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Absolute convergence of multiple Fourier integrals

by

Yurii Kolomoitsev (Donetsk) and Elijah Liflyand (Ramat-Gan)

Abstract. Various new sufficient conditions for representation of a function of several
variables as an absolutely convergent Fourier integral are obtained. The results are given in
terms of Lp integrability of the function and its partial derivatives, each with a different p.
These p are subject to certain relations known earlier only for some particular cases.
Sharpness and applications of the results obtained are also discussed.

1. Introduction. If

f(y) =
�

Rd
g(x)ei(x,y) dx, g ∈ L1(Rd),

we write f ∈ A(Rd) with ‖f‖A = ‖g‖L1(Rd). Here

x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd, (x, y) = x1y1 + · · ·+ xdyd.

The possibility to represent a function as an absolutely convergent Fourier
integral has been studied by many mathematicians and is of importance in
various problems of analysis. For example, belonging of a function m(x) to
A(Rd) makes it an L1 → L1 Fourier multiplier (or, equivalently, L∞ → L∞
Fourier multiplier), written m ∈ M1 (m ∈ M∞, respectively). One of such
m’s attracted much attention in the 50–80s (see, e.g., [W], [F], [St, Ch. 4,
7.4], [Mi], and references therein):

m(x) := mα,β(x) = θ(x)
ei|x|

α

|x|β
,(1.1)

where θ is a C∞ function on Rd, which vanishes near zero, and equals 1
outside a bounded set, and 0 < α < 1, β > 0. Of course, |x|2 = x21 + · · ·+x2d.
It is known (see, e.g., [Mi]) that for d ≥ 2:

(I) If β/α > d/2, then m ∈M1(M∞) (or, equivalently, m ∈ A(Rd)).
(II) If β/α ≤ d/2, then m 6∈M1(M∞) (or, equivalently, m 6∈ A(Rd)).
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The first assertion holds true for d = 1 as well, while the second one only
when α 6= 1; however, the case α = d = 1 is obvious.

Various sufficient conditions for absolute convergence of Fourier integrals
were obtained by Titchmarsh, Beurling, Carleman, Sz.-Nagy, and others.
One can find a comprehensive survey of this problem in [LST].

Let us unite certain of the known one-dimensional results closely related
to our study in the following theorem. First, each f ∈ A(R) satisfies the
condition

(N-1) f ∈ C0(R), that is, f ∈ C(R) and lim f(t) = 0 as |t| → ∞, and f is
locally absolutely continuous on R.

It is natural to restrict ourselves only to such functions in dimension one.

Theorem A-1. Let f satisfy condition (N-1), f ∈ Lp(R) with 1 ≤ p ≤ 2,
and f ′ ∈ Lq(R) with 1 < q ≤ 2. Then f ∈ A(R).

For the multivariate case, we need additional notations. Let η be a d-
dimensional vector with entries 0 or 1. We set 0 = (0, . . . , 0) and 1 =
(1, . . . , 1). Inequalities of vectors are meant coordinatewise.

We write

Dηf(x) =

(
∂

∂x1

)η1
· · ·
(

∂

∂xd

)ηd
f(x).

In particular Dηf = f for η = 0.

The multidimensional results we are going to generalize in a sense (see
[M] and [S], respectively) read as follows.

Theorem A1-d. Let f ∈L2(Rd). If all the (distributional) partial deriva-

tives ∂βjf/∂x
βj
j , j = 1, . . . , d, are in L2(Rd), where βj are any positive in-

tegers such that
∑d

j=1 1/βj < 2, then f ∈ A(Rd).

Theorem A2-d. Let f ∈L1(Rd). If all the (distributional) partial deriva-
tives Dηf , η 6= 0, are in Lp(Rd), where 1 < p ≤ 2, then f ∈ A(Rd).

We obtain new sufficient conditions for belonging to A(Rd). They are
given in terms of belonging of the function considered and its derivatives
to Lpj spaces, with different pj . These pj are related in a special way. For
example, in dimension one some of the relations obtained turn into the
condition from [L] that ensures the possibility to represent a function f
as an absolutely convergent Fourier integral: f ∈ Lp0(R), 1 ≤ p0 < ∞,
and f ′ ∈ Lp1(R), 1 < p1 < ∞, with 1/p0 + 1/p1 > 1. One can see a
disparity in strength with Theorem A-1 above. Correspondingly, the range
of conditions ensuring belonging to A(Rd) is much wider than known earlier
in the multidimensional case.
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An outline of the paper is as follows. In the next section we formulate
the results. In Section 3 we present the needed auxiliary results. Then, in
Section 4 we concentrate on the one-dimensional version of our main re-
sults. In the last section we give multidimensional proofs; one-dimensional
arguments from the preceding section will be intensively used.

