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Limiting real interpolation methods for
arbitrary Banach couples

by

Fernando Cobos and Alba Segurado (Madrid)

Abstract. We study limiting K- and J-methods for arbitrary Banach couples. They
are related by duality and they extend the methods already known in the ordered case.
We investigate the behaviour of compact operators and we also discuss the representation
of the methods by means of the corresponding dual functional. Finally, some examples of
limiting function spaces are given.

1. Introduction. The real interpolation method (A0, A1)θ,q, where 0 <
θ < 1 and 1 ≤ q ≤ ∞, plays an important role in the study of function spaces,
operator theory and approximation theory, as one can see, for example, in the
monographs by Butzer and Berens [6], Bergh and Löfström [4], Triebel [31,
32], Bennett and Sharpley [3] or Brudny̆ı and Krugljak [5]. The parameter θ
takes values in the open interval (0, 1). The space (A0, A1)θ,q can be described
by means of Peetre’s K-functional or by means of its dual functional, the
J-functional.

The extension of the real method which is obtained by replacing in the
definition tθ by a more general function f(t) (see the paper by Gustavsson
[26]) is also important. The case f(t) = tθg(t) is of special interest. Here,
g is a power of 1 + |log t| or, more generally, a slowly varying function (see
the papers by Evans and Opic [20], Evans, Opic and Pick [21], Gogatishvili,
Opic and Trebels [24] and Ahmed, Edmunds, Evans and Karadzhov [1]).
Then θ can take the values 1 and 0, but in these limit cases the extra func-
tion g(t) is essential to get a meaningful definition. However, if the Banach
spaces are related by a continuous embedding, say A0 ↪→ A1, then limit-
ing spaces (A0, A1)0,q;J and (A0, A1)1,q;K can be defined without the help
of any auxiliary function, just making a natural modification in the defi-
nition of the real interpolation method. These limiting methods have been
intensively studied, as can be seen in the papers by Gomez and Milman [25],
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Cobos, Fernández-Cabrera, Kühn and Ullrich [9], Cobos, Fernández-Cabrera
and Mastyło [11], Cobos and Kühn [15] and Cobos, Fernández-Cabrera and
Martínez [10]. The space (A0, A1)0,q;J is very close to A0, and (A0, A1)1,q;K

to A1. This fact is important in applications.
To be in the ordered case A0 ↪→ A1 is basic for the arguments of these pa-

pers, but it is only a restriction from the point of view of interpolation theory.
For this reason, it is natural to study the extension of limiting methods to ar-
bitrary, not necessarily ordered, couples of Banach spaces Ā = (A0, A1). This
question has been considered by Cobos, Fernández-Cabrera and Silvestre in
[12, 13], but the main target in these papers was to describe the spaces that
arise when interpolating {A0, A1, A1, A0} by the methods associated to the
unit square. Several limiting K- and J-methods were introduced with the
property that along the diagonals of the square, the interpolated spaces are
sums of limiting methods and real interpolation spaces in the K-case, while
they are intersections of limiting methods and real interpolation spaces in
the J-case.

In the present paper our aim is to develop a comprehensive theory of
limiting methods for arbitrary couples. Following the pattern of the real
method, this calls for selecting from the different methods introduced in [12,
13] just a family of K-methods and a family of J-methods which are related
by duality and that allow one to produce a sufficiently rich theory. In terms
of the interpolation of {A0, A1, A1, A0}, the choice we make corresponds to
the methods that arise using the centre of the square.

We start by reviewing some general facts on interpolation theory in Sec-
tion 2. Then, in Sections 3 and 4, we introduce the limiting K- and J-
methods, respectively. We also establish their basic properties and we study
their connection with the methods developed for the ordered case and with
those considered in [12] and [13]. There is a price to be paid for having meth-
ods for general couples: They satisfy worse norm estimates for interpolated
operators than in the ordered case and, as a consequence, interpolation prop-
erties of compact operators are also worse than in the ordered case. We deal
with compact operators in Section 5. As we show there, given T ∈ L(Ā, B̄),
a sufficient condition for the interpolated operator by limiting methods to
be compact is that both restrictions T : A0 → B0 and T : A1 → B1 are
compact.

Section 6 is devoted to the description of the limiting K-spaces using the
J-functional. This can be done provided that 1 ≤ q <∞. Some consequences
of that description are also given. Duality between limiting K- and J-spaces
is discussed in Section 7, while Section 8 contains some examples of limiting
spaces. First, working with any σ-finite measure space, we characterise the
limiting spaces generated by the couple (L∞, L1). Then we consider a couple
formed by two weighted Lq-spaces and, as an application, we determine the
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spaces generated by the Sobolev couple (Hs0 , Hs1). We also consider the
case of the couple (Bs0

p,q, B
s1
p,q) of Besov spaces. Finally, we apply the limiting

methods to obtain a Hausdorff–Young type result for the Zygmund space
L2(logL)−1/2([0, 2π]).

2. Preliminaries. Let Ā = (A0, A1) be a Banach couple, that is, two
Banach spaces A0, A1 which are continuously embedded in some Hausdorff
topological vector space. Form the sum A0 +A1 and the intersection A0∩A1,
which are Banach spaces endowed with the norms

‖a‖A0+A1 = inf{‖a0‖A0 + ‖a1‖A1 : a = a0 + a1, aj ∈ Aj}
and

‖a‖A0∩A1 = max{‖a‖A0 , ‖a‖A1},
respectively. Clearly A0∩A1 ↪→ A0 +A1. Here ↪→ means continuous embed-
ding.

For t > 0, Peetre’s K- and J-functionals are defined by

K(t, a) = K(t, a; Ā)

= inf{‖a0‖A0 + t‖a1‖A1 : a = a0 + a1, aj ∈ Aj}, a ∈ A0 +A1,

and
J(t, a) = J(t, a; Ā) = max{‖a‖A0 , t‖a‖A1}, a ∈ A0 ∩A1.

Notice that K(1, ·) = ‖ · ‖A0+A1 and J(1, ·) = ‖ · ‖A0∩A1 .
Let 0 < θ < 1 and 1 ≤ q ≤ ∞. The real interpolation space Āθ,q =

(A0, A1)θ,q, viewed as a K-space, consists of all a ∈ A0 + A1 for which the
norm

‖a‖Āθ,q =

(∞�
0

(t−θK(t, a))q
dt

t

)1/q

is finite (when q = ∞ the integral should be replaced by a supremum).
See [4, 3, 5, 31]. It follows from the equivalence theorem that Āθ,q coincides
with the collection of all those a ∈ A0 + A1 for which there is a strongly
measurable function u(t) with values in A0 ∩A1 such that

a =

∞�

0

u(t)
dt

t
(convergence in A0 +A1)

and (∞�
0

(t−θJ(t, u(t)))q
dt

t

)1/q

<∞.

Moreover,

‖a‖Āθ,q;J = inf

{(∞�
0

(t−θJ(t, u(t)))q
dt

t

)1/q

: a =

∞�

0

u(t)
dt

t

}
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is an equivalent norm to ‖ · ‖Āθ,q . We refer to [35] for details on the Bochner
integral.

If A0 ↪→ A1, the space Ā1,q;K is defined as the set of all those a ∈ A1

which have a finite norm

‖a‖Ā1,q;K
=

(∞�
1

(t−1K(t, a))q
dt

t

)1/q

.

Note that the integral is not on (0,∞) but only on (1,∞). This change is
essential for a meaningful definition. In this ordered case, the space Ā0,q;J

consists of all those elements a ∈ A1 which can be represented as a =	∞
1 v(t) dt/t (convergence in A1), where v(t) is a strongly measurable function
with values in A0 and such that(∞�

1

J(t, v(t))q
dt

t

)1/q

<∞.

We set

‖a‖Ā0,q;J
= inf

{(∞�
1

J(t, v(t))q
dt

t

)1/q

: a =

∞�

1

v(t)
dt

t

}
.

The spaces Ā1,q;K and Ā0,q;J correspond to the limit values θ = 1, 0. They
are studied in [9, 15] and the papers cited there. Throughout the following
sections, we shall extend these constructions to general Banach couples.

Subsequently, for 1 ≤ q ≤ ∞, we let `q be the usual space of q-summable
scalar sequences, and c0 is the space of null sequences. Given any sequence
(λm) of positive numbers and any sequence (Wm) of Banach spaces, we
write `q(λmWm) for the space of all vector-valued sequences w = (wm) with
wm ∈Wm and such that

‖w‖`q(λmWm) =
(∑

m

(λm‖wm‖Wm)q
)1/q

<∞.

If for each m the space Wm is equal to the scalar field K (K = R or C), we
simply write `q(λm). The space c0(λmWm) is defined similarly.

As usual, if X,Y are non-negative quantities depending on certain pa-
rameters, we write X . Y if there is a constant c > 0 independent of the
parameters involved in X and Y such that X ≤ cY . If X . Y and Y . X,
we write X ∼ Y .

