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On a Weyl-von Neumann type theorem for
antilinear self-adjoint operators

by

SANTTU RUOTSALAINEN (Helsinki)

Abstract. Antilinear operators on a complex Hilbert space arise in various contexts
in mathematical physics. In this paper, an analogue of the Weyl-von Neumann theorem
for antilinear self-adjoint operators is proved, i.e. that an antilinear self-adjoint operator
is the sum of a diagonalizable operator and of a compact operator with arbitrarily small
Schatten p-norm. On the way, we discuss conjugations and their properties. A spectral
integral representation for antilinear self-adjoint operators is constructed.

1. Introduction. This paper is concerned with an analogue of the
Weyl-von Neumann theorem for self-adjoint antilinear operators on a com-
plex Hilbert space H. The Weyl-von Neumann—-Berg theorem states that a
complex linear normal operator is the sum of a diagonalizable operator and
an arbitrarily small compact operator. An operator is diagonalizable if it has
an orthonormal set of eigenvectors spanning H. Motivated by the occurrence
of antilinear operators in a wide range of mathematical physics applications,
it is natural to inquire whether there is a Weyl-von Neumann type theorem
for antilinear operators. We will show that any antilinear self-adjoint oper-
ator is the sum of a diagonalizable operator and an operator of arbitrarily
small Schatten p-norm.

The Weyl-von Neumann theorem and its ramifications have been near
the center of operator theory for the majority of the past century and have
led to new operator-theoretical techniques. In 1909 Weyl proved that a self-
adjoint complex linear operator can be diagonalized modulo an arbitrarily
small compact operator [27]. In 1935, von Neumann extended this result to
unbounded operators and showed that the compact operator can be taken
to be Hilbert—Schmidt [24]. Halmos [13] raised the question if there exists
an analogous result for normal operators. Berg [4] and Halmos himself [14],
with a different technique, proved that any normal operator is diagonalizable
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modulo a compact operator. Voiculescu’s result is the most general one
stating that also for normal operators the compact perturbation has an
arbitrarily small Hilbert—Schmidt norm [26].

For complex linear operators on finite-dimensional spaces, unitary diag-
onalizability is one of the many conditions equivalent to normality [12] [7].
For antilinear operators, and for real linear operators in general, these condi-
tions are no longer equivalent and the notion of normality is not so straight-
forward. Antilinear self-adjoint operators on finite-dimensional spaces can
be unitarily diagonalized, whereas an antilinear operator commuting with
its adjoint may not admit such a diagonalization in general. This is how
self-adjointness of antilinear operators is an analogue of normality of com-
plex linear operators. Therefore, it is a natural question to ask what is the
analogue of the Weyl-von Neumann theorem in the antilinear infinite-dimen-
sional setting. In addition, as the spectral theory of real linear operators in
general is not totally understood, a Weyl-von Neumann type theorem would
be informative about spectral properties of antilinear self-adjoint operators.

Antilinear operators appear in a plethora of applications and their useful-
ness has not remained unnoticed [16}, 6, 20]. Antilinear operators are found
in the study of planar elasticity in the form of the Friedrichs operator [25].
In inverse problems they arise in solving the so-called 0-bar equation in the
plane [3]. In quantum mechanics antilinearity is classically noted in studying
time reversal but antilinear operators are useful in the Hartree—Bogolyubov
theory in nuclear physics [16], in studying quantum entanglement [I] and
quantum teleportation [23]. In addition, self-adjoint antilinear operators are
naturally linked to complex symmetric operators which are of importance
in mathematical physics [8, [9] [10].

The paper is organized as follows. In Section 2, notation, basic notions
and properties of real linear and antilinear operators are given. Conjuga-
tions and their diagonalizability are studied and antilinear projections onto
a closed subspace are discussed. In Section 3, the representation of an antilin-
ear self-adjoint operator as a spectral integral is developed. In Section 4, the
main theorem, Weyl-von Neumann type theorem for antilinear self-adjoint
operators, is proved. The connection to complex symmetric operators is pre-
sented.