We shall denote absolute positive constants by C; they may be different
in different occurrences.

2. Statement of results. It turns out that in several dimensions there
are a variety of results in terms of different combinations of derivatives. How-
ever, in any case, it is reasonable to start with the following d-dimensional
analog of the above (N-1) condition, common to all of them.

(N-d) f ∈ C0(Rd), and f and its partial derivatives Dηf, for all η 6= 1,
are locally absolutely continuous on (R \ {0})d in each variable.

We will also need a similar condition in which r = (r1, . . . , rd) is a vector
with entries rj ∈ N, j = 1, . . . , d:

(N-d,r) f ∈ C0(Rd), and f and its partial derivatives ∂rj−1f/∂x
rj−1
j , for

all j = 1, . . . , d, are locally absolutely continuous on (R \ {0})d in
each variable.

Of course, (N-1) stands for (N-1,1). However, in higher dimensions these
two conditions are different in nature.

Our first main result reads as follows.

Theorem 2.1.

(a) Let f satisfy (N-d). Let f ∈ Lp0(Rd), 1 ≤ p0 < ∞, and sup-
pose each partial derivative Dηf, η 6= 0, belongs to Lpη(Rd), where
1 < pη <∞. If for all η 6= 0,

1

p0
+

1

pη
> 1,(2.1)

then f ∈ A(Rd).
(b) Let 1 < p0, p1 <∞. If

1

p0
+

1

p1
< 1,

then there is a function f satisfying (N-d) such that f ∈ Lp0(Rd),
D1f ∈ Lp1(Rd), but f 6∈ A(Rd).

We can also obtain a result in which all the derivatives intervene.

Theorem 2.2.

(a) Let f satisfy (N-d). Let f ∈ Lp0(Rd), 1 ≤ p0 < ∞, and sup-
pose each partial derivative Dηf, η 6= 0, belongs to Lpη(Rd), where
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1 < pη <∞. If

(2.2)
∑

0≤η≤1

1

pη
> 2d−1,

then f ∈ A(Rd).
(b) Suppose that there are α, β > 0 with α 6= 1 and β > d(α − 1) such

that pη > d/(β − |η|(α− 1)) for all η. If∑
0≤η≤1

1

pη
< 2d−1,

then there is a function f satisfying (N-d) such that f ∈ Lp0(Rd)
and each partial derivative Dηf, η 6= 0, belongs to Lpη(Rd), but

f 6∈ A(Rd).
Remark 2.3. Let us compare the last two theorems. If 2 ≤ p0 < ∞,

inequalities (2.1) imply (2.2). Hence Theorem 2.1 is a consequence of Theo-
rem 2.2. However, if 1 ≤ p0 < 2, it is easy to see that one can choose p0 close
enough to 1 and pη, η 6= 0, large enough and such that inequalities (2.1) are
valid, while (2.2) is not.

Observe also that in any case one can choose pη > 1 such that inequality
(2.2) is valid, while inequalities (2.1) are not.

Finally, we give a generalization of Theorem 2.2 to the case of higher
derivatives.

Theorem 2.4. Let f satisfy condition (N-d,r) for some vector r =

(r1, . . . , rd) such that
∑d

j=1 1/rj < 2 and rj ∈ N.

(a) Let f ∈ Lp(Rd), 1 ≤ p < p0 <∞, ∂rjf/∂x
rj
j ∈ Lpj (Rd), 1<pj <∞,

1 ≤ j ≤ d. If (
2−

d∑
j=1

1

rj

)
1

p0
+

d∑
j=1

1

rjpj
= 1,

then f ∈ A(Rd).
(b) Let 1 ≤ p <∞, 1 < q <∞, and r > d/2, r ∈ N. If(

2− d

r

)
1

p
+

d

rq
< 1,

then there is a function f satisfying (N-d,r) for r = r1 = · · · = rd,
f ∈ Lp(Rd), ∂rf/∂xrj ∈ Lp(Rd), 1 ≤ j ≤ d, but f 6∈ A(Rd).

This is a direct extension of Theorem A1-d.

Remark 2.5. We can prove that the conditions of the above results are
sharp only for certain pη. The point is that we make use of mα,β for which
intermediate derivatives cannot be arbitrary.
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The next corollaries give conditions upon which power decay of a func-
tion f and its derivatives ensures f ∈ A(Rd).

Corollary 2.6. Let f satisfy (N-d). If for all η, 0 ≤ η ≤ 1,

|Dηf(x)| ≤ C

(1 + |x|)γη
,(2.3)

where γη > 0 and either

γ0 + γη > d for all η 6= 0,(2.4)

or ∑
0≤η≤1

γη > d2d−1,(2.5)

then f ∈ A(Rd).