3. Limiting K-spaces. We start by introducing the limiting K-spaces
that we will consider in the following.

Definition 3.1. Let Ā = (A0, A1) be a Banach couple and let 1 ≤ q
≤ ∞. The space Āq;K = (A0, A1)q;K is formed by all those a ∈ A0 + A1
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which have a finite norm

‖a‖Āq;K =

( 1�

0

K(t, a)q
dt

t

)1/q

+

(∞�
1

(t−1K(t, a))q
dt

t

)1/q

.

Since
K(t, a;A0, A1) = tK(t−1, a;A1, A0),

it is clear that

(3.1) (A0, A1)q;K = (A1, A0)q;K .

Moreover, one can show that Āq;K is complete. Next we show that Āq;K is
an intermediate space between A0 and A1, and that it is larger than any real
interpolation space.

Lemma 3.2. Let Ā = (A0, A1) be a Banach couple, let 0 < θ < 1 and
1 ≤ q, r ≤ ∞. Then

A0 ∩A1 ↪→ (A0, A1)θ,r ↪→ (A0, A1)q;K ↪→ A0 +A1.

Moreover, (A0, A1)∞;K = A0 +A1 with equivalent norms.

Proof. It is well-known that

A0 ∩A1 ↪→ (A0, A1)θ,r ↪→ (A0, A1)θ,∞ (see [4] or [31]).

Take any a ∈ (A0, A1)θ,∞. We have( 1�

0

K(t, a)q
dt

t

)1/q

≤
( 1�

0

tθq
dt

t

)1/q

‖a‖Āθ,∞ = c1‖a‖Āθ,∞

and (∞�
1

(t−1K(t, a))q
dt

t

)1/q

≤
(∞�

1

t(θ−1)q dt

t

)1/q

‖a‖Āθ,∞ = c2‖a‖Āθ,∞ .

Hence, (A0, A1)θ,∞ ↪→ (A0, A1)q;K .
Assume now that a ∈ (A0, A1)q;K . Using that K(t, a) is a non-decreasing

function of t, we derive with c3 = (
	∞
1 t−q dt/t)−1/q that

‖a‖A0+A1 = c3

(∞�
1

t−q
dt

t

)1/q

K(1, a) ≤ c3

(∞�
1

(t−1K(t, a))q
dt

t

)1/q

≤ c3‖a‖Āq;K .

Finally, if q =∞ we have

‖a‖Ā∞;K
= sup

0<t≤1
K(t, a) + sup

1<t<∞
t−1K(t, a) = ‖a‖A0+A1 ,

as desired.
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Remark 3.3. In the ordered case where A0 ↪→ A1, if we disregard the
term with the integral over (0, 1) in Definition 3.1, then we recover the spaces
Ā1,q;K introduced in the previous section. Notice that Āq;K extends Ā1,q;K

to arbitrary couples because if A0 ↪→ A1 we have( 1�

0

K(t, a)q
dt

t

)1/q

≤
( 1�

0

tq
dt

t

)1/q

‖a‖A1 ≤ c‖a‖Ā1,q;K
.

So, Āq;K = Ā1,q;K with equivalence of norms.

Next we show the connection between Āq;K and the limiting spaces intro-
duced in [12]. Let Ã1,q;K and Ã0,q;K be the collections of all those a ∈ A0+A1

which have a finite norm

‖a‖Ã1,q;K
= sup

0<t≤1
t−1K(t, a) +

(∞�
1

(t−1K(t, a))q
dt

t

)1/q

and

‖a‖Ã0,q;K
=

( 1�

0

K(t, a)q
dt

t

)1/q

+ sup
1≤t<∞

K(t, a),

respectively. We refer to [12] for details on Ã1,q;K and Ã0,q;K .

Proposition 3.4. Let Ā = (A0, A1) be a Banach couple and let 1 ≤
q ≤ ∞. Then

Āq;K = Ã0,q;K + Ã1,q;K with equivalent norms.

Proof. Let a = x0 + x1 with x0 ∈ Ã0,q;K and x1 ∈ Ã1,q;K . Then(∞�
1

(t−1K(t, a))q
dt

t

)1/q

≤
(∞�

1

(t−1K(t, x0))q
dt

t

)1/q

+

(∞�
1

(t−1K(t, x1))q
dt

t

)1/q

≤
(∞�

1

t−q
dt

t

)1/q

‖x0‖Ã0,q;K
+ ‖x1‖Ã1,q;K

≤ c1(‖x0‖Ã0,q;K
+ ‖x1‖Ã1,q;K

).

Similarly, ( 1�

0

K(t, a)q
dt

t

)1/q

≤ c2(‖x0‖Ã0,q;K
+ ‖x1‖Ã1,q;K

).

This yields the continuous embedding Ã0,q;K + Ã1,q;K ↪→ Āq;K .
Conversely, let a ∈ Āq;K and take any representation a = x0 + x1 with

xj ∈ Aj (j = 0, 1) and ‖x0‖A0 + ‖x1‖A1 ≤ 2K(1, a) = 2‖a‖A0+A1 . We claim
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that xj ∈ Ãj,q;K for j = 0, 1. Indeed,

‖x0‖Ã0,q;K
=

( 1�

0

K(t, x0)q
dt

t

)1/q

+ sup
1≤t<∞

K(t, x0)

≤
( 1�

0

K(t, a)q
dt

t

)1/q

+

( 1�

0

K(t, x1)q
dt

t

)1/q

+ ‖x0‖A0

≤ ‖a‖Āq;K +

( 1�

0

tq
dt

t

)1/q

‖x1‖A1 + ‖x0‖A0

≤ ‖a‖Āq;K + c1‖a‖A0+A1 ≤ c2‖a‖Āq;K
where we have used Lemma 3.2 in the last inequality. For x1 we obtain

‖x1‖Ã1,q;K
≤ ‖x1‖A1 +

(∞�
1

(t−1K(t, a))q
dt

t

)1/q

+

(∞�
1

(t−1K(t, x0))q
dt

t

)1/q

≤ ‖x1‖A1 + ‖a‖Āq;K +

(∞�
1

t−q
dt

t

)1/q

‖x0‖A0

≤ c3‖a‖Āq;K .

Hence, a ∈ Ã0,q;K + Ã1,q;K and ‖a‖Ã0,q;K+Ã1,q;K
≤ (c2 + c3)‖a‖Āq;K . This

completes the proof.

As a direct consequence of Proposition 3.4 and [12, Thm. 4.1] it follows
that

(3.2) Āq;K = (A0, A1, A1, A0)(1/2,1/2),q;K

where (·, ·, ·, ·)(α,β),q;K stands for the K-method associated to the unit square
(see [17, 22]).

Besides the relation described in Remark 3.3, the following lemma shows
another interesting connection between Āq;K and the space Ā1,q;K defined
for ordered couples.

Lemma 3.5. Let Ā = (A0, A1) be a Banach couple and let 1 ≤ q ≤ ∞.
Then

(A0, A1)q;K = (A0 ∩A1, A0 +A1)1,q;K with equivalence of norms.

Proof. Let K̄(t, a) = K(t, a;A0 ∩ A1, A0 + A1) and K(t, a) = K(t, a;
A0, A1). According to [29, Thm. 3], for 1 < t <∞ and a ∈ A0 +A1, we have

K̄(t, a) ∼ tK(t−1, a) +K(t, a).
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Consequently,

‖a‖(A0∩A1,A0+A1)1,q;K =

(∞�
1

(t−1K̄(t, a))q
dt

t

)1/q

∼
( 1�

0

K(t, a)q
dt

t

)1/q

+

(∞�
1

(t−1K(t, a))q
dt

t

)1/q

= ‖a‖(A0,A1)q;K .

Let B̄ = (B0, B1) be another Banach couple. By writing T ∈ L(Ā, B̄) we
mean that T is a linear operator from A0+A1 into B0+B1 whose restrictions
T : Aj → Bj are bounded for j = 0, 1. It is not hard to check that for any
1 ≤ q ≤ ∞, the restriction T : Āq;K → B̄q;K is also bounded with

‖T‖Āq;K ,B̄q;K ≤ max{‖T‖A0,B0 , ‖T‖A1,B1}.

In the ordered case where A0 ↪→ A1 and B0 ↪→ B1, it is shown in [9,
Thm. 7.9] that if 1 ≤ q < ∞ there is a constant c > 0 such that for any
T ∈ L(Ā, B̄), we have

(3.3) ‖T‖Ā1,q;K ,B̄1,q;K
≤ c‖T‖A1,B1

(
1 + max

{
0, log

‖T‖A0,B0

‖T‖A1,B1

})
.

However, estimate (3.3) does not hold in the general case as the following
example shows.

Counterexample 3.6. Let 1≤q<∞. Consider the couples (`q(e
−n), `q)

and (K,K), where sequences are indexed by N. For k ∈ N, let Tk be the linear
operator defined by Tkξ = e−kξk. Clearly, Tk ∈ L((`q(e

−n), `q), (K,K)) with
‖T‖`q(e−n),K = 1 and ‖T‖`q ,K = e−k. According to Lemma 3.5 and [9, Lemma
7.2 and Remark 7.3], we have

(`q(e
−n), `q)q;K = (`q, `q(e

−n))1,q;K = `q(n
1/qe−n).