2. Antilinear operators and conjugations. Let H be a separable
Hilbert space over C. An operator A on H is said to be real linear if it
is additive and commutes with multiplication by real numbers. It is called
complez linear if in addition it satisfies A7 = A, and antilinear if Ai = —iA.
The set of real linear operators is a real Banach algebra with the operator
norm

[All = sup{[[Az]| - |[=[| = 1}
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and it is denoted by B(H). Every real linear operator A can be decomposed
as

(2.1) A=Ay + A

with Ay = 1(A — iAi) complex linear and A; = (A + iAi) antilinear.

A number A € C is in the spectrum o(A) of A if A — X is not invertible
in B(H). The number A is an eigenvalue and is in the point spectrum op(A)
if there exists a non-zero vector x € ‘H such that (A — X\)z = 0. The number
A is in the approximate point spectrum o4(A) if there is a sequence of unit
vectors {zp tn>1 C H such that (A — Nz, — 0 in ‘H. The number A is

in the compression spectrum o.(A) if the range R(A — ) is not dense in H.
The adjoint A* of a real linear operator A is defined by

Re (Az,y) = Re(x,A*y) for all z,y € H,

where (-, ) is the inner product in H. Equivalently, using the representation
(2.1)), we can define
A = Aj+ Al

where A and A7 satisfy (Aoz,y) = (z, Ajy) and (A1z,y) = (x, Ajy) for all
x,y € H, respectively. A real linear operator A is said to be self-adjoint if
A = A*. Tt is unitary if it is bijective and an isometry, i.e. ||Az|| = ||z|| for
all x € H. A unitary operator is called complex unitary or antiunitary if it
is complex linear or antilinear, respectively.

The spectral theory for real linear operators is not fully understood. It is
known that the spectrum of a real linear operator is compact. It is possible
for the spectrum to be empty. However, the spectrum of a self-adjoint real
linear operator is known to be non-empty. It is not necessarily real but it
is symmetric with respect to the real line. The spectrum of an antilinear
operator is always circularly symmetric with respect to the origin. See [20]
for more details.

Among the simplest antilinear operators are the so-called conjugations.

DEFINITION 2.1. An antilinear operator k € B(H) is a conjugation on
H if it is an involution, i.e. k? = I.

PROPOSITION 2.2. For a conjugation k on H we have
op(k) = o(k) = {e: 0 € R}
Proof. The conjugation k being antilinear, its spectrum is circularly sym-
metric with respect to the origin. For any nonzero x € ‘H we have
(k —1)(k+ 1Dax = (k¥ = 1)z =0.
Now, either (k + 1)z = 0, whence (k — 1)ix = 0, or (k + 1)z # 0, whence
(k—1)y =0 with y = (k 4+ 1)z. Thus 1 € op(k).
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On the other hand, if r # 1 is a non-negative real number, then
(k+7)(k — 1)z = (1 — 1)z,
does not tend to zero for any sequence {xz,} of unit vectors. That is, r is not
in the approximate point spectrum o,(x). Similarly, (* — 7)(k* + r)z =
(1 —72)x # 0 for any z # 0. Thus r is not in the compression spec-
trum o.(k). =

Unitary conjugations, being norm-preserving, are of natural interest.
Moreover, for antilinear (as well as for complex linear) operators, being
involutory, self-adjoint or unitary are properties any two of which imply the
third.

Given an orthonormal basis {e,} of H, define &, the conjugation with
respect to {en}, to be the antilinear operator for which ke, = e, for all n.
Clearly, k is unitary. The content of the next proposition is the converse,
i.e. for any unitary conjugation x there is an orthonormal basis of H with
respect to which k can be defined.

PROPOSITION 2.3. Let k be a unitary conjugation on H. Then there is
an orthonormal basis {en}o2; of H such that ke, = ey.