Corollary 2.7. Let f satisfy (N-d,r) for some vector r = (r1, . . . , rd)

such that
∑d

j=1 1/rj < 2, rj ∈ N. If for all j, 0 ≤ j ≤ d,∣∣∣∣ ∂rj∂x
rj
j

f(x)

∣∣∣∣ ≤ C

(1 + |x|)γj
,

where γj > 0 and (
2−

d∑
j=1

1

rj

)
γ0 +

d∑
j=1

γj
rj
> d,

then f ∈ A(Rd).

3. Auxiliary results. One of the basic tools is the following lemma
(see [T, Lemma 4] or [B, Theorem 3]), which is a natural extension of the
celebrated Bernstein test for the absolute convergence of Fourier series (see
[K, Ch. II, §6]). In fact, the proof of every result of this paper will use it.
More precisely, each proof will use the assumptions of the corresponding
statement to prove that the basic estimate (3.1), ensuring the membership
of the relevant function in A(Rd), holds true.

In order to formulate the lemma in any dimension, we denote

∆η, r
u f(x) = ∆η, r

u1,...,ud
f(x) =

∏
j:ηj=1

∆
ej , rj
uj f(x),

where η, u, and r are d-dimensional vectors, and ∆
ej , rj
uj f is defined as

∆
ej , rj
uj f(x) =

rj∑
k=0

(
rj
k

)
(−1)kf(x+ (2k − rj)ujej), 1 ≤ j ≤ d.
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Here ej are unit basis vectors. Denote also

∆uf(x) = ∆u1,...,udf(x) = ∆1,1
u1,...,ud

f(x)

and

∆η
uf(x) = ∆η,1

u f(x).

Lemma B. Let f ∈ C0(Rd). If for some vector r = (r1, . . . , rd),

∞∑
s1=−∞

· · ·
∞∑

sd=−∞
2

1
2

∑d
j=1 sj‖∆1, r

h(s1),...,h(sd)
(f)‖2 <∞,(3.1)

where h(s) = π2−s and the norm is that in L2(Rd), then f ∈ A(Rd).

We will also make use of the following Hardy–Steklov type inequality
(see [KP, Cor. 3.14]):

For F ≥ 0 and 1 < q ≤ Q <∞,(�
R

[ t+h�
t−h

F (s) ds
]Q
dt
)1/Q

≤ Ch1/Q+1/q′
(�
R

F q(t) dt
)1/q

.(3.2)

Here 1/q + 1/q′ = 1.

We need the following direct multivariate generalization of (3.2).

Lemma 3.1. For F ≥ 0, 1 ≤ k < d, and 1 < q ≤ Q <∞,

(3.3)
( �

Rd

[ x1+h1�

x1−h1

· · ·
xk+hk�

xk−hk

F (u1, . . . , uk, xk+1, . . . , xd) du1 . . . duk

]Q
dx
)1/Q

≤ C(h1 . . . hk)
1/Q+1/q′

( �

Rd−k

[ �
Rk
F q(x) dx1 . . . dxk

]Q/q
dxk+1 . . . dxd

)1/Q
.

If k = d,

(3.4)
( �

Rd

[ x1+h1�

x1−h1

· · ·
xd+hd�

xd−hd

F (u) du
]Q
dx
)1/Q

≤ C(h1 . . . hd)
1/Q+1/q′

( �

Rd
F q(x) dx

)1/q
.

Of course, the first k variables are taken in (3.3) for simplicity, the result
is true for any k variables.

Proof. The proof is inductive. For d = 1, the result holds true: see (3.2).
Supposing that it is true for d−1, d = 2, 3, . . . , let us prove (3.3) with k = d.
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Applying the inductive assumption for the first d− 1 variables, we obtain( �

Rd

[ x1+h1�

x1−h1

· · ·
xd+hd�

xd−hd

F (u1, . . . , ud) du1 . . . dud

]Q
dx1 . . . dxd

)1/Q

=
(�
R

{ �

Rd−1

[ x1+h1�

x1−h1

· · ·
xd−1+hd−1�

xd−1−hd−1

xd+hd�

xd−hd

F (u1, . . . , ud) du1 . . . dud

]Q
· dx1 . . . dxd−1

}Q/Q
dxd

)1/Q
≤ C(h1 . . . hd−1)

1/Q+1/q′
(�
R

{ �

Rd−1

[ xd+hd�

xd−hd

F (x1, . . . , xd−1, ud) dud

]q
· dx1 . . . dxd−1

}Q/q
dxd

) q
Q

1
q
.

