2(Γ ) we have

〈φ, ψ〉2 =
∑
t∈Γ

κ(s, t)ψ(t) = Iκ(ψ)(s)

= 〈Iκ(ψ), κ(s, ·)〉κ = 〈Iκ(ψ), φ〉κ,
which completes the proof.

Suppose that κ is a complex-valued positive definite kernel satisfying
the assumption as in Lemma 4.1, that is,

∑
s∈Γ κ(s, s) <∞. We can easily

see that Iκ(κ(t, ·))(s) = K(s, t) for all s, t ∈ Γ where K is the convolution
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kernel of κ. In particular, if κ is given by κ(s, t) =
∑

n rnfn(s)fn(t) where
{fn} is an orthonormal basis for l2(Γ ), we get the equality

Cκ(κ(s, ·))(t) =
∑
n

r2nfn(s)fn(t) (s, t ∈ Γ ).

To compute l2-inner products of elements in the range of Cκ, let φ, ψ be in
l2(Γ ). We have

〈Cκ(φ),Cκ(ψ)〉l2(Γ ) =
∑
u

(∑
t

κ(u, t)φ(t)
)(∑

s

κ(u, s)ψ(s)
)

=
∑
s,t

K(s, t)φ(t)ψ(s).

In particular, if φ = κ(t, ·) and ψ = κ(s, ·) for some s, t ∈ Γ then

〈Cκ(κ(t, ·)),Cκ(κ(s, ·))〉l2(Γ ) =
∑
u

(∑
v

κ(u, v)κ(t, v)
)(∑

w

κ(u,w)κ(s, w)
)

=
∑
u

K(s, u)K(t, u) = CK(K(t, ·))(s).

Thus, we can regard the l2-inner product in the range of Cκ as the evaluation
of the image of CK associated with the convolution kernel K.
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