Proof. By Proposition there is a normalized eigenvector e; of k such
that ke; = e;. Now take a vector y € {e;}*. Then also xy € {e;}* since
(ky,e1) = (ke1,y) = (e1,y) = 0, i.e. span{e;} is a reducing subspace for k.
Let Py be the orthogonal projection onto span{e;}. Then Pj-xPj- is a con-
jugation on Pj-H and has a unit eigenvector e € {e;}+. Continuing by in-
duction, let P, be the orthogonal projection onto span{ey,...,e,} and take
ent1 to be the unit eigenvector of P kP in (span{es,...,e,})*. Then the
set {e,}5°, forms the required orthonormal basis of eigenvectors of . m

Although unitary conjugations are simply defined and have nice proper-
ties, they are not necessarily simple to operate with, as illustrated by the
following example.

EXAMPLE 2.4. Let S is the Beurling transform on L?(C) defined as a
principal value integral
1
Sf(z) = ——lim S %dwldwg, w = wy + twa,
T e—0
|z—w|>e
and 7 the complex conjugation f ~— f on L?(C). Then the operator ST is a
unitary conjugation on L?(C). Namely, S is complex unitary and S=! = 7.57.
Then (S7)(S7) = I and (S7)* = 7*S* = 7757 = S7. For more details on

the Beurling transform and its applications, see for example [2].

Classically, an orthogonal projection is an operator that is the identity
on a closed subspace and zero on the orthogonal complement of this sub-
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space. Analogously, we define an ‘antilinear orthogonal projection’ to be an
antilinear counterpart of this notion.

DEFINITION 2.5. Let M be a closed subspace of H. An operator F' on
‘H is said to be an antilinear orthogonal projection if its restriction to M,
F|a, is a unitary conjugation on M, and F is zero on M+ @

Note that if P is the orthogonal projection onto M and 7 is some unitary
conjugation on H, then F' is not in general given as P7P.

Orthogonal projections are in one-to-one correspondence with closed sub-
spaces of H. In strong contrast, there are a multitude of antilinear projec-
tions for any given closed subspace M of H.

EXAMPLE 2.6. Let {e,} be a set of orthonormal vectors spanning a
closed subspace M C H. Then also the set {e?n¢,}, 6, € R, is orthonormal
and spans M. The operators F; and F; defined by Fiz = )", (en,z)e, and
Fr = Y (e?e,, z)e? e, for all z € H are both antilinear projections
onto M. However, clearly Fy # Fb.

The basis dependence of antilinear projections, or unitary conjugations
when M = H, might seem unappealing operator-theoretically. However,
it allows for defining a natural basis in the sense of Proposition On
the other hand, there are instances where antilinearity is the key to basis
independence, as is illustrated by the following example.

ExXAMPLE 2.7. In so-called bipartite quantum systems, a state 0 € HQH
can be represented as

U:Zvn®en with Z||vn||2<007
n

n

where {e,} is an orthonormal basis of . Defining L, as the unique antilin-
ear (not complex linear) operator such that L,e, = v, leads to the repre-
sentation o = ) L,e, ® e,. However, this is independent of the choice of
the orthonormal basis. See [I] for a detailed account. It is crucial that L,
the so-called relative state operator, be antilinear for this representation to
be basis independent. This antilinear representation for states is advanta-
geous when discussing quantum entanglement, for example in the study of
Einstein—Podolsky—Rosen states [I] and of quantum teleportation [23].

Using the existence of a natural basis for a unitary conjugation in the
sense of Proposition [2.3] we can show that any two unitary conjugations are
related in a simple way.

PROPOSITION 2.8. Let 7 and k be unitary conjugations on H. Then there
is a complex linear unitary operator U such that T = U*KU.