Moreover, (K,K)q;K = K with equivalence of norms. Hence,

‖Tk‖(`q(e−n),`q)q;K ,(K,K)q;K ∼ k
−1/q.

Since there is no c > 0 such that k−1/q ≤ cke−k for all k ∈ N, it follows that
(3.3) does not hold in general outside the ordered case.

4. Limiting J-spaces. Now we turn our attention to J-spaces.

Definition 4.1. Let Ā = (A0, A1) be a Banach couple and let 1 ≤ q
≤ ∞. The space Āq;J = (A0, A1)q;J is formed by all those a ∈ A0 + A1 for
which there exists a strongly measurable function u(t) with values in A0+A1
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such that

(4.1) a =

∞�

0

u(t)
dt

t
(convergence in A0 +A1)

and

(4.2)
( 1�

0

(t−1J(t, u(t)))q
dt

t

)1/q

+

(∞�
1

J(t, u(t))q
dt

t

)1/q

<∞.

The norm ‖a‖Āq;J in Āq;J is the infimum of the expression in (4.2) over all
representations (4.1) satisfying (4.2).

These spaces were introduced in [13] under the notation Ā{1,0},q;J . It can
be checked that the spaces Āq;J are complete. Next we show that they are
intermediate spaces with respect to the couple Ā and that they are smaller
than any space Āθ,r.

Lemma 4.2. Let Ā = (A0, A1) be a Banach couple, let 0 < θ < 1 and
1 ≤ q, r ≤ ∞. Then A0 ∩ A1 ↪→ Āq;J ↪→ Āθ,r ↪→ A0 + A1. Moreover,
Ā1;J = A0 ∩A1 with equivalent norms.

Proof. Let a ∈ A0 ∩ A1. Take u(t) = aχ(1,e). Then a =
	∞
0 u(t) dt/t and

we obtain

‖a‖Āq;J ≤
( e�

1

J(t, a)q
dt

t

)1/q

≤ c‖a‖A0∩A1 .

Suppose now that a ∈ Āq;J and let a =
	∞
0 u(t) dt/t be a representation

satisfying (4.2). Then it is also a representation of a in Āθ,1 because, using
Hölder’s inequality, we have

1�

0

t−θJ(t, u(t))
dt

t
≤
( 1�

0

(t−1J(t, u(t)))q
dt

t

)1/q( 1�

0

t(1−θ)q
′ dt

t

)1/q′

and
∞�

1

t−θJ(t, u(t))
dt

t
≤
(∞�

1

J(t, u(t))q
dt

t

)1/q(∞�
1

t−θq
′ dt

t

)1/q′

.

Therefore, Āq;J ↪→ Āθ,1. Since Āθ,1 ↪→ Āθ,r ↪→ A0 + A1 (see [4] or [31]), it
follows that A0 ∩A1 ↪→ Āq;J ↪→ Āθ,r ↪→ A0 +A1.

Finally, let q = 1 and a ∈ Ā1;J . Take any representation a =
	∞
0 u(t) dt/t

in Ā1;J . Then the integral is absolutely convergent in A0 ∩A1 because, since
J(t, v) is a non-decreasing function of t and t−1J(t, v) is non-increasing, we
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get
∞�

0

‖u(t)‖A0∩A1

dt

t
=

1�

0

J(1, u(t))
dt

t
+

∞�

1

J(1, u(t))
dt

t

≤
1�

0

t−1J(t, u(t))
dt

t
+

∞�

1

J(t, u(t))
dt

t
.

Consequently, a ∈ A0 ∩A1 and ‖a‖A0∩A1 ≤ ‖a‖Ā1,J
.

It is shown in [13, Theorem 4.1] that

(4.3) Āq;J = (A0, A1, A1, A0)(1/2,1/2),q;J ,

where (·, ·, ·, ·)(α,β),q;J is the J-method defined by the unit square (see [17]).
In particular if A0 ↪→ A1 and Ā0,q;J is the space introduced in Section 2, we
have Āq;J = Ā0,q;J .

For 1 < q ≤ ∞, the spaces Āq;J can also be described using the K-
functional. In fact, according to [13, Theorem 3.10], we have

(4.4) Āq;J = Ā{f,g},q;K with equivalence of norms,

where Ā{f,g},q;K is formed by all those a ∈ A0 +A1 such that

‖a‖Ā{f,g},q;K =

( 1�

0

(
K(t, a)

t(1− log t)

)q dt
t

)1/q

+

(∞�
1

(
K(t, a)

1 + log t

)q dt
t

)1/q

<∞.

Equality (4.4) is not true if q = 1. Indeed, let {0} 6= A0 ↪→ A1, with the
embedding of norm ≤ 1. Thus K(t, a) = t‖a‖A1 if 0 < t ≤ 1. By Lemma 4.2,
Ā1;J = A0. However, Ā{f,g},1;K = {0} because for any a 6= 0 we obtain

1�

0

K(t, a)

t(1− log t)

dt

t
= ‖a‖A1

1�

0

1

1− log t

dt

t
=∞.

In fact, the (1; J)-method cannot be described using the K-functional.
Indeed, recall that for any Banach couple (A0, A1), one has K(t, a;A0, A1) =
K(t, a;A∼0 , A

∼
1 ), where A∼j is the Gagliardo completion of Aj in A0 +A1 (see

[3, Theorem 5.1.5]). Hence, if the (1; J)-method could be described using the
K-functional, we would have, for any Banach couple,

A0 ∩A1 = (A0, A1)1;J = (A∼0 , A
∼
1 )1;J = A∼0 ∩A∼1 .

However, if we take A0 = c0 and A1 = `∞(2−n), then A∼0 = `∞ and clearly
A0 ∩A1 = c0 6= `∞ = A∼0 ∩A∼1 .

The following result is based on the K-description of Āq;J .

Lemma 4.3. Let Ā = (A0, A1) be a Banach couple and let 1 ≤ q ≤ ∞.
Then (A0, A1)q;J = (A0 ∩ A1, A0 + A1)0,q;J with equivalence of norms. In
particular, (A0, A1)q;J = (A1, A0)q;J .
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Proof. If q = 1, we have (A0, A1)1;J = A0∩A1 = (A0∩A1, A0 +A1)0,1;J .
If q 6= 1, set K̄(t, a) = K(t, a;A0 ∩ A1, A0 + A1). By [9, Theorem 4.2], we
obtain

‖a‖(A0∩A1,A0+A1)0,q;J ∼
(∞�

1

(
K̄(t, a)

1 + log t

)q dt
t

)1/q

.

Using [29, Theorem 3], a change of variable and (4.4), we derive that(∞�
1

(
K̄(t, a)

1 + log t

)q dt
t

)1/q

∼
( 1�

0

(
K(s, a)

s(1− log s)

)q ds
s

)1/q

+

(∞�
1

(
K(t, a)

1 + log t

)q dt
t

)1/q

∼ ‖a‖(A0,A1)q;J .

Consequently, (A0, A1)q;J = (A0∩A1, A0 +A1)0,q;J . Finally, the last equality
implies that (A0, A1)q;J = (A1, A0)q;J .

It is easy to check that if T ∈ L(Ā, B̄), then T : Āq;J → B̄q;J is bounded
with ‖T‖Āq;J ,B̄q;J ≤ max{‖T‖A0,B0 , ‖T‖A1,B1}.

5. Compact operators. Interpolation of compact operators is a clas-
sical question that has attracted the attention of many authors (see [7] and
the references given there). As concerns the real method, the final result was
obtained in 1992 by Cwikel [18] and Cobos, Kühn and Schonbek [16], who
proved that if T ∈ L(Ā, B̄) and any of the restrictions T : Aj → Bj (j = 0, 1)
is compact, then the interpolated operator T : (A0, A1)θ,q → (B0, B1)θ,q is
also compact.

For limiting methods in the ordered case where A0 ↪→ A1 and B0 ↪→ B1,
it was proved by Cobos, Fernández-Cabrera, Kühn and Ullrich [9] that com-
pactness of T : A1 → B1 implies that T : Ā1,q;K → B̄1,q;K is also compact,
whereas compactness of T : A0 → B0 is not enough (see [9, Counterexample
7.11 and Theorem 7.14].

In the general case, the bad behaviour of the (q;K)-method suggests
poorer properties with respect to interpolation of compact operators. Next,
we show with an example based on [9, Counterexample 7.11] that in contrast
to the ordered case, if T ∈ L(Ā, B̄) and T : A1 → B1 is compact, then
T : Āq;K → B̄q;K may fail to be compact.