Using now the generalized Minkowski inequality with exponent Q/q ≥ 1, we
bound the right-hand side by a constant times

(h1 . . . hd−1)
1/Q+1/q′

·
( �

Rd−1

{�
R

[ xd+hd�

xd−hd

F (x1, . . . , xd−1, ud) dud

]Q
dxd

}q/Q
dx1 . . . dxd−1

)1/q
.

To obtain (3.3), it remains again to make use of (3.2) for the dth variable.
If k < d, we just represent the integral considered as( �

Rd−k

( �

Rk

[ x1+h1�

x1−h1

· · ·
xk+hk�

xk−hk

F (u1, . . . , uk, xk+1, . . . , xd) du1 . . . duk

]Q
· dx1 . . . dxk

) 1
Q
Q
dxk+1 . . . dxd

)1/Q
and apply the proven version to the inner integral.

We will also apply the following simple result.

Lemma 3.2. Let f satisfy (N-d) and D1f ∈ Lq(Rd). Then

‖∆h1,...,hdf‖∞ ≤ 2d/q
′
(h1 . . . hd)

1/q′‖D1f‖q.
Proof. By Hölder’s inequality,

‖∆h1,...,hdf‖∞ ≤
x1+h1�

x1−h1

. . .

xd+hd�

xd−hd

|D1f(u1, . . . , ud)| du1 . . . dud

≤
( x1+h1�

x1−h1

. . .

xd+hd�

xd−hd

du1 . . . dud

)1/q′
‖D1f‖q,

as required.
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4. One-dimensional result. We prove a more general assertion than
that from [L]. The latter coincides with it when r = 1. However, even in
that case the present proof differs from that in [L].

Theorem 4.1. Suppose a function f of one variable satisfies condition
(N-1,r) for some r ∈ N.

(a) Let f ∈ Lp(R), 1 ≤ p <∞, and f (r) ∈ Lq(R), 1 < q <∞. If

2r − 1

p
+

1

q
> r,

then f ∈ A(R).
(b) If

2r − 1

p
+

1

q
< r,

then there exists a function f satisfying (N-1,r) such that f ∈ Lp(R)
and f (r) ∈ Lq(R) but f 6∈ A(R).

Proof. The proof of (b) goes along the same lines as the proof of (b) of
Theorem 2.2 below.

(a) By Lemma B, it suffices to prove that
∞∑
ν=1

2−ν/2‖∆r
h(−ν)f‖2 +

∞∑
ν=0

2ν/2‖∆r
h(ν)f‖2 <∞.(4.1)

Let us start with the first sum in (4.1).

We choose p∗ ≥ p and q∗ > q so that(
1− 1

2r

)
1

p∗
+

1

2r

1

q∗
=

1

2
.

Using Hölder’s inequality, we get

‖∆r
h(−k)f‖2 ≤ ‖∆

r
h(−k)f‖

1−1/2r
p∗ ‖∆r

h(−k)f‖
1/2r
q∗ .

It is obvious that for h > 0,

|∆r
hf(t)| =

∣∣∣ t+h�
t−h

du1 . . .

ur−1+h�

ur−1−h
f (r)(ur) dur

∣∣∣.
Thus, by Lemma 3.1,

‖∆r
h(−k)f‖q∗ ≤ C‖f‖

1−q/q∗
∞ ‖∆r

h(−k)f‖
q/q∗
q ≤ C2rkq/q

∗‖f‖1−q/q∗∞ ‖f (r)‖q/q∗q .

Since also

‖∆r
h(−k)f‖p∗ ≤ C‖f‖p∗ ≤ C‖f‖

1−p/p∗
∞ ‖f‖p/p∗p ,

we have

‖∆r
h(−k)f‖2 = O(2kq/2q

∗
) .
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Therefore
∞∑
k=1

2−k/2‖∆r
h(−k)f‖2 = O(1)

∞∑
k=1

2−
k
2
(1−q/q∗) <∞.

We next prove that

(4.2)

∞∑
k=1

2k/2‖∆r
h(k)f‖2 <∞ .

Choosing p∗ > p such that(
1− 1

2r

)
1

p∗
+

1

2r

1

q
=

1

2
,

we obtain

‖∆r
h(k)f‖2 ≤ ‖∆

r
h(k)f‖

1−1/2r
p∗ ‖∆r

h(k)f‖
1/2r
q .

An obvious generalization of Lemma 3.2 for higher derivatives yields

‖∆r
h(k)f‖p∗ ≤ C‖∆

r
h(k)f‖

1−p/p∗
∞ ‖f‖p/p∗p

≤ C2
− r
q′ (1−p/p

∗)k‖f (r)‖1−p/p∗q ‖f‖p/p∗p .

