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A counter-example in singular integral theory

by

Lawrence B. Difiore and Victor L. Shapiro (Riverside, CA)

Abstract. An improvement of a lemma of Calderón and Zygmund involving singular
spherical harmonic kernels is obtained and a counter-example is given to show that this
result is best possible. In a particular case when the singularity is O(|log r|), let f ∈
C1(RN\{0}) and suppose f vanishes outside of a compact subset of RN , N ≥ 2. Also, let
k(x) be a Calderón–Zygmund kernel of spherical harmonic type. Suppose f(x) = O(|log r|)
as r → 0 in the Lp-sense. Set

F (x) =
�

RN

k(x− y)f(y) dy ∀x ∈ RN\{0}.

Then F (x) = O(log2 r) as r → 0 in the Lp-sense, 1 < p <∞. A counter-example is given
in R2 where the increased singularity O(log2 r) actually takes place. This is different from
the situation that Calderón and Zygmund faced.

1. Introduction. We will operate in real N -dimensional Euclidean
space, RN , N ≥ 2, and use the following notation:

x = (x1, . . . , xN ), y = (y1, . . . , yN ),

αx+ βy = (αx1 + βy1, . . . , αxN + βyN ),

x · y = x1y1 + · · ·+ xNyN , |x| = (x · x)1/2.

Also, B(x, ρ) will designate the open ball centered at x with radius ρ. Then
B(x, ρ)\{x} is the corresponding ball punctured at x.

k(x) will designate a Calderón–Zygmund kernel of spherical harmonic
type. So

(1.1) k(x) =
Pn(x)

|x|n+N
for x 6= 0

where Pn(x) is a spherical harmonic of order n, i.e., a homogeneous polyno-
mial of degree n, n ≥ 1, which is also a harmonic function. (For more about
Calderón–Zygmund kernels of spherical harmonic type, see [3, Chapter 2].)
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Furthermore, η(r) will be a positive continuous strictly decreasing func-
tion with

(1.2) (i) η ∈ C((0, 1)) and (ii) η(r)→∞ as r → 0.

In what follows, f will designate a function of the following nature:

(1.3) f ∈ Lp(RN ) with f(x) = 0 a.e. for |x| > 1

where 1 < p <∞.

With |x| = r, we will say f(x) = O(η(r)) as r → 0 in the Lp-sense
provided

(1.4)

(
1

rN

�

B(0,r)

|f(x)|p dx
)1/p

= O(η(r)) as r → 0.

We will say f(x) = O(η(r) +
	1
r η(ρ) dρ) as r → 0 in the Lp-sense provided

(1.5)

(
1

rN

�

B(0,r)

|f(x)|p dx
)1/p

= O
(
η(r) +

1�

r

η(ρ) dρ
)

as r → 0.

Likewise, we have f(x) = o(η(r)) as r → 0 in the Lp-sense if we replace O
by o in the above definition.

It follows from [?, Theorem 1] that if k(x) is defined as in (1.1) and f(x)
is as in (1.4), then

(1.6) F (x) = lim
ε→0

�

RN\B(x,ε)

k(x− y)f(y) dy exists a.e. in RN ,

and F ∈ Lp(RN ) with

(1.7) ‖F‖Lp(RN ) ≤ C∗p‖f‖Lp(RN )

where C∗p is a constant independent of f .

It is our intention here to prove the following singularity theorem about
F (x) defined by the singular integral in (1.6).

Theorem. With k(x) and η(r) as in (1.1) and (1.2), respectively, and
N ≥ 2, suppose that f ∈ Lp(RN ), where 1 < p < ∞, and f = 0 a.e. for
|x| > 1. Suppose also that

(i)

(
1

rN

�

B(0,r)

|f(x)|p dx
)1/p

= O(η(r)) as r → 0,

(ii) F (x) = lim
ε→0

�

RN\B(x,ε)

k(x− y)f(y) dy a.e. in RN .
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Then

(1.8)

(
1

rN

�

B(0,r)

|F (x)|p dx
)1/p

= O

(
η(r) +

1�

r

η(s)

s
ds

)
as r → 0.

Also, if O is replaced by o in (i), then O can be replaced by o in (1.8).