Counterexample 5.1. Let 1 ≤ q < ∞ and consider the couples Ā =
(`q(3

−n), `q), B̄ = (`q(2
−n), `q). Let D be the diagonal operator defined by

D(ξn) = ((2/3)nξn). Then D : `q(3
−n) → `q(2

−n) is bounded and D :
`q → `q is compact. However, according to (3.1) and [9, Lemma 7.2 and
Remark 7.3], we have

(`q(3
−n), `q)q;K = `q(n

1/q3−n) and (`q(2
−n), `q)q;K = `q(n

1/q2−n),
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and it is not hard to check that D : `q(n
1/q3−n) → `q(n

1/q2−n) fails to be
compact.

Nevertheless, if the first couple reduces to a single Banach space, then
the behaviour of the (q;K)-method improves.

Proposition 5.2. Let A be a Banach space, let B̄ = (B0, B1) be a
Banach couple and let 1 ≤ q ≤ ∞. If T is a linear operator such that
T : A→ Bj is bounded for j = 0, 1 and one of these restrictions is compact,
then T : A→ B̄q;K is also compact.

Proof. Clearly, T : A → B0 + B1 compactly and T : A → B0 ∩ B1

boundedly. If 1 ≤ q <∞, using Lemma 3.5 and [9, Theorem 7.14], we derive
that T : A → (B0 ∩ B1, B0 + B1)1,q;K = (B0, B1)q;K is compact. If q = ∞,
the result follows from the last part of Lemma 3.2.

In order to establish the compactness result in the general case, given any
Banach couple (A0, A1), we write (Ao0, A

o
1) for the Banach couple formed by

the closures of A0 ∩A1 in Aj for j = 0, 1.

Theorem 5.3. Let Ā = (A0, A1), B̄ = (B0, B1) be Banach couples, let
1 ≤ q ≤ ∞ and let T ∈ L(Ā, B̄). If T : Aj → Bj is compact for j = 0, 1,
then T : (Ao0, A

o
1)q;K → (B0, B1)q;K is compact as well.

Proof. The result follows from (3.2) and [23, Corollary 4.4].

Remark 5.4. We will show at the end of Section 6 that if q < ∞ then
(Ao0, A

o
1)q;K = (A0, A1)q;K .

Next we turn our attention to the (q; J)-method. In the ordered case
where A0 ↪→ A1 and B0 ↪→ B1, if T ∈ L(Ā, B̄) and T : A0 → B0 compactly,
then T : Ā0,q;J → B̄0,q;J is compact (see [9, Theorem 6.4]). However, in
the general case, compactness of T : A0 → B0 does not imply that T :
Āq;J → B̄q;J is compact. An example can be given by reversing the order of
the couples in [9, Counterexample 6.2] and using Lemma 4.3.

The following results give sufficient conditions for interpolation of com-
pact operators for the (q; J)-method.

Proposition 5.5. Let Ā = (A0, A1) be a Banach couple, let B be a
Banach space and let 1 ≤ q ≤ ∞. If T is a linear operator such that T :
Aj → B is bounded for j = 0, 1 and any of these two restrictions is compact,
then T : Āq;J → B is also compact.

Proof. It is clear that T : A0 ∩ A1 → B is compact. If q = 1, the result
follows using that Ā1;J = A0 ∩ A1. Assume now that 1 < q ≤ ∞. We infer
that T : A0 +A1 → B is bounded because

‖T (a0 + a1)‖B ≤ ‖Ta0‖B + ‖Ta1‖B
≤ max{‖T‖A0 , ‖T‖A1}(‖a0‖A0 + ‖a1‖A1).
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Hence, applying [9, Theorem 6.4] to the couples (A0 ∩ A1, A0 + A1), (B,B)
and using Lemma 4.3, we conclude that

T : Āq;J = (A0 ∩A1, A0 +A1)0,q;J → B

is also compact.

We finish this section with a consequence of (4.3) and [17, Theorem 6.1].

Theorem 5.6. Let Ā = (A0, A1) and B̄ = (B0, B1) be Banach couples,
let T ∈ L(Ā, B̄) and let 1 ≤ q ≤ ∞. If T : Aj → Bj is compact for j = 0, 1,
then T : Āq;J → B̄q;J is also compact.

6. Description of K-spaces using the J-functional. In (4.4) we
have pointed out that limiting J-spaces can be described by using the K-
functional provided that 1 < q ≤ ∞. In this section we study the description
of limiting K-spaces using the J-functional.

Definition 6.1. Let Ā = (A0, A1) be a Banach couple and let 1 ≤ q
≤ ∞. Write ρ(t) = 1 + |log t| and µ(t) = t−1(1 + |log t|). The space Ā{ρ,µ},q;J
is formed by all those elements a ∈ A0+A1 for which there is a representation

(6.1) a =

∞�

0

u(t)
dt

t
(convergence in A0 +A1)

with u(t) being a strongly measurable function with values in A0 ∩ A1 and
such that

(6.2)
( 1�

0

(ρ(t)J(t, u(t)))q
dt

t

)1/q

+

(∞�
1

(µ(t)J(t, u(t)))q
dt

t

)1/q

<∞.

The norm in Ā{ρ,µ},q;J is given by taking the infimum of the values in (6.2)
over all possible representations (6.1) of a satisfying (6.2).

The following result shows the relationship between these spaces and
limiting K-spaces.

Theorem 6.2. Let Ā = (A0, A1) be a Banach couple and 1 ≤ q < ∞.
Then (A0, A1)q;K = (A0, A1){ρ,µ},q;J with equivalence of norms.

Proof. Choose a∈ (A0, A1){ρ,µ},q;J and a representation a=
	∞
0 u(s) ds/s

such that( 1�

0

(ρ(t)J(t, u(t)))q
dt

t

)1/q

+

(∞�
1

(µ(t)J(t, u(t)))q
dt

t

)1/q

≤ 2‖a‖Ā{ρ,µ},q;J .



256 F. Cobos and A. Segurado

For any 0 < t <∞, we have

K(t, a) ≤
∞�

0

K(t, u(s))
ds

s
≤
∞�

0

min(1, t/s)J(s, u(s))
ds

s

=

t�

0

J(s, u(s))
ds

s
+

∞�

t

t

s
J(s, u(s))

ds

s
.

Hence,

‖a‖Āq,K =

( 1�

0

K(t, a)q
dt

t

)1/q

+

(∞�
1

(t−1K(t, a))q
dt

t

)1/q

≤
( 1�

0

( t�

0

J(s, u(s))
ds

s

)q dt
t

)1/q

+

( 1�

0

(∞�
t

t

s
J(s, u(s))

ds

s

)q dt
t

)1/q

+

(∞�
1

(
1

t

t�

0

J(s, u(s))
ds

s

)q dt
t

)1/q

+

(∞�
1

(∞�
t

1

s
J(s, u(s))

ds

s

)q dt
t

)1/q

= I1 + I2 + I3 + I4.

Let us estimate each of these terms separately. Let h ∈ Lq′((0, 1), dt/t) with
‖h‖Lq′ = 1 and such that

I1 =

( 1�

0

( t�

0

J(s, u(s))
ds

s

)q dt
t

)1/q

=

1�

0

h(t)

t�

0

J(s, u(s))
ds

s

dt

t
.

Using Fubini’s theorem, Hölder’s inequality, changing variables and applying
Hardy’s inequality (see [28]), we obtain

I1 =

1�

0

1�

s

h(t)J(s, u(s))
dt

t

ds

s
=

1�

0

J(s, u(s))ρ(s)
1

ρ(s)

1�

s

h(t)
dt

t

ds

s

≤
( 1�

0

(ρ(s)J(s, u(s)))q
ds

s

)1/q( 1�

0

(
1

1− log s

1�

s

h(t)
dt

t

)q′ ds
s

)1/q′

. ‖a‖Ā{ρ,µ},q;J

(∞�
0

(
1

1 + x

1�

e−x

h(t)
dt

t

)q′
dx

)1/q′

≤ ‖a‖Ā{ρ,µ},q;J

(∞�
0

(
1

x

x�

0

h(e−s) ds

)q′
dx

)1/q′

.

(∞�
0

h(e−s)q
′
ds

)1/q′

‖a‖{ρ,µ},q;J = ‖a‖{ρ,µ},q;J .
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As for I2, by Hölder’s inequality and the fact that s(1−log s) is increasing
in (0, 1), we get

I2 ≤
( 1�

0

(
t

1�

t

1− log s

s(1− log s)
J(s, u(s))

ds

s

)q dt
t

)1/q

+

( 1�

0

(
t

∞�

1

1

s
J(s, u(s))

ds

s

)q dt
t

)1/q

≤
( 1�

0

(
1

1− log t

1�

t

(1− log s)J(s, u(s))
ds

s

)q dt
t

)1/q

+

( 1�

0

tq
(∞�

1

(
1 + log s

s
J(s, u(s))

)q ds
s

)
·
(∞�

1

(1 + log s)−q
′ ds

s

)q/q′ dt
t

)1/q

.

The last integral is finite because q′ = (1−1/q)−1 is greater than 1. Changing
variables and using Hardy’s inequality, we derive

I2 .

(∞�
0

(
1

1 + v

v�

0

(1 + x)J(e−x, u(e−x)) dx

)q
dv

)1/q

+

( 1�

0

tq
∞�

1

(µ(s)J(s, u(s)))q
ds

s

dt

t

)1/q

.