Further, applying Lemma 3.1, we obtain

‖∆r
h(k)f‖q ≤ C2−rk‖f (r)‖q .

Thus,

‖∆r
h(k)f‖2 = O(2

−k((1− 1
2r

) r
q′ (1−

p
p∗ )+

1
2
)
).

This readily implies (4.2), which completes the proof.

5. Proofs of multidimensional results

5.1. Proof of Theorem 2.1. (a) The proof is surprisingly similar to
that in dimension one. The part of the sum from Lemma B with

∞∑
k1=1

· · ·
∞∑

kd=1

2−
1
2

∑d
j=1 kj

is represented as

∞∑
k1=1

· · ·
∞∑

kd=1

2−
1
2

∑d
j=1 kj

( �

Rd
|∆h(−k1),...,h(−kd)f(x)|

·
∣∣∣ x1+h(−k1)�

x1−h(−k1)

· · ·
xd+h(−kd)�

xd−h(−kd)

D1f(u) du
∣∣∣ dx)1/2

and dealt with exactly as in the proof of the first sum in dimension one.
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Further, for
∞∑
k1=0

· · ·
∞∑

kd=0

2
1
2

∑d
j=1 kj ,

we proceed as in the proof of the second sum in dimension one. In both
cases, (3.4) from Lemma 3.1 is applied.

Finally, when dealing with∑
i: ηi=0

2−
1
2

∑d
j=1 kj · · ·

∑
i: ηi=1

2
1
2

∑d
j=1 kj ,

where η 6= 0 and η 6= 1, we do not need to treat the first sum at all: when the
rest is bounded, the series corresponding to ηi = 0 converges automatically.
As for the second sum, we proceed as in the proof for the second sum in
dimension one. Since Lemma 3.1 is always applied with Q = q, we see that
the integral norm on the right-hand side of (3.3) becomes the usual Lq norm,
where each time q is taken to be some pη.

The proof of (b) is similar to the proof of (b) in Theorem 2.2.

5.2. Proof of Theorem 2.2. The proof will be divided into several
steps.

Step 1. We start with the sum

(5.1)
∞∑
k1=1

· · ·
∞∑

kd=1

2−
1
2
(k1+···+kd)‖∆h(−k1),...,h(−kd)f‖2.

Choosing p∗η > pη such that ∑
0≤η≤1

1

p∗η
= 2d−1,

and applying Hölder’s inequality for 2d factors (see [HLP, p. 140]) and
Lemma 3.1 with Q = q, we obtain

‖∆h(−k1),...,h(−kd)f‖2 ≤ C
( ∏

0≤η≤1
‖∆η

h(−k1),...,h(−kd)f‖p∗η
)1/2d

≤ C
( ∏

0≤η≤1
‖f‖1−pη/p

∗
η

∞ (h(−k1)η1 . . . h(−kd)ηd)pη/p
∗
η‖Dηf‖pη/p

∗
η

pη

)1/2d
= C

d∏
j=1

2
1

2d
(
∑

0≤η≤1, ηj=1 pη/p
∗
η)kj
( ∏

0≤η≤1
‖f‖1−pη/p

∗
η

∞ ‖Dηf‖pη/p
∗
η

pη

)1/2d
.

The last inequality along with the obvious inequality∑
0≤η≤1, ηj=1

pη
p∗η

< 2d−1, j = 1, . . . , d,

yields the convergence of the sum in (5.1).
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Step 2. Assume that

(5.2)
∑
η 6=0

1

pη
< 2d−1.

Step 2.1. Let us show that

(5.3)

∞∑
k1=0

· · ·
∞∑

kd=0

2
1
2
(k1+···+kd)‖∆h(k1),...,h(kd)f‖2 <∞.

Conditions (5.2) and (2.2) allow us to choose p∗0 > p0 such that

1

p∗0
+
∑
η 6=0

1

pη
= 2d−1.

Applying then Hölder’s inequality and Lemmas 3.2 and 3.1, we obtain

‖∆h(k1),...,h(kd)f‖2

≤ C
(
‖∆h(k1),...,h(kd)f‖

1−p0/p∗0∞ ‖f‖p0/p
∗
0

p0

∏
η 6=0

‖∆η
h(k1),...,h(kd)

f‖pη
)1/2d

≤ C
(

2
−(2d−1+ 1

p′1
(1−p0/p∗0))(k1+···+kd)‖D1f‖1−p0/p

∗
0

p1 ‖f‖p0/p
∗
0

p0

∏
η 6=0

‖Dηf‖pη
)1/2d

.

The last inequality readily yields the convergence of (5.3).