In §3 we will give a counter-example to show that the above theorem is
a best possible result, i.e.,

	1
r (η(s)/s) ds cannot be dropped in (1.8).

The above theorem is an improvement of Lemma 5.1 in [2] where, in this
context, Calderón and Zygmund deal only with the case η(r) = r−α, 0 <
α ≤ N/p. In this case, when η(r) = 1/rα, the integral in (1.8) adds nothing
new. We are concerned here with η(r) = |log r| for example. In this case,
the integral in (1.8) becomes log2 r, showing that the singularity is actually
increased. Our counter-example will show that the singularity log2 r actually
takes place. So the bound in our theorem is sharp.

The above theorem is also true in dimension N = 1. In this case, k(s)
becomes the familiar Hilbert kernel

k(s) =
sgn s

|s|
for s ∈ R and s 6= 0.

2. Proof of Theorem. We first note that by [?], F defined by (ii) in
the theorem is also in Lp(RN ).

We make the following definitions:

F1ρ(x) = lim
ε→0

�

|y|≤ρ, y∈RN\B(x,ε)

k(x− y)f(y) dy,

F2ρ(x) = lim
ε→0

�

|y|≥ρ, y∈RN\B(x,ε)

k(x− y)f(y) dy,

and

fρ(y) =

{
f(y) for |y| ≤ ρ,

0 for |y| > ρ.

Thus,

F1ρ(x) = lim
ε→0

�

RN\B(x,ε)

k(x− y)fρ(y) dy.

Applying [?, Theorem 1, p. 289], we see that(
1

ρN

�

B(0,ρ/2)

|F1ρ(x)|p dx
)1/p

≤ 1

ρN/p
C∗p‖fρ‖Lp(RN ),

where C∗p is a constant depending only on k and p. Therefore, from (i) in
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the hypothesis of the theorem,

(2.1)

(
1

ρN

�

B(0,ρ/2)

|F1ρ(x)|p dx
)1/p

≤ C∗pO(η(ρ)).

Next, from (1.1), we see that |k(x)| ≤ const/|x|N for x 6= 0. Hence,

(2.2) |k(x− y)| ≤ C1

|x− y|N
≤ 2NC1

|y|N

for |x| ≤ ρ/2 and |y| ≥ ρ, where C1 is a constant depending only on k.
Therefore

�

|y|≥ρ

|k(x− y)| |f(y)| dy ≤ 2NC1

�

|y|≥ρ

|f(y)|
|y|N

dy

≤ 2NC1

1�

ρ

s−N
�

|y|=s

|f(y)| dS(y) ds

for |x| ≤ ρ/2. Consequently, after integrating by parts, we obtain

�

|y|≥ρ

|k(x−y)| |f(y)| dy≤2NC1

[
‖f‖L1(RN )+N

1�

ρ

s−(N+1)
( �

|y|≤s

|f(y)| dy
)
ds
]
.

Since
	
|y|≤s |f(y)| dy ≤ C2|sN |1/q(

	
|y|≤s |f(y)|p dy)1/p where 1/p + 1/q = 1

and C2 is a constant, we see from (i) applied to this last formula that

(2.3)
�

|y|≥ρ

|k(x− y)| |f(y)| dy ≤ C3‖f‖L1(RN ) + C3

1�

ρ

s−1η(s) ds

where C3 is a constant and |x| ≤ ρ/2. Therefore,

1

ρN

�

B(0,ρ/2)

|F2ρ(x)|p dx ≤ 1

ρN

�

B(0,ρ/2)

[
C3‖f‖L1(RN ) + C3

1�

ρ

s−1η(s) ds
]p
dx

≤ C4

[
C3‖f‖L1(RN ) + C3

1�

ρ

s−1η(s) ds
]p
.

where C4 is another constant.
Using Minkowski’s inequality, we see from this last computation com-

bined with (2.1) that(
1

ρN

�

B(0,ρ/2)

|F (x)|p dx
)1/p

≤ C5

(
η(ρ) +

1�

ρ

s−1η(s) ds
)

for 0 < ρ < 1/2, where C5 is a constant. This establishes the first part of
the theorem.
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To prove the second part of the theorem where O is replaced by o in (i)
we observe first that (2.1) can be replaced with

(2.4)

(
1

ρN

�

B(0,ρ/2)

|F1ρ(x)|p dx
)1/p

≤ C∗po(η(ρ))

and next that (2.3) can be replaced with

�

|y|≥ρ

|k(x− y)| |f(y)| dy ≤ C3‖f‖L1(RN ) + C3

1�

ρ

s−1g(s)η(s) ds

where g(s) is a positive continuous bounded strictly increasing function on
(0, 1) with

(2.5) lim
s→0

g(s) = 0.