(∞�
0

((1 + x)J(e−x, u(e−x)))q dx

)1/q

+ ‖a‖{ρ,µ},q;J . ‖a‖{ρ,µ},q;J .

As for I3, using Hölder’s inequality and Hardy’s inequality for the func-
tion s−1J(s, u(s))χ(1,∞)(s), we have

I3 ≤
(∞�

1

(
t−1

1�

0

J(s, u(s))
ds

s

)q dt
t

)1/q

+

(∞�
1

(
t−1

t�

1

J(s, u(s))
ds

s

)q dt
t

)1/q

≤
(∞�

1

t−q
( 1�

0

(ρ(s)J(s, u(s)))q
ds

s

)( 1�

0

(
1

1− log s

)q′ ds
s

)q/q′ dt
t

)1/q

+

(∞�
1

(s−1J(s, u(s)))q
ds

s

)1/q

. ‖a‖Ā{ρ,µ},q;J

+

(∞�
1

(
1 + log s

s
J(s, u(s))

)q
(1 + log s)−q

ds

s

)1/q

≤ ‖a‖Ā{ρ,µ},q;J + sup
1≤s<∞

(1 + log s)−q‖a‖Ā{ρ,µ},q;J . ‖a‖Ā{ρ,µ},q;J .
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In order to estimate the last term I4, we proceed as in the case of I1.
Choose h ∈ Lq′((1,∞), dt/t) with ‖h‖Lq′ = 1 and such that

I4 =

∞�

1

h(t)

∞�

t

s−1J(s, u(s))
ds

s

dt

t
.

We obtain

I4 =

∞�

1

s−1J(s, u(s))

s�

1

h(t)
dt

t

ds

s

≤
(∞�

1

(µ(s)J(s, u(s)))q
ds

s

)1/q(∞�
1

(
1

1 + log s

s�

1

h(t)
dt

t

)q′ ds
s

)1/q′

≤ ‖a‖Ā{ρ,µ},q;J

(∞�
0

(
1

1 + x

x�

0

h(ey) dy

)q′
dx

)1/q′

. ‖a‖Ā{ρ,µ},q;J
(∞�

0

h(ex)q
′
dx
)1/q′

= ‖a‖Ā{ρ,µ},q;J .

Consequently, (A0, A1){ρ,µ},q;J ↪→ (A0, A1)q,K .
Conversely, take any a ∈ (A0, A1)q,K . Then

(6.3)
1�

0

K(t, a)q
dt

t
+

∞�

1

(t−1K(t, a))q
dt

t
<∞.

Since K(t, a) (respectively, t−1K(t, a)) is non-decreasing (respectively, non-
increasing) in t, it follows from (6.3) that

(6.4) K(t, a)→ 0 as t→ 0 and
K(t, a)

t
→ 0 as t→∞.

For ν ∈ Z, put

ην =


2−2−ν−1 if ν < 0,
1 if ν = 0,
22ν−1 if ν > 0.

We can find decompositions a = a0,ν + a1,ν with aj,ν ∈ Aj , j = 0, 1, such
that

‖a0,ν‖A0 + ην+1‖a1,ν‖A1 ≤ 2K(ην+1, a) if ν ≤ 1,

η−1
ν−1‖a0,ν‖A0 + ‖a1,ν‖A1 ≤ 2K̃(η−1

ν−1, a) if ν > 1,

where K̃(t, a) = K(t, a;A1, A0).
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Let uν = a0,ν − a0,ν−1 = a1,ν−1 − a1,ν ∈ A0 ∩ A1, ν ∈ Z. Given any
N,M ∈ N, we have∥∥∥a− M∑

ν=−N
uν

∥∥∥
A0+A1

= ‖a− a0,M + a0,−N−1‖A0+A1

≤ ‖a0,−N−1‖A0 + ‖a1,M‖A1 .

By (6.4), the last two terms go to 0 as N,M →∞. Hence, a =
∑

ν∈Z uν in
A0 +A1.

Let Lν = (ην−1, ην ], ν ∈ Z. We have

�

Lν

dt

t
=


2−ν−1 log 2 if ν < 0,
log 2 if ν = 0, 1,
2ν−2 log 2 if ν > 1.

Let

v(t) =



uν
2−ν−1 log 2

if t ∈ Lν and ν < 0,

uν
log 2

if t ∈ Lν and ν = 0, 1,

uν
2ν−2 log 2

if t ∈ Lν and ν > 1.

Then a =
	∞
0 v(t) dt/t (convergence in A0 + A1). Next we show that this is

a suitable representation of a in the J-space.
If ν < 0 and t ∈ Lν , we have

J(t, v(t)) =
J(t, uν)

2−ν−1 log 2
. 2ν+1J(ην , uν)

≤ 2ν+1(‖a0,ν‖A0 + ‖a0,ν−1‖A0 + ην‖a1,ν−1‖A1 + ην‖a1,ν‖A1)

. 2ν+1K(ην+1, a).

Therefore,

�

Lν

[(1− log t)J(t, v(t))]q
dt

t
. (2ν+1K(ην+1, a))q

2−2−ν−1�

2−2−ν

(1− log t)q
dt

t

≤ (2ν+1K(ην+1, a))q(1 + 2−ν log 2)q2−ν−1 log 2

. 2−ν−1K(ην+1, a)q.

Now we distinguish three subcases. If ν < −2, we derive
�

Lν

[(1− log t)J(t, v(t))]q
dt

t
. K(ην+1, a)q

�

Lν+2

dt

t
≤

�

Lν+2

K(t, a)q
dt

t
.
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If ν = −2, we get
�

L−2

[(1− log t)J(t, v(t))]q
dt

t
. K(η−1, a)q

�

L0

dt

t
≤

�

L0

K(t, a)q
dt

t
.

In the remaining case ν = −1, we obtain
�

L−1

[(1− log t)J(t, v(t))]q
dt

t
. K(η0, a)q .

�

L1

(
K(t, a)

t

)q dt
t
.

Suppose now ν > 1. A change of variables yields

�

Lν

(
1 + log t

t
J(t, v(t))

)q dt
t

=

η−1
ν−1�

η−1
ν

((1− log s)sJ(1/s, v(1/s)))q
ds

s

=

η−1
ν−1�

η−1
ν

((1− log s)J̃(s, v(1/s)))q
ds

s
,

where J̃(s, w) = J(s, w;A1, A0). If s ∈ (η−1
ν , η−1

ν−1], then 1/s ∈ Lν , and we
get

J̃(s, v(1/s)) =
J̃(s, uν)

2ν−2 log 2
.
J̃(η−1

ν−1, uν)

2ν−2

≤ 22−ν(η−1
ν−1(‖a0,ν‖A0 + ‖a0,ν−1‖A0) + ‖a1,ν−1‖A1 + ‖a1,ν‖A1)

. 22−νK̃(η−1
ν−2, a).

This implies that
�

Lν

(
1 + log t

t
J(t, v(t))

)q dt
t

. (22−νK̃(η−1
ν−2, a))q(1 + log ην)q

�

Lν

dt

t

.

(
K(ην−2, a)

ην−2

)q �

Lν

dt

t
.

Now, if ν > 2, we derive
�

Lν

(
1 + log t

t
J(t, v(t))

)q dt
t

.

(
K(ην−2, a)

ην−2

)q
2ν−2

.

(
K(ην−2, a)

ην−2

)q �

Lν−2

dt

t

≤
�

Lν−2

(
K(t, a)

t

)q dt
t
.
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If ν = 2, we have
�

L2

(
1 + log t

t
J(t, v(t))

)q dt
t

.

(
K(η0, a)

η0

)q �

L2

dt

t

. K(1/2, a)q
�

L0

dt

t
.

�

L0

K(t, a)q
dt

t
.

Finally, we focus on the remaining two cases: ν = 0, 1. If ν = 0 and
t ∈ L0, then

J(t, v(t)) =
J(t, u0)

log 2
. ‖a0,0‖A0+‖a0,−1‖A0+‖a1,−1‖A1+‖a1,0‖A1 . K(2, a).

Hence,
�

L0

((1− log t)J(t, v(t)))q
dt

t
. K(2, a)q .

�

L1

(t−1K(t, a))q
dt

t
.

If ν = 1 and t ∈ L1, then J(t, v(t)) . K(4, a), and so
�

L1

(
1 + log t

t
J(t, v(t))

)q dt
t

.

(
K(4, a)

4

)q �

L2

dt

t
.

�

L2

(
K(t, a)

t

)q dt
t
.

With all these estimates, we have( 1�

0

((1− log t)J(t, v(t)))q
dt

t

)1/q

+

(∞�
1

(
1 + log t

t
J(t, v(t))

)q dt
t

)1/q

=

( −1∑
ν=−∞

�

Lν

((1− log t)J(t, v(t)))q
dt

t
+

�

L0

((1− log t)J(t, v(t)))q
dt

t

)1/q

+

( ∞∑
ν=2

�

Lν

(
1 + log t

t
J(t, v(t))

)q dt
t

+
�

L1

(
1 + log t

t
J(t, v(t))

)q dt
t

)1/q

.