(*) F is called a partial conjugation in [9].
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Proof. Let {ey} (resp. {fn}) be the orthonormal basis of H for which
Ten, = en (resp. kf, = fn) for all n > 1. Define U to be the complex
linear operator such that Ue, = f,. Then U is unitary. Moreover scUx =
KUY, anen =, Gnfn and Ut = UT )Y, ane, =Y, Gnfy for all x € H.
Thus T=U*kU. =

Clearly, if 7 and k are unitary conjugations, then s7 is complex linear
and unitary. Godi¢ and Lucenko have proved that the converse holds, i.e.,
if U is a complex linear unitary operator, then there are two conjugations 7
and & such that U = 7« [L1].

3. Antilinear self-adjoint operator as a spectral integral. In this
section we show how to represent an antilinear self-adjoint operator A on H
in the form

(3.1) A= | xdF(\).

o(A)NR4
For comparison, recall that by using the spectral resolution, a complex linear
self-adjoint operator H can be written as a spectral integral

H= | XdE(\)
o(H)
where E is a spectral measure on o(H). The spectral measure is defined
on the o-algebra of Borel subsets of o(H) and its values are orthogonal
projections on H. In addition, the spectral measure is required to be such
that E(o(H)) =1 and E(J,, Mn) = >, E(M,) whenever {M, } is a disjoint
sequence of sets. As an analogue, F in is an antilinear spectral measure
to be defined below.

To this end, let us start with the polar decomposition of A. Our ex-
position follows that of [16, p. 1346] where general antilinear operators on
finite-dimensional spaces are considered. Recall that a self-adjoint complex
linear operator B on H is positive if (Bz,x) > 0 for all x € H.

PROPOSITION 3.1. Fwvery self-adjoint antilinear operator A on H can be
written in the polar form A = |A|T = 7|A|, where T is a unitary conjugation
and |A| is defined to be the complex linear positive square root of A*A.

Proof. Define |A| to be the unique positive complex linear square root of
the operator A*A. For all z € H we have |||A]z|| = || Az]|. It follows that the
null spaces of |A| and A coincide, N (A) = N(]A|). Since A and |A| are self-
adjoint, we have H = N(A)®R(A) = N(JA]) ®R(|A|) and thus the closures
of the ranges of A and |A]| also coincide. Denote V; = R(|A]) = R(A) and
Vo = N(|A|) = N(A). Then there is a unique antilinear isomorphism U; on
V such that A = Up|A|. Namely, for every x € Vi = R(|A|), there is y € H
such that x = |A|y. Define then Uz = Ay. (Note that since N'(|A|) = N (4),
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for the inverse images we have A~!(z) = |A|7!(x), and the definition of Uy
does not depend on the choice of the preimage y.) Thus, U; is unitary.

Take then an arbitrary antilinear self-adjoint isomorphism Us on Vs.
This can be done by choosing an orthonormal basis for Vs and defining Us
to be the conjugation with respect to that basis. Finally, define 7 on H by
Ux = Uyz1 + Usxg, where 1 € Vi and x5 € Vs.

Setting Ho = 7|A|7* we have the factorization A = Ha7. However, as
A and Hj are self-adjoint, H = HoHj = AA* = A*A. Hence by the
uniqueness of the square root, we have Hy = |A|. Thus A = 7|A| = |A|7.

Moreover, A = 7|A| = 7*|A| so that Ty = 7*y for all y € V1. As Uy was
already chosen to be self-adjoint on Vs, the anti-unitary 7 = Uy @ Uy is also
self-adjoint, thus a unitary conjugation. =

Observe that in the proof above the self-adjointness of A was needed only
in proving that 7 is self-adjoint on Vj. Otherwise, the assumption AA* =
A*A would suffice. Note also that |A| is unique and 7 is non-unique only
on N (A).

All the necessary information about the spectrum of a self-adjoint an-
tilinear operator A is given by |A|. Indeed, o(]A|) lies on the non-negative
real line Ry. We have r € o(|A|) if and only if 2 € o(|A|?) = 0(42), and
the latter is equivalent to r € o(A) by [20, Proposition 2.15]. In addition, it
is known that the spectrum of an antilinear operator is circularly symmetric
with respect to the origin. The fact that in this manner the spectra of A
and |A| are closely related leads to the following definition.