Step 2.2. We now prove the convergence of all series of the type

(5.4)
∞∑
k1=0

· · ·
∞∑
kj=0

∞∑
lj+1=1

· · ·
∞∑
ld=1

2
1
2
(k1+···+kj)

2
1
2
(lj+1+···+ld)

‖∆uf‖2,

where 1 ≤ j ≤ d − 1 and u = (π2−k1 , . . . , π2−kj , π2lj+1 , . . . , π2ld). Choose
p∗0 > p0 and p∗ei > pei , j + 1 ≤ i ≤ d, such that

1

p∗0
+

j∑
i=1

1

pei
+

d∑
i=j+1

1

p∗ei
+
∑
|η|>1

1

pη
= 2d−1.

Now, Hölder’s inequality yields

(5.5) ‖∆uf‖2 ≤ C(S1S2S3S4)
1/2d ,

where

S1 = ‖∆uf‖p∗0 , S2 =

j∏
i=1

‖∆ei
h(ki)

f‖pei ,

S3 =

d∏
i=j+1

‖∆ei
h(−li)f‖p∗ei , S4 =

∏
|η|>1

‖∆η
uf‖pη .
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Applying Lemma 3.2 leads to

S1 ≤ C‖f‖
p0/p∗0
p0 ‖∆uf‖

1−p0/p∗0∞ ≤ ‖f‖p0/p
∗
0

p0 ‖f‖1−p0/p
∗
0−ε∞ ‖∆uf‖ε∞(5.6)

≤ C2
− ε
p′1

(k1+···+kj−lj+1−···−ld)‖f‖p0/p
∗
0

p0 ‖f‖1−p0/p
∗
0−ε∞ ‖D1f‖εp1 ,

where ε ∈ (0, 1− p0/p∗0). Further, applying Lemma 3.1, we obtain

S2 ≤ C
j∏
i=1

2−ki‖Deif‖pei ,(5.7)

S3 ≤ C
d∏

i=j+1

‖∆h(−li)f‖
1−pei/p

∗
ei∞ ‖∆h(−li)f‖

pei/p
∗
ei

pei
(5.8)

≤ C
d∏

i=j+1

‖f‖
1−pei/p

∗
ei∞ 2lipei/p

∗
ei‖Deif‖

pei/p
∗
ei

pei
,

S4 ≤ C
∏
|η|>1

2η1k1+···+ηjkj−ηj+1lj+1−···−ηdld‖Dηf‖pη .(5.9)

Combining then (5.5) and (5.6)–(5.9), we arrive at

‖∆uf‖2 = O
( j∏
i=1

2
−( 1

2
+ ε

2dp′1
)ki

d∏
i=j+1

2
( 1
2
+ 1

2d
[ ε
p′1
−1+ pei

p∗ei
])li
)
.

Choosing ε ∈ (0, 1− p0/p∗0) such that

ε

p′1
− 1 +

pei
p∗ei

< 0, j + 1 ≤ i ≤ d,

we deduce that (5.4) is finite. This completes the proof of (a) provided (5.2)
holds true.

Step 3. We now assume that

(5.10)
∑
η 6=0

1

pη
≥ 2d−1.

Step 3.1. Let us show the convergence of (5.3). It is obvious that∑
|η|6=0, d

1

pη
+

2

p1
> 2d−1.

Suppose that there exist p∗η > pη, |η| = 1, such that

(5.11)
∑
|η|=1

1

p∗η
+

∑
|η|6=0,1,d

1

pη
+

2

p1
= 2d−1.
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Applying Hölder’s inequality and Lemma 3.1 as above, we get

‖∆h(k1),...,h(kd)f‖2 = O
(

2
−

∑d
j=1 kj(

1
2
+ 1

2d

pej
p∗ej

))
.

This readily yields the convergence of (5.3).
If p∗η > pη satisfying (5.11) do not exist, then∑

|η|6=0,1,d

1

pη
+

2

p1
≥ 2d−1,

and hence ∑
|η|6=0,1,d

1

pη
+

2 + d

p1
> 2d−1.

Now, suppose that there exist p∗η > pη, |η| = 2, such that

(5.12)
∑
|η|=2

1

p∗η
+

∑
|η|6=0,1,2,d

1

pη
+

2 + d

p1
= 2d−1.

Applying Hölder’s inequality and Lemma 3.1, we get

‖∆h(k1),...,h(kd)f‖2 = O
(

2
−

∑d
j=1 kj [

1
2
+ 1

2d
(1+

∑
|η|=2, ηj=1

pη
p∗η

)]
)
.