( −2∑
ν=−∞

�

Lν+2

K(t, a)q
dt

t
+

�

L1

(
K(t, a)

t

)q dt
t

)1/q

+

( �

L0

K(t, a)q
dt

t
+

∞∑
ν=3

�

Lν−2

(
K(t, a)

t

)q dt
t

)1/q

.

( 1�

0

K(t, a)q
dt

t

)1/q

+

(∞�
1

(
K(t, a)

t

)q dt
t

)1/q

.

This shows that (A0, A1)q,K ↪→ (A0, A1){ρ,µ},q;J and completes the proof.

Remark 6.3. In the proof of Theorem 6.2, the assumption q 6= ∞ has
allowed us to use Hardy’s inequality, as well as guaranteed the convergence
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of certain integrals. So, it is essential for the arguments. In fact, the equality
Ā∞;K = Ā{ρ,µ},∞;J does not hold in general: Assume that A0 ↪→ A1 with the
closure of A0 in A1, Ao0, being different from A1 (take for instance A0 = `1
and A1 = `∞). By Lemma 3.2, Ā∞;K = A0+A1 = A1. However, Ā{ρ,µ},∞;J ⊂
Ao0 6= A1. Indeed, take any a ∈ Ā{ρ,µ},∞;J and let a =

	∞
0 u(t) dt/t be a

J-representation with

max

{
sup

0<t<1
(1− log t)J(t, u(t)), sup

1≤t<∞

1 + log t

t
J(t, u(t))

}
≤ 2‖a‖Ā{ρ,µ},∞;J

.

Then limN→∞ ‖a −
	N
1/N u(t) dt/t‖A1 = 0 and

	N
1/N u(t) dt/t belongs to A0

because
N�

1/N

‖u(t)‖A0

dt

t
≤

1�

1/N

J(t, u(t))

1− log t
(1− log t)

dt

t

+

N�

1

t

1 + log t

1 + log t

t
J(t, u(t))

dt

t
. ‖a‖Ā{ρ,µ},∞;J

.

Remark 6.4. More generally, the (∞;K)-method does not admit a de-
scription as a J-space. Indeed, given any Banach couple Ā = (A0, A1), using
Hölder’s inequality, it is not hard to check that if u(t) satisfies condition
(6.2), then the integral

	∞
0 u(t) dt/t is convergent in A0 + A1. Moreover, if

t > 0 and w ∈ A0 ∩ A1 then J(t, w;A0, A1) = J(t, w;Ao0, A
o
1), because

A0 ∩A1 = Ao0 ∩Ao1 and the norms of Aj and Aoj coincide for j = 0, 1. These
two facts imply that

(6.5) (A0, A1){ρ,µ},q;J = (Ao0, A
o
1){ρ,µ},q;J .

Equality (6.5) holds for any general J-method as considered in [5] because
the assumptions on J(t, u(t)) still imply the convergence of

	∞
0 u(t) dt/t in

A0 +A1 (see [5, p. 362]). Since for the couple (`1, `∞) we have

(`1, `∞)∞;K = `∞ 6= c0 = (`1, c0)∞;K = (`o1, `
o
∞)∞;K ,

we conclude that the (∞;K)-method does not admit a description by means
of the J-functional.

Corollary 6.5. Let Ā = (A0, A1) be a Banach couple and let 1 ≤ q
<∞. Then A0 ∩A1 is dense in Āq;K .

Proof. By Theorem 6.2, we can work with the norm ‖ · ‖Ā{ρ,µ},q;J . Let
a ∈ Āq;K and take any ε > 0. We can find a J-representation a =

	∞
0 u(t) dt/t

satisfying (6.2). Let N ∈ N be such that( 1/N�

0

(ρ(t)J(t, u(t)))q
dt

t

)1/q

+

(∞�
N

(µ(t)J(t, u(t)))q
dt

t

)1/q

< ε.
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Using Hölder’s inequality and the continuity of the function t−1(1− log t)−1

on [1, 1/N ] and of t(1 + log t)−1 on [1, N ], we get
N�

1/N

‖u(t)‖A0∩A1

dt

t
≤

1�

1/N

t−1J(t, u(t))
dt

t
+

N�

1

J(t, u(t))
dt

t

≤
( 1�

1/N

(ρ(t)J(t, u(t)))q
dt

t

)1/q( 1�

1/N

(tρ(t))−q
′ dt

t

)1/q′

+

(N�

1

(µ(t)J(t, u(t)))q
dt

t

)1/q(N�

1

µ(t)−q
′ dt

t

)1/q′

<∞.

Therefore, w =
	N
1/N u(t) dt/t belongs to A0∩A1. Since a−w =

	1/N
0 u(t) dt/t

+
	∞
N u(t) dt/t, we obtain

‖a− w‖Ā{ρ,µ},q;J ≤
( 1/N�

0

(ρ(t)J(t, u(t)))q
dt

t

)1/q

+

(∞�
N

(µ(t)J(t, u(t)))q
dt

t

)1/q

< ε.

This shows the density of A0 ∩A1 in Āq;K .

It follows from (6.5) and Theorem 6.2 that (Ao0, A
o
1)q;K = (A0, A1)q;K if

1 ≤ q < ∞. Hence, as a direct consequence of Theorem 5.3, we derive the
following.

Corollary 6.6. Let Ā = (A0, A1) and B̄ = (B0, B1) be Banach couples,
let 1 ≤ q <∞, and let T ∈ L(Ā, B̄). If T : Aj → Bj is compact for j = 0, 1,
then T : Āq;K → B̄q;K is also compact.

7. Duality. This section is devoted to the duality relationships between
limiting K- and J-spaces. Let Ā = (A0, A1) be a regular Banach couple,
meaning that A0 ∩ A1 is dense in Aj for j = 0, 1. Then the dual A∗j of Aj
can be identified with a subspace A′j of (A0∩A1)∗, and (A′0, A

′
1) is a Banach

couple too.

Theorem 7.1. Let 1 ≤ q ≤ ∞, 1/q + 1/q′ = 1 and let Ā = (A0, A1)
be a regular Banach couple. Then (A0, A1)′q;K = (A′0, A

′
1)q′;J with equivalent

norms.

Proof. By [4, Theorem 2.7.1], we know that (A0 + A1)′ = A′0 ∩ A′1 and
(A0 ∩A1)′ = A′0 +A′1. Hence, using Lemmata 4.2 and 3.2, we obtain

(A0, A1)′∞;K = (A0 +A1)′ = A′0 ∩A′1 = (A′0, A
′
1)1;J .
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If 1 < q <∞, we derive from Lemmata 4.3, 3.5 and [9, Theorem 8.2] that

(A0, A1)′q;K = (A0 ∩A1, A0 +A1)′1,q;K = (A′0 +A′1, A
′
0 ∩A′1)0,q′;J

= (A′0, A
′
1)q′;J .

The remaining case q = 1 can be treated similarly because the arguments in
[9, Theorem 8.2] also work for q = 1.

Theorem 7.2. Let 1 ≤ q < ∞, 1/q + 1/q′ = 1 and let Ā = (A0, A1)
be a regular Banach couple. Then (A0, A1)′q;J = (A′0, A

′
1)q′;K with equivalent

norms.

Proof. The case q = 1 follows again by Lemmata 4.2 and 3.2 and [4,
Theorem 2.7.1], namely

(A0, A1)′1;J = (A0 ∩A1)′ = A′0 +A′1 = (A′0, A
′
1)∞;K .

For 1 < q <∞, by Lemmata 4.3 and 3.5 and [9, Theorem 8.1], we derive

(A0, A1)′q;J = (A0 ∩A1, A0 +A1)′0,q;J = (A′0 +A′1, A
′
0 ∩A′1)1,q′;K

= (A′0, A
′
1)q′;K .

In order to study the dual of the J-space when q =∞, let (A0, A1)c0;J be
the collection of all a ∈ A0 +A1 for which there exists a sequence (um)m∈Z ⊂
A0 ∩A1 such that a =

∑
m∈Z um (convergence in A0 +A1) and

(7.1) max(1, 2−m)J(2m, um) −−−−−→
m→±∞

0.

We put
‖a‖Āc0;J = inf

a=
∑
um

[
sup
m∈Z

max(1, 2−m)J(2m, um)
]
.

Lemma 7.3. Let Ā = (A0, A1) be a Banach couple and let (A0, A1)o∞;J
be the closure of A0 ∩ A1 in (A0, A1)∞;J . Then (A0, A1)c0;J = (A0, A1)o∞;J
with equivalence of norms.

Proof. Let a ∈ (A0, A1)c0;J . Choose (um) ⊆ A0 ∩A1 with a =
∑

m∈Z um
and satisfying (7.1). Given any ε > 0, there exists M ∈ N such that if
|m| ≥M then sup(1, 2−m)J(2m, um) < ε/2. Let w =

∑
|m|≤M um ∈ A0∩A1.