DEFINITION 3.2. Define the antilinear spectral measure F' for an anti-
linear self-adjoint operator A on H by

F(M) = E(M)r

for every Borel subset M of o(A) N {A > 0} = o(]A|). Here E is the spec-
tral measure for |A| = (A*A)Y/2 and 7 is the unitary conjugation given by

Proposition [3.1] For further convenience, denote by X' the o-algebra of Borel
subsets of o(A4) N{\ > 0} = o(|A]).

For F to be appropriate for its role, it is crucial that E(M)r = 7E(M)
for all M € X. Even though 7 is antilinear, standard textbook methods
(as in [B, Theorem 10.2] or in [I5, Theorem 40.2]) can be used to prove
this. It should be observed, however, that the properties used in proving the
following lemma require that the complex linear operator H be self-adjoint,
not normal.

LEMMA 3.3. Let 7 be antilinear and H = {XdE(\) be complex linear

and self-adjoint where E is the spectral measure for H. If TH = HT, then
E(M)r =71E(M) for all M € X.
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Proof. We have p(H)T = 7p(H) for every real polynomial p. Then for
all x,y € H,

(3.2) \p(N) d(ENz, m*y) = (p(A)z, 7y) = (p(A)72,Y)

=\ p(\) d(E(WV)72,),

from which we infer that
(3:3) (TE(M)z,y) = (E(M)z, my) = (E(M)T2,Y).
Thus E(M) and 7 commute. m

From this it follows that an antilinear self-adjoint operator may be rep-
resented in the form (3.1]). Analogously to classical spectral measures, the
antilinear spectral measure satisfies the following:

(i) The values of F' are antilinear projections, i.e.
F(M)2 = E(M) and F(M)* = (E(M)7)* = E(M)r = F(M).

(ii) F(o(A)) =T.
(iii) F(U, Mn) =>_, F(M,) for any disjoint sequence {M,} of sets.

4. Weyl-von Neumann theorem for antilinear self-adjoint op-
erators. In this section we aim to prove an analogue of the Weyl-von Neu-
mann theorem. Naturally, the question arises why the polar decomposition
of Proposition with the classical Weyl-von Neumann theorem does not
provide the desired result directly. We may certainly write A = |A|r and
use the representation |A| = D + K of the Weyl-von Neumann theorem.
This provides us with a compact operator K and an operator D diagonal
with respect to an orthonormal basis {e,} of #. Then clearly A = DT+ KT
where K7 is compact. However, we cannot claim that D7 is diagonal. This
would be the case only if the orthonormal basis diagonalizing 7 were the
same as the one diagonalizing D.

4.1. The main theorem. Recall the notion of diagonalizability. It is in
effect unitary diagonalizability, and as such more stringent than other, more
general definitions of diagonalizability for Hilbert space operators (cf. [17]).

DEFINITION 4.1. An operator A on H is diagonalizable if there exists an
orthonormal basis {e, } of H such that Ae,, = ane, for all n for some complex
numbers a,, i.e. if there is an orthonormal set of eigenvectors spanning H.
Then A is said to be diagonal with respect to {ey}.

Let us glance at the finite-dimensional diagonalizability first. It is in-
teresting in its own right due to its frequent occurrence in applications. In
addition, the proof of the main theorem relies on it.
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PROPOSITION 4.2. Let H be a finite-dimensional Hilbert space and let
A € B(H) be an antilinear self-adjoint operator on H. Then A is unitarily
diagonalizable.

Proof. We can factor A = Ay7 where 7 is represented by complex conju-
gation on C". Then (Ax7)* = 7""A”;éﬁ = AiT, that is, Ay is complex symmet-
ric. By the Takagi factorization (cf. e.g. [18]) there is a unitary matrix U such
that UA#UT = D where D is diagonal. Thus Dr = UAUTT = UDrU*,
i.e. A is diagonalizable since D7 is diagonal with respect to the standard
basis. =

Diagonalizability in the antilinear case is not a trivial matter, though.
Recall that almost all complex matrices are diagonalizable in the sense that
the probability is one for a randomly picked complex linear operator on a
finite-dimensional Hilbert space to be diagonalizable. However, diagonaliz-
able antilinear operators are a lot more scarce. The probability of a ran-
domly picked antilinear operator on an n-dimensional Hilbert space to be
diagonalizable is 27"~ 1/2 (see [19] for details).