As above, this readily yields the convergence of (5.3).
We repeat this procedure as many times as needed. For the sake of

simplicity, we consider in detail the final step only for d odd (of course,
d ≥ 3); it will then be explained how to treat the case of d even.

Suppose that there are no numbers p∗η > pη, |η| = (d− 1)/2, which
satisfy ∑

|η|=(d−1)/2

1

p∗η
+

∑
|η|6=0,1,...,(d−1)/2,d

1

pη
+

( (d−3)/2∑
j=0

(
d

j

)
+ 1

)
1

p1
= 2d−1.

Then ∑
|η|6=0,1,...,(d−1)/2,d

1

pη
+

( (d−3)/2∑
j=0

(
d

j

)
+ 1

)
1

p1
≥ 2d−1,

and hence ∑
|η|6=0,1,...,(d−1)/2,d

1

pη
+

2d−1 + 1

p1
> 2d−1.

Taking into account that 1/2p1 < 1/2, we can choose p∗0 > p0, p∗η > pη and
ε ∈ (0, 1) such that

1− ε
2dp∗0

+
1

2d

∑
|η|6=0,1,...,(d−1)/2,d

1

p∗η
+

(
1

2
+

ε

2d

)
1

p1
=

1

2
.
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Again applying Hölder’s inequality and Lemma 3.1, we get

‖∆h(k1),...,h(kd)f‖2 = O
(
2−

∑d
j=1 kj(1/2+γj)

)
,

where γj > 0. This implies that (5.3) is finite.

If d is even, then we will have the strict inequality∑
|η|6=0, 1,...,(d−1)/2,d

1

pη
+

∑
|η|=d/2, η 6∈A

1

pη
+

2d−1 + 1

p1
> 2d−1

on the final step, where cardA = 1
2

(
d
d/2

)
and η ∈ A if |η| = d/2. This allows

us to repeat the previous arguments.

Step 3.2. To complete the proof of (a) of the theorem, it remains to
show the convergence of all series of type (5.4) under condition (5.10). We
will consider only two cases: j = d − 1 and j = 1. The intermediate cases
are proved similarly.

Step 3.2.1. Let first j = d− 1 and u = (π2−k1 , . . . , π2−kd−1 , π2ld). Sup-
pose that there exist p∗0 > p0 and p∗ed > ped such that

(5.13)
1

p∗0
+

1

p∗ed
+
∑
η 6=0,ed

1

pη
= 2d−1.

Applying then Hölder’s inequality and Lemmas 3.2 and 3.1, we obtain

‖∆uf‖2

≤ C
(
‖∆uf‖

2−p0/p∗0−ped/p
∗
ed∞ ‖f‖p0/p

∗
0

p0 ‖∆ed
u f‖

ped/p
∗
ed∞
∏

η 6=0,ed

‖∆η
uf‖pη

)1/2d
= O

(
2(−k1−···−kd−1+ld)ε(2−p0/p∗0−ped/p

∗
ed

)+ld(ped/p
∗
ed

+2d−1−1)−2d−1
∑d−1
j=1 kj

)1/2d
.

Choosing ε ∈ (0, 1) such that

ε

(
2− p0

p∗0
− ped
p∗ed

)
< 1− ped

p∗ed
,

we obtain the finiteness of (5.4). Obviously, in the case of d = 2, the proof
of Step 3.2.1 is complete. Therefore, let further d ≥ 3.

If for any p∗0 and p∗ed equality (5.13) does not hold, then∑
η 6=0,ed

1

pη
≥ 2d−1

and hence ∑
η 6=0,ed,1

1

pη
+

2

p1
> 2d−1.

We denote Aj = {η : |η| = j, ηd = 1} and A0 = {0}.
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Suppose that there exist p∗0 > p0 and p∗η > pη, η ∈ A2, such that

(5.14)
1

p∗0
+
∑
η∈A2

1

p∗η
+

∑
η 6∈

⋃2
j=0 Aj∪Ad

1

pη
+

2

p1
= 2d−1.

Then, applying Hölder’s inequality and Lemma 3.1, we obtain

(5.15) ‖∆uf‖2 = O
(
2
ld[

1
2
− 1

2d
(d−1−

∑
η∈A2

pη
p∗η

)]

· 2−
∑d−1
j=1 kj(

1
2
+ 1

2d

∑
η∈A2, ηj=1

pη
p∗η

))
.

Thus, taking into account that∑
η∈A2

pη
p∗η

< d− 1,

and using (5.15), we obtain the convergence of (5.4).
If for any p∗0 > p0 and p∗η > pη, η ∈ A2, equality (5.14) does not hold,

then ∑
η 6∈

⋃2
j=0 Aj∪Ad

1

pη
+

2

p1
≥ 2d−1

and hence ∑
η 6∈

⋃2
j=0 Aj∪Ad

1

pη
+

2 +
(
d−2
1

)
p1

> 2d−1.