Since a− w can be represented in Ā∞;J by means of the function

v(t) =

{
um/log 2 if |m| > M ,
0 otherwise,

we obtain

‖a− w‖Ā∞;J
. sup

m>M
J(2m, um) + sup

m<−M
2−mJ(2m, um) ≤ ε.

This implies that a ∈ (A0, A1)o∞;J .
Conversely, pick a ∈ (A0, A1)o

Ā∞;J
. Then we can find v1 ∈ A0 ∩ A1 such

that ‖a − v1‖Ā∞;J
< 1/2. Now, a − v1 ∈ (A0, A1)o

Ā∞;J
. Hence, there exists
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v2 ∈ A0 ∩ A1 such that ‖a − v1 − v2‖Ā∞;J
< 1/22. Repeating this process,

for each k ∈ N we can find vk ∈ A0 ∩A1 such that∥∥∥a− k∑
n=1

vn

∥∥∥
Ā∞;J

<
1

2k
.

Hence, a =
∑

n∈N vn in (A0, A1)∞;J . It follows that (
∑k

n=1 vn)k∈N is a
Cauchy sequence in (A0, A1)c0;J . Since this space is complete (see [5]), we
derive that (

∑k
n=1 vn)k∈N is convergent in (A0, A1)c0;J . Its limit should be

the same as in (A0, A1)∞;J . Consequently, a ∈ (A0, A1)c0;J .

Theorem 7.4. We have ((A0, A1)o∞;J)′ = (A′0, A
′
1)1;K with equivalence

of norms.

Proof. With the help of Lemma 7.3, we can proceed similarly to [9, The-
orem 8.1]. Namely, put

Gm =


A0 ∩A1 normed by J(2m, ·) if m ∈ N,
A0 ∩A1 normed by ‖ · ‖A0∩A1 if m = 0,
A0 ∩A1 normed by 2−mJ(2m, ·) if −m ∈ N.

Let W = c0(Gm)m∈Z and put

M =
{

(wm) ∈W :
∑
m∈Z

wm = 0 (convergence in A0 +A1)
}
.

As usual, let

M⊥ = {f̃ ∈W ∗ : f̃(wm) = 0 for each (wm) ∈M}.
The space (A0, A1)o∞;J = (A0, A1)c0;J coincides with W/M with equivalent
norms. Therefore,

((A0, A1)o∞;J)∗ = (W/M)∗ = M⊥.

Let us identify M⊥. Put

Fm =


A′0 +A′1 normed by 2−mK(2m, ·;A′0, A′1) if m ∈ N,
A′0 +A′1 normed by ‖ · ‖A′0+A′1

if m = 0,
A′0 +A′1 normed by K(2m, ·;A′0, A′1) if −m ∈ N.

For each m ∈ Z, we have G′m = F−m with equal norms. Hence W ∗ =
`1(F−m). This means that functionals f̃ ∈W ∗ are given by sequences (f−m)
∈ `1(F−m) with

f̃(wm) =
∑
m∈Z

f−m(wm) and ‖f̃‖W ∗ =
∑
m∈Z
‖f−m‖F−m .

We claim that if f̃ ∈M⊥, then fn = fm for all n,m ∈ Z. Indeed, if there
is a ∈ A0∩A1 such that fn(a) 6= fm(a), then for the sequence w = (wk) ∈W
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defined by wk = a if k = −n, wk = −a if k = −m and wk = 0 for the other
k ∈ Z, we have f̃(wk) = fn(a)− fm(a) 6= 0, but w ∈M .

Conversely, let f ∈ (A0∩A1)′ with (. . . , f, f, f, . . . ) ∈W ∗. We claim that
the functional f̃ defined by this constant sequence belongs to M⊥. Indeed,
take any (wm) ∈M and let us show that f̃(wm) =

∑
m∈Z f(wm) = 0. Since

(. . . , f, f, f, . . . ) ∈ W ∗ = `1(F−m), we derive that (. . . , f, f, f, . . . ) belongs
to (A′0, A

′
1)1;K . Using the J-representation of this space given by Theorem

6.2, we can find (gj) ⊂ A′0 ∩ A′1 such that f =
∑

j∈Z gj (convergence in
A′0 +A′1) and ∥∥∥f − M∑

j=−N
gj

∥∥∥
(A′0,A

′
1)1;K

→ 0 as M,N →∞.

Hence, given any ε > 0, there is L ∈ N such that∥∥∥f − ∑
|j|≤L

gj

∥∥∥
(A′0,A

′
1)1;K

=
∥∥∥( . . . , f − ∑

|j|≤L

gj , f −
∑
|j|≤L

gj , f −
∑
|j|≤L

gj , . . .
)∥∥∥

W ∗

<
ε

2‖(wm)‖W
.

Let g =
∑
|j|≤L gj . Then g ∈ A′0 ∩ A′1 = (A0 + A1)′. Since

∑
m∈Zwm = 0 in

A0 +A1, we can find N ∈ N such that for any m ≥ N we have∣∣∣g( m∑
k=−m

wk

)∣∣∣ < ε

2
.

Therefore, for each m ≥ N , we derive that∣∣∣ m∑
k=−m

f(wk)
∣∣∣ =

∣∣∣ m∑
k=−m

f(wk)− g
( m∑
k=−m

wk

)
+ g
( m∑
k=−m

wk

)∣∣∣
≤ ‖(. . . , f − g, f − g, f − g, . . . )‖W ∗‖(wn)‖W

+
∣∣∣g( m∑

k=−m
wk

)∣∣∣ < ε

2‖(wm)‖W
‖(wm)‖W +

ε

2
= ε.

This shows that f̃ ∈M⊥.
Consequently, ((A0, A1)o∞;J)′ consists of all f ∈ (A0∩A1)′ = A′0+A′1 such

that (min(1, 2−n)K(2n, f ;A′0, A
′
1)) ∈ `1. This establishes that ((A0, A1)o∞;J)′

= (A′0, A
′
1)1;K .

8. Examples. Let (Ω,µ) be a σ-finite measure space. Given any mea-
surable function f which is finite almost everywhere, the non-increasing re-
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arrangement of f is defined by
f∗(t) = inf{s > 0 : µ({x ∈ Ω : |f(x)| > s}) ≤ t}.

We write f∗∗(t) = t−1
	t
0 f
∗(s) ds.

Let 1 ≤ p, q ≤ ∞ and b ∈ R. The Lorentz–Zygmund space Lp,q(logL)b(Ω)
is defined to be the collection of all (equivalence classes of) measurable func-
tions f on Ω such that the functional

‖f‖Lp,q(logL)b =

(∞�
0

(t1/p(1 + |log t|)bf∗(t))q dt
t

)1/q

is finite. The space L(p,q)(logL)b(Ω) is defined similarly but replacing f∗ by
f∗∗. According to [19, Lemma 3.4.39], Lp,q(logL)b(Ω) = L(p,q)(logL)b(Ω)
provided that 1 < p ≤ ∞, 1 ≤ q ≤ ∞ and b ∈ R. Note that if q = p then
Lp,p(logL)b(Ω) is the Zygmund space Lp(logL)b(Ω). If in addition b = 0,
then Lp,p(logL)0(Ω) is the Lebesgue space Lp(Ω).

Theorem 8.1. Let (Ω,µ) be a σ-finite measure space.

(i) If 1 < q ≤ ∞ then

(L∞(Ω), L1(Ω))q;J = L(∞,q)(logL)−1(Ω) ∩ L(1,q)(logL)−1(Ω).

(ii) If 1 ≤ q <∞ then

(L∞(Ω), L1(Ω))q;K =

{
f : ‖f‖ =

(∞�
0

min(1, t)f∗∗(t)q
dt

t

)1/q

<∞
}
.

Proof. It is well-known (see [4] or [31]) that
(8.1) K(t, f ;L∞(Ω), L1(Ω)) = f∗∗(1/t).

According to (4.4), we obtain

‖f‖(L∞,L1)q;J ∼
( 1�

0

[
f∗∗(1/t)

t(1− log t)

]q dt
t

)1/q

+

(∞�
1

[
f∗∗(1/t)

1 + log t

]q dt
t

)1/q

=

( 1�

0

[
f∗∗(t)

1− log t

]q dt
t

)1/q

+

(∞�
1

[
tf∗∗(t)

1 + log t

]q dt
t

)1/q

.

Now we study each of these two terms. As f∗∗(t) is non-increasing, we get(∞�
1

(
f∗∗(t)

1 + log t

)q dt
t

)1/q

≤ f∗∗(1)

(∞�
1

(1 + log t)−q
dt

t

)1/q

. f∗∗(1)

( 1�

0

(1− log t)−q
dt

t

)1/q

≤
( 1�

0

(
f∗∗(t)

1− log t

)q dt
t

)1/q

.
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Hence,( 1�

0

(
f∗∗(t)

1− log t

)q dt
t

)1/q

∼
(∞�

0

(
f∗∗(t)

1 + |log t|

)q dt
t

)1/q

= ‖f‖L(∞,q)(logL)−1
.