Consequently, we see as before that

(2.6)
1

ρN

�

B(0,ρ/2)

|F2ρ(x)|p dx ≤ C4

[
C3‖f‖L1(RN ) + C3

1�

ρ

s−1g(s)η(s) ds
]p
.

It follows from (1.2) and (2.5) that

1�

ρ

s−1g(s)η(s) ds = o(1)
[
η(ρ) +

1�

ρ

s−1η(s) ds
]

as ρ→ 0. Therefore, from (2.6) we obtain(
1

ρN

�

B(0,ρ/2)

|F2ρ(x)|p dx
)1/p

≤ o(1)
[
η(ρ) +

1�

ρ

s−1η(s) ds
]
.

(2.4) in conjunction with this last inequality shows that(
1

ρN

�

B(0,ρ/2)

|F (x)|p dx
)1/p

≤ o(1)
[
η(ρ) +

1�

ρ

s−1η(s) ds
]

as ρ→ 0,

and the proof of the Theorem is complete.

3. A counter-example. In this section, we will give a counter-example
to show that, in general, the integral on the right-hand side in (1.8) cannot
be dropped. In other words, in some cases the singularity that occurs in the
singular integral actually increases.

For simplicity, we will give our example in dimension N = 2. A similar
example holds in dimensions N ≥ 3.
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From the start, we will assume that η(r) meets both conditions in (1.2)
and also the following two conditions:

(3.1(i)) lim
r→0

η(r)	1
r(η(s)/s) ds

= 0

and

(3.1(ii)) for p > 1, limr→0 r(η(r))p = 0, and also there exists r∗ with
0 < r∗ < 1 such that r(η(r))p is an increasing function in (0, r∗).

Condition (1.2) as well as both conditions (3.1(i)) and (3.1(ii)) are met
by the function η(r) = |log r|.

For our singular integral kernel k(x) of spherical harmonic type with
N = 2, we take

(3.2) k(x) =
x1x2
|x|4

for x 6= 0.

Also, we set

(3.3) ξ(x) =
x1x2
|x|2

for x 6= 0,

and

(3.4) f(x) =

{
ξ(x)η(|x|) for 0 < |x| < 1,

0 for |x| ≥ 1.

We see from (1.2) and (3.1(ii)) that f(x) defined by (3.4) is in Lp(R2)
and (

1

r2

�

B(0,r)

|f(x)|p dx
)1/p

≤ (2π)1/pη(r) for 0 < r < r∗.

So to show that our counter-example works, all we have to do is show that
for the singular integral defined using (3.2) and (3.4), the term

	1
r(η(s)/s) ds

cannot be eliminated in (1.8).

In order to do this, we observe that for fixed x,

k(x− y)ξ(y) is a continuous function for y 6= x and y 6= 0.

Also,

∃M > 0: |k(x− y)ξ(y)| ≤M for |y| = 1 and |x| ≤ 1/2.

As a consequence of these last two facts and (3.2) and (3.3), with dS(y)
representing the natural measure on |y| = 1 and B any positive measure
subset of |y| = 1, we have

(3.5) lim
x→0

�

B

k(x− y)ξ(y) dS(y) =
�

B

k(−y)ξ(y) dS(y) =
�

B

y21y
2
2

|y|6
dS(y) > 0.
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Next, we label the quadrants in the plane in the usual manner, i.e.,

Quad1 =

{
x : x = (r cos θ, r sin θ), 0 < θ <

π

2
, 0 < r <∞

}
,

Quad2 =

{
x : x = (r cos θ, r sin θ),

π

2
< θ < π, 0 < r <∞

}
,

Quad3 =

{
x : x = (r cos θ, r sin θ), π < θ <

3π

2
, 0 < r <∞

}
,

Quad4 =

{
x : x = (r cos θ, r sin θ),

3π

2
< θ < 2π, 0 < r <∞

}
.