Analogously to the complex linear case, we define singular values and
Schatten p-class operators as follows.

DEFINITION 4.3. Define the singular values s,(A), n = 1,2,..., of a
compact antilinear operator A as the eigenvalues of the complex linear pos-
itive operator |A| = (A*A)'/? in non-increasing order of magnitude. We say
that A is in the Schatten p-class By(H), 1 < p < o0, if

4l = (3 sway) " < oe.

Note that if we factor a compact antilinear operator A as A = Ax7 with
7 a unitary conjugation and Ay = A7, then s,(A) = s,(Ax). This follows
from the fact o(|A|) = o(|A]), which holds since |Ag| = (7*A*A7)Y/? and
o(|A|) is real.

From this connection between A and A, the following is immediate. The
rank of an antilinear operator is defined to be the dimension of its range.

LEMMA 4.4. For an antilinear operator A of rank at most n, we have
1All, < n'/P) Al

Now we can state the analogue of the Weyl-von Neumann theorem.

THEOREM 4.5. Let A be a self-adjoint antilinear operator on H, € >0

and 1 < p < co. Then there is a diagonalizable self-adjoint antilinear oper-
ator D such that A — D is compact and |A— D||, < .

The steps in proving that A is the sum of a diagonalizable operator D
and a Schatten p-class operator follow those taken in [5, pp. 212-213]; see
also [21, Chapter X], and [22] for extension from p = 2 to 1 < p < oo.
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However, a modification is needed: in the following proposition we have to
require that f =7f € H.

LEMMA 4.6. Let A = |A|7 be a self-adjoint antilinear operator and Tf =
f € H. Then for any € > 0 there is a finite rank projection P and a self-
adjoint antilinear operator K € B,(H), 1 < p < oo, such that f € PH,
K|, <e, and A+ K is reduced by P. In addition, Pt = 7P.

Proof. Factor A in the form A = 7|A| = |A|7 as in Lemma The
self-adjoint operator |A| has a spectral decomposition |[A| = {AdE()) with
respect to the spectral measure E. Assume o(|A|) C [a, b], where [a, )] is an
interval of the non-negative real line. Partition [a, b] into n equal subintervals
My, ..., M, of length (b — a)/n each and let \; be the midpoint of the
interval My. Set fr = E(My)rf = E(My)f, and define g = fi/| fxll if
fr # 0, and g = 0 otherwise. Denote for convenience ¢, = 1/|| fz||. Thus we
have g, € E(My)TH, whence g; L gy for j # k. Then

I(A = N gl = ||[Alrer E(My) f = Xen E(My) f|| = [[(|A] = Agll < b-a

Denoting by P the orthogonal projection onto span{gx}}_, = span{ fi}7_;,
we get

b—a
(4.1) |P* Agy|| = || PH(A = Ngill < -

We have Agy, € AE(My)H = E(M)AH C E(My)H, so that Ag, L g; for
k # j. Hence

PrAgi = Agi. — > (Agr,9;)9; = Ag — (Agk, gr) gk € E(Mi)H
j

so that also PTAg; L PlAgj for k # j. Using this orthogonality, we obtain

IP-APHIE =[S (o) P Age| = 3 (g ) PI P Age
k k

b—a\?
< I (* 1)

for all h € H. Thus ||P+AP|| < (b—a)/n with P+ AP having rank at most n.
By Lemma |PHAP||, < (b—a)n™ "9 with 1/p+1/q = 1.