For the second term, we observe that( 1�

0

(
tf∗∗(t)

1− log t

)q dt
t

)1/q

≤
( 1�

0

f∗(s) ds
)( 1�

0

(1− log t)−q
dt

t

)1/q

.
( 1�

0

f∗(s) ds
)(∞�

1

(1 + log t)−q
dt

t

)1/q

≤
(∞�

1

(
tf∗∗(t)

1 + log t

)q dt
t

)1/q

.

So, (∞�
1

(
tf∗∗(t)

1 + log t

)q dt
t

)1/q

∼ ‖f‖L(1,q)(logL)−1
.

This yields (i). Formula (ii) follows by inserting (8.1) in the interpolation
norm. Namely,

‖f‖(L∞,L1)q;K ∼
( 1�

0

f∗∗(1/t)q
dt

t
+

∞�

1

(
f∗∗(1/t)

t

)q dt
t

)1/q

∼
( 1�

0

(tf∗∗(t))q
dt

t
+

∞�

1

f∗∗(t)q
dt

t

)1/q

=

(∞�
0

min(1, t)f∗∗(t)q
dt

t

)1/q

.

Let now ω be a weight on Ω, that is, a positive measurable function on Ω.
As usual, we put

Lq(ω) = {f : ‖f‖Lq(ω) = ‖ωf‖Lq <∞}.

Theorem 8.2. Let (Ω,µ) be a σ-finite measure space, let 1 ≤ q ≤ ∞,
1/q + 1/q′ = 1 and let ω0, ω1 be weights on Ω.

(i) We have

(Lq(ω0), Lq(ω1))q;K = Lq(ωK) with equivalence of norms,

where

ωK(x) = min(ω0(x), ω1(x))

(
1 +

∣∣∣∣log
ω0(x)

ω1(x)

∣∣∣∣)1/q

.
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(ii) For the (q; J)-method, we have

(Lq(ω0), Lq(ω1))q;J = Lq(ωJ) with equivalence of norms,

where

ωJ(x) = max(ω0(x), ω1(x))

(
1 +

∣∣∣∣log
ω0(x)

ω1(x)

∣∣∣∣)−1/q′

.

Proof. It is easy to check that Lq(ω0) ∩ Lq(ω1) = Lq(max(ω0, ω1)) and
Lq(ω0) + Lq(ω1) = Lq(min(ω0, ω1)). Hence, by Lemma 3.5,

(Lq(ω0), Lq(ω1))q;K = (Lq(max(ω0, ω1)), Lq(min(ω0, ω1)))q;K .

Now (i) follows from the corresponding result for the ordered case (see [9,
Theorem 7.4]). The proof of (ii) is similar but using now Lemma 4.3 and [9,
Theorem 4.8].

Next we show a consequence of this result for interpolation of a certain
class of Sobolev spaces. We write S(Rd) and S ′(Rd) for the Schwartz space of
all rapidly decreasing infinitely differentiable functions on Rd, and the space
of tempered distributions on Rd, respectively. The symbol F stands for the
Fourier transform and F−1 for the inverse Fourier transform. For s ∈ R, we
denote by Hs = Hs

2(Rd) the set of all f ∈ S ′(Rd) such that

‖f‖Hs =
∥∥(1 + ‖x‖2Rd)

s/2Ff
∥∥
L2(Rd)

<∞.

More generally, if ϕ is a temperate weight function in the sense of [27, Defi-
nition 10.1.1], we put (see [27, 30])

Hϕ = {f ∈ S ′(Rd) : ‖f‖Hϕ = ‖ϕ(x)Ff‖L2(Rd) <∞}.

As a direct consequence of Theorem 8.2 and the interpolation property
of the (q;K)- and (q; J)-methods, we obtain the following.

Corollary 8.3. Let −∞ < s1 < s0 <∞. Put

ϕj(x) = (1 + ‖x‖2Rd)
sj/2

(
1 +

1

2
(s0 − s1) log(1 + ‖x‖2Rd)

)(−1)j+1/2

where j = 0, 1. Then

(Hs0 , Hs1)2;K = Hϕ1 and (Hs0 , Hs1)2;J = Hϕ0

with equivalence of norms.

Next let (φn)∞n=0 ⊂ S(Rd) have the following properties:

• suppφ0 ⊂ {x ∈ Rd : ‖x‖Rd ≤ 2},
• suppφn ⊂ {x ∈ Rd : 2n−1 ≤ ‖x‖Rd ≤ 2n+1}, n ∈ N,
• supx∈Rd |Dαφn(x)| ≤ cα2−n|α|, n ∈ N ∪ {0}, α ∈ (N ∪ {0})d,
•
∑∞

n=0 φn(x) = 1, x ∈ Rd.
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For s ∈ R and 1 ≤ p, q ≤ ∞, the Besov space Bs
p,q consists of all those

f ∈ S ′(Rd) such that

‖f‖Bsp.q =
( ∞∑
n=0

(
2sn‖F−1(φnFf)‖Lp(Rd)

)q)1/q
<∞.

The spaces Bs,b
p,q, where b ∈ R, are defined similarly but replacing the role of

ts by ts(1 + |log t|)b in the above definition. That is,

‖f‖
Bs,bp.q

=
( ∞∑
n=0

(
2sn(1 + n)b‖F−1(φnFf)‖Lp(Rd)

)q)1/q
<∞.

The spaces Bs,b
p,q are a special case of Besov spaces of generalized smoothness,

which were considered in [8, 14] among other papers. They are of interest in
fractal analysis and the related spectral theory (see [33, 34] and the references
given there).

Theorem 8.4. Let −∞ < s1 < s0 < ∞, 1 ≤ p, q ≤ ∞ and 1/q + 1/q′

= 1. Then

(Bs0
p,q, B

s1
p,q)q;K = Bs1,1/q

p,q and (Bs0
p,q, B

s1
p,q)q;J = Bs0,−1/q′

p,q

with equivalence of norms.

Proof. It is shown in [4, Theorem 6.4.3] and [31, Theorem 2.3.2] that
B
sj
p,q is a retract of `q(2nsjLp) for j = 0, 1. Moreover, by Remark 3.3 and [9,

p. 2352], we have

(`q(2
ns0Lp), `q(2

ns1Lp))q;K = `q((1 + n)1/q2ns1Lp).

These two results yield the formula for the limiting K-method. The proof
for the J-case has the same structure, but using now [9, Corollary 3.6].

We finish the paper with an application of limiting methods to Fourier
coefficients. Let Ω = [0, 2π] with the Lebesgue measure and, given f ∈
L1([0, 2π]), we write (cm) for its Fourier coefficients, defined by

cm = f̂(m) =
1

2π

2π�

0

f(x)e−imx dx, m ∈ Z.

We designate by (c∗m) the decreasing rearrangement of the sequence (|cm|),
given by c∗1 = max{|cm| : m ∈ Z} = |cm1 | , c∗2 = max{|cm| : m ∈ Z\{m1}} =
|cm2 | and so on.

Theorem 8.5. If f ∈ L2(logL)−1/2, then
∑∞

n=1(1 + log n)−1(c∗n)2 <∞.

Proof. Let F (f) = (f̂(m)) be the operator assigning to each function f
the sequence of its Fourier coefficients. As is well-known, the restrictions F :
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L2([0, 2π])→ `2 and F : L1([0, 2π])→ `∞ are bounded. Hence, interpolating
by the (2; J)-method, we deduce that

F : (L2([0, 2π]), L1([0, 2π]))2;J → (`2, `∞)2;J

is also bounded. Now we proceed to identify these spaces. Since L2([0, 2π]) =
(L∞([0, 2π]), L1([0, 2π]))1/2,2, it follows from [9, Theorem 4.6] and (8.1) that

‖f‖(L2,L1)2;J ∼
(∞�

1

(t−1/2(1 + log t)−1/2f∗∗(1/t))2 dt

t

)1/2

∼
( 2π�

0

(t1/2(1 + |log t|)−1/2f∗∗(t))2 dt

t

)1/2

∼ ‖f‖L2(logL)−1/2
,

where we have used [19, Lemma 3.4.39] in the last equivalence. As for the
sequence space, since K(t, ξ; `1, `∞) ∼

∑[t]
j=1 ξ

∗
j (see [31, p. 126]), where [t]

is the largest integer less than or equal to t, using again [9, Theorem 4.6] we
obtain

‖ξ‖(`2,`∞)2;J ∼
( ∞∑
n=1

n+1�

n

(
t−1/2(1 + log t)−1/2

[t]∑
j=1

ξ∗j

)2 dt

t

)1/2

∼
( ∞∑
n=1

(
n−1/2(1 + log n)−1/2

n∑
j=1

ξ∗j

)2
n−1

)1/2

≥
( ∞∑
n=1

(1 + log n)−1(ξ∗n)2
)1/2

.

This yields the result.

Other results on Fourier coefficients can be found in [2, 25].
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