We will refer to Quad1 and Quad3 as opposite quadrants. Likewise,
Quad2 and Quad4 are opposite quadrants. So for example, x and y are
in opposite quadrants if x ∈ Quad4 and y ∈ Quad2.

Next, we define

Ai = {y : |y| = 1, y /∈ Quadi}
for i = 1, . . . , 4. It follows from (3.5) and this last definition that

(3.6) ∃ρi > 0:
�

Ai

k(x− y)ξ(y) dS(y) > 0 for 0 < |x| < ρi

for i = 1, . . . , 4. We set

(3.7) r0 = min(1/2, ρ1, ρ2, ρ3, ρ4),

and claim that the following fact holds where Q stands for one of the four
quadrants: With x ∈ Q and |x| < r0s where 0 < s < 1,

(3.8)
�

|y|=s

k(x− y)ξ(y) dS(y) ≥
�

|y|=s, y∈Q∗

k(x− y)ξ(y) dS(y),

where Q∗ is the quadrant opposite to Q.

To establish (3.8), assume

(3.9) x ∈ Quadj and |x| < r0s for some 0 < s < 1,

and let

(3.10) Quadi be the quadrant opposite to Quadj .

So Q = Quadj and Q∗ = Quadi.

Set ν = x/s and ζ = y/s. Then, with Ai as defined above,�

|y|=s, y/s∈Ai

k(x− y)ξ(y) dS(y) =
�

|ζ|=1, ζ∈Ai

k(s(ν − ζ))ξ(sζ)s dS(ζ)

=
1

s

�

|ζ|=1, ζ∈Ai

k(ν − ζ)ξ(ζ) dS(ζ) > 0
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by (3.9), because |ν| < r0 where r0 is defined in (3.7) above. Since Q∗ =
Quadi, claim (3.8) follows from this last computation.

For x ∈ Q and y ∈ Q∗, we observe that both

(3.11) y1(y1 − x1) > 0 and y2(y2 − x2) > 0.

Also, it follows from (3.2) and (3.3) that

k(x− y)ξ(y) =
y1(y1 − x1)y2(y2 − x2)

|x− y|4|y|2

for x 6= y and y 6= 0. Hence, we conclude from (3.11) that

(3.12) k(x− y)ξ(y) > 0

for x ∈ Q and y ∈ Q∗.
Next, we are going to shrink the interval of integration slightly in the

integral on the right-hand side of (3.8). We do this as follows. Set

γ = sin
π

24
and

(3.13) Γ = {y ∈ Q∗ : |y| = s, | y1| ≥ γs, and |y2| ≥ γs}.
An easy computation shows that

(3.14)
�

Γ

dS(y) = s

(
π

2
− π

12

)
=

5π

12
s.

We also claim that

(3.15) y1(y1 − x1) ≥ γ2s2 and y2(y2 − x2) ≥ γ2s2

for x ∈ Q and y ∈ Γ .
We establish claim (3.15) for y1(y1 − x1). A similar computation works

for y2(y2 − x2). First of all, we note that for x ∈ Q and y ∈ Γ ,

|y1 − x1| = |y1|+ |x1| ≥ |y1| ≥ γs,
and consequently from (3.11) that

y1(y1 − x1) = |y1| |y1 − x1| ≥ γsγs = γ2s2,

which establishes claim (3.15).
Using the fact that for x ∈ Q, y ∈ Γ , with |x| ≤ r0s,

|y − x| ≤ |y|+ |x| ≤ (1 + r0)s,

we see from (3.15) that

k(x− y)ξ(y) =
y1(y1 − x1)y2(y2 − x2)

|x− y|4|y|2

≥ γ4s4

(1 + r0)4s4s2
=

γ4

(1 + r0)4
s−2.
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Hence, from (3.8) and (3.12), we obtain
�

|y|=s

k(x− y)ξ(y) dS(y) ≥
�

Γ

k(x− y)ξ(y) dS(y)

≥ γ4

(1 + r0)4

�

Γ

s−2 dS(y)

≥ γ4

(1 + r0)4
5π

12
s−1,

where we have also used (3.14).