Define B = PAP + P+AP+ and K = —P+*AP — PAP'. Then B and
K are self-adjoint antilinear operators and A = B — K. The operator B is
reduced by P, K has finite rank, and || K||, < 2(b — a)/n'/9, which can be
made arbitrarily small by a suitable choice of n.
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Finally,
TPz = TZ(x, e E(My)f)erE(My) f = Z(ckE(Mk)fvx)CkE(Mk)Tf
k k
- Z(T%TC’CE(MIC)JC)CkE(Mk)f = Prx
k

for all x € H, so that Pt =7P. =

Using the previous lemma, one can prove the Weyl-von Neumann theo-
rem for antilinear self-adjoint operators.

Proof of Theorem[4.5 Let {e,} be an orthonormal basis of # such that
Te, = e, for all n. Apply Lemma with f = e; to get a finite rank
projection P, and a self-adjoint operator K; € By(H) with ||Ki|, < /2
such that A+ K7 is reduced by P; and e; € Pi’H. Apply the lemma again to
(A‘i‘Kl)’(PiH)J_ with the vector f = Pi-es = 7 f to get a self-adjoint operator
Ky € B(Pi-H) and a projection P such that Piles € PoyH, || Kal, < /22
and A+ K1+ K5 is reduced by P». Extend K5 to all of H by setting Koy = 0
for all y € Py’H. Note that e1,es € (Py + Py)H.

By induction we get a sequence {P,} of finite rank projections and a
sequence {K,} of self-adjoint operators such that

(i) [[Knlly <e/2%,

Set K = > Ky, D = A4+ K and D, = D|p,y. Then |K|, < ¢
by property (i) and D is self-adjoint. Properties (ii) and (iii) imply that
>, Pn = 1. Properties (iv) and (v) imply that D is reduced by P,H for all
nand D =@, D,.

Since each of the spaces P,H is finite-dimensional, by Proposition
there is an orthonormal basis of P, that diagonalizes D,. Thus D is a
diagonalizable operator. =

Note that a diagonalizable antilinear operator can be assumed to have
a non-negative diagonal. Namely, assume D on H is diagonal with respect
to the orthonormal basis {e,}, i.e. De, = dpe, = |d,|e?"e,. Then for all
=73 .(r,en)en €H,
Dz = Z(en,w)dnen = Z(ew"ﬂen, )| dn e ey,
n n

so that D is diagonal with respect to the orthonormal basis {e?#/2¢,} with
non-negative diagonal.
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4.2. Finite rank generalization to real linear operators. The
question whether there is a more general version of Theorem [4.5]is treated
in finite dimensions.

LEMMA 4.7. Let N be a complex linear normal operator and S an an-
tilinear self-adjoint operator on a finite-dimensional Hilbert space H such
that NS = SN*. Then N, N* and S have a common eigenvector.

Proof. Let y € W = {x € H : Nz = Mz} = {z € H : N*z = Iz}
for some eigenvalue A € C of N. Then NSy = SN*y = SAy = ASy. Thus
Sy € W. Therefore, the subspace W is S-invariant.

The restriction S|y is an antilinear self-adjoint operator on W, and as
such [20] has an eigenvalue r € R corresponding to an eigenvector z € W.
Then z is the desired common eigenvector. m

PROPOSITION 4.8. Let A= N + S be a real linear operator on a finite-
dimensional Hilbert space H, where N is complex linear normal, S is anti-
linear self-adjoint and they satisfy NS = SN*. Then A is unitarily diago-
nalizable.

Proof. By Lemma [£.7] there exists a unit vector e; € H such that Ne; =
Xei, N*e; = de; and Se; = req for some A € C and r € R. Split H as
H = span{e; }@span{e; }. Then obviously Az € span{e;} for = € span{e;}.
But we also have

(e1,Ay) = (e1, Ny)+(e1,Sy) = (N*e1,y) + (Ser,y) = Aer,y)+r(e1,y) =0

for every y € span{e;}*. Thus Ay € span{e;}*. Hence, A = D; @ Ay,
where D; is trivially diagonal on span{e;} and A; is a real linear opera-
tor on span{e; }* satisfying the assumptions of the proposition. Iterate the
procedure to finally get an orthonormal basis {e,,} of . =

This raises the question whether, similarly to the proof of Theorem
a reduction to the finite-dimensional case can be made to prove an analogue
of the Weyl-von Neumann theorem for real linear operators satisfying the
commutation property above. However, at this point, it remains unclear
whether this can be done.