Thus, �

|y|=s

k(x− y)ξ(y) dS(y) ≥ C♦s−1

for |x| ≤ r0s where

(3.16) C♦ =
γ4

(1 + r0)4
5π

12
and γ = sin

π

24
.

In view of this last inequality, we conclude from (3.4) that

(3.17)
�

|y|≥ρ

k(x− y)f(y) dy ≥ C♦
1�

ρ

η(s)s−1 ds

for 0 < ρ < 1, where |x| ≤ r0ρ and C♦ is the constant given in (3.16).

To complete our example, we define

F1r(x) =
�

|y|≤r

k(x− y)f(y) dy

and

F2r(x) =
�

|y|≥r

k(x− y)f(y) dy

for 0 < r < 1. These two definitions show that

(3.18)

(
1

r2

�

B(0,r0r)

|F (x)|p dx
)1/p

≥
(

1

r2

�

B(0,r0r)

|F2r(x)|p dx
)1/p

−
(

1

r2

�

B(0,r0r)

|F1r(x)|p dx
)1/p

.
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For the first integral on the right of (3.18), we can use (3.17) to obtain

1

r2

�

B(0,r0r)

|F2r(x)|p dx =
1

r2

�

B(0,r0r)

∣∣∣ �

|y|≥r

k(x− y)f(y) dy
∣∣∣p dx

≥ 1

r2

�

B(0,r0r)

∣∣∣C♦
1�

r

η(s)s−1 ds
∣∣∣p dx

≥ πr20
(
C♦

1�

r

η(s)s−1 ds
)p
.

Therefore,

(3.19)

(
1

r2

�

B(0,r0r)

|F2r(x)|p dx
)1/p

≥ (πr20)1/pC♦
1�

r

η(s)s−1 ds.

To handle the second integral on the right-hand side of (3.18), define

fr(x) =

{
f(x) for |x| ≤ r,
0 for |x| > r.

Consequently, (r−2
	
B(0,r0r)

|F1r(x)|p dx)1/p is bounded above by

1

r2/p

( �

R2

∣∣∣ �
R2

k(x− y)fr(y) dy
∣∣∣p dx)1/p.

By (1.7) above, this last expression is in turn bounded by

r−2/pC∗p‖fr‖Lp(R2).

On the other hand, by (3.1(ii)) for r small,

r−2/p‖fr‖Lp(R2) ≤ r−2/p
( �

B(0,r)

|ξ(y)η(|y|)|p dy
)1/p

≤ (2π)1/pη(r).

We conclude that for r small,(
1

r2

�

B(0,r0r)

|F1r(x)|p dx
)1/p

≤ (2π)1/pC∗pη(r).

This, in conjunction with (3.18) and (3.19), leads to(
1

r2

�

B(0,r0r)

|F (x)|p dx
)1/p

≥ (πr20)1/pC♦
1�

r

η(s)s−1 ds− (2π)1/pC∗pη(r)

for r small. But then it follows from (3.1(i)) that there exists r∗∗ > 0 such
that (

1

r2

�

B(0,r0r)

|F (x)|p dx
)1/p

≥ 1

2
(πr20)1/pC♦

1�

r

η(s)s−1 ds

for 0 < r < r∗∗.
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This last inequality shows that the integral
	1
r η(s)s−1 ds cannot be elim-

inated in (1.8) in the statement of the theorem, and our counter-example is
complete.

The counter-example we just presented to show that the bound in our
theorem is sharp makes use of a singular spherical harmonic kernel of order
two. Hence, it is an even kernel. The question arises as to whether we can
get a counter-example using an odd singular spherical harmonic kernel. In
particular, in dimension N = 2, will the technique we presented work for
the familiar Riesz kernel, k(x) = x1/|x|3? The answer is affirmative, and we
give a brief outline how one proceeds in this case.

With k(x) = x1/|x|3 and ξ(x) = −x1/|x|, set

f(x) =

{
ξ(x)η(|x|) for 0 < |x| < 1,

0 for |x| ≥ 1.

It then follows that the key inequalities presented above continue to hold.
This is seen to be true for the inequalities in (3.5), (3.6), (3.8), (3.12), and
(3.17). The rest of the computations in the proof work as before. So our
counter-example is also valid for the odd singular Riesz kernel.
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