4.3. Complex symmetric operators. In what follows, we make some
remarks on complex symmetric operators and their relation to antilinear self-
adjoint operators. A complex linear operator S on H is called T-symmetric
if

TS*r =5,

where 7 is a unitary conjugation. It is called complex symmetric if it is
T-symmetric with respect to some unitary conjugation 7. Complex symmet-
ric operators have been the object of recent investigations, and they have
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been shown to include a variety of important operators, for example all nor-
mal operators, Hankel operators, compressed Toeplitz operators and many
standard integral operators [8, 9} [10].

Complex symmetric operators and antilinear operators are related in the
following manner.

PROPOSITION 4.9. If the complex linear operator S is T-symmetric on H,
then the operator ST is antilinear self-adjoint. Conversely, if the operator
A on H is antilinear self-adjoint, then At is T-symmetric for any unitary
conjugation T.

Proof. The first assertion follows from
(ST)* = 7%8* = 15*1% = ST.
The second follows from (A7)* = 7*A* = 7(AT)T. =

This connection may be useful in some contexts, as defining antilinear
self-adjointness is basis independent whereas complex symmetry is defined
essentially through the choice of an orthonormal basis by fixing a unitary
conjugation.

In finite dimensions, by the Takagi factorization, a matrix S is complex
symmetric, S = ST, if and only if it is unitarily condiagonalizable, i.e. there
exists a unitary matrix U and a diagonal matrix D (with non-negative en-
tries) such that S = UDUT. Using Theorem and the correspondence with
antilinear operators, it can be seen that, in the infinite-dimensional case,
complex symmetric operators are arbitrarily close to condiagonalizable op-
erators. Here, the analogue of the transpose of U in the infinite-dimensional
setting is TU*T.

PROPOSITION 4.10. Let S be a complex symmetric operator on H with

respect to the unitary conjugation 7. Then for any € > 0 there exists a com-
plex linear unitary operator U and a diagonalizable complex linear operator

D such that
|S—UDTU*T| <e.
Proof. Let {e,} be the orthonormal basis of H for which e, = e,.
Since ST is antilinear and self-adjoint, by Theorem [4.5 there is an antilinear
diagonalizable operator D such that |57 — D|| < ||ST—D|p <e. Let {fu}

be the orthonormal basis diagonalizing D, i.e. Df, = dyf, where d, > 0.
Define U by Ue,, = f,. Then for all z € ‘H we have

Stx — Dx = St — Zdn(fn,x)fn = Str — Zdn(Uen,a:)Uen

= Stx — UZdn(en, U*z)e, = (S —UDTU )T,



204 S. Ruotsalainen

where D is a complex linear operator, diagonal with respect to {e,}. From
this we infer, upon using the norm estimate given by Theorem that
|IS—UDTU*T|| <e. m

We also have the following.

PROPOSITION 4.11. Let S be a complex symmetric operator on H with
respect to the unitary conjugation 7. Then there exist a unitary conjugation
Kk and a diagonalizable complex linear operator D with non-negative diagonal
such that k and D are diagonalized with respect to the same orthonormal
basis and

|S — Dkl < e.

Proof. Since 75 is antilinear self-adjoint, by Theorem there exists
an antilinear operator D, diagonal with respect to an orthonormal basis
{en}, with a non-negative diagonal, such that |[7S — D, < . We can factor
D = Dk where D is complex linear diagonal with respect to {e,} and & is
the unitary conjugation with respect to {e,}. Then ||S — 7Dkl|, < €. =
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