Suppose that there exist p∗0 > p0 and p∗η > pη, η ∈ A3, such that

2

p∗0
+
∑
η∈A3

1

p∗η
+

∑
η 6∈

⋃3
j=0 Aj∪Ad

1

pη
+

2 +
(
d−2
1

)
p1

= 2d−1.

Applying then Hölder’s inequality and Lemma 3.1, we obtain

‖∆uf‖2 = O
(
2
ld[

1
2
− 1

2d
((d−1

1 )−(d−2
1 )+(d−1

2 )−
∑
η∈A3

pη
p∗η

)]

· 2−
∑d−1
j=1 kj(

1
2
+ 1

2d

∑
η∈A3, ηj=1

pη
p∗η

))
.

The last inequality readily yields the convergence of (5.4).
Repeating this procedure, we consider the last step, if needed. Suppose

that there are no p∗0 > p0 and p∗η > pη, η ∈ Ad−1, such that

1 +
∑d−4

j=1

(
d−2
j

)
p∗0

+
∑

η∈Ad−1

1

p∗η
+

∑
η 6∈

⋃d
j=0 Aj

1

pη
+

∑d−3
j=0

(
d−2
j

)
+ 1

p1
= 2d−1.

Then ∑
η 6∈

⋃d
j=0 Aj

1

pη
+

2d−2

p1
≥ 2d−1,
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and hence we can choose small ε ∈ (0, 1/2) such that

1

2d

∑
η 6∈

⋃d
j=0 Aj

1

pη
+

(
1

2
− ε
)

1

p1
>

1

2
.

This implies that there exist p∗0 ≥ p0 and p∗η ≥ pη such that

ε

p∗0
+

1

2d

∑
η 6∈

⋃d
j=1 Aj

1

p∗η
+

(
1

2
− ε
)

1

p1
=

1

2
.

Applying then Hölder’s inequality and Lemma 3.1, we obtain

‖∆uf‖2 = O
(
2
ld(

1
2
−ε)−

∑d−1
j=1 kj(

1
2
−ε+ 1

2d

∑
η 6∈

⋃d
i=1

Ai, ηj=1

pη
p∗η

))
.

To complete the proof of the convergence of (5.4), it remains to choose ε
such that

0 < ε < min
1≤j≤d−1

{
1

2d

∑
η 6∈

⋃d
i=1 Ai, ηj=1

pη
p∗η

}
.

Step 3.2.2. It only remains to consider the case j = 1 for (5.4). Denoting
B = {η : η1 6= 1} and u = (π2−k1 , π2l2 , . . . , π2ld), we can always choose
p∗0 > p0 and p∗η > pη, η ∈ B, such that∑

η∈B

1

p∗η
+
∑
η 6∈B

1

pη
= 2d−1.

Then, applying Hölder’s inequality and Lemmas 3.2 and 3.1, we obtain

‖∆uf‖2 = O
(
2
−k1[ ε

2dp′1
(1− p0

p∗0
)+ 1

2
]
2

∑d
j=2

lj

2d
[ ε
p′1

(1− p0
p∗0

)+2d−2+
∑
η∈B, ηj=1

pη
p∗η

])
.

Choosing ε > 0 such that

ε

p′1

(
1− p0

p∗0

)
+

∑
η∈B, ηj=1

pη
p∗η

< 2d−2

yields the finiteness of (5.4).

This completes the proof of (a) of the theorem.

To prove (b), let us consider the function m = mα,β from (1.1). Suppose
that pη > d/(β − |η|(α− 1)) for all η. Simple calculations show that m ∈
Lp0(Rd) and Dηm ∈ Lpη(Rd). If β/α ≤ d/2, then m 6∈ A(Rd). The last
inequality is equivalent to 2β/d− (α− 1) ≤ 1. Therefore,∑

0≤η≤1

1

pη
<

2dβ − d2d−1(α− 1)

d
< 2d−1,

and so m provides the required counterexample.
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5.3. Proof of Theorem 2.4. The proof is very similar to those of the
above theorems. We want to show the convergence of all series of the type

(5.16)
∞∑
k1=0

· · ·
∞∑
kj=0

∞∑
lj+1=1

· · ·
∞∑
ld=1

2
1
2
(k1+···+kj)

2
1
2
(lj+1+···+ld)

‖∆1, r
u f‖2,

where u = (π2−k1 , . . . , π2−kj , π2lj+1 , . . . , π2ld) if 1 ≤ j ≤ d − 1 and u =
(π2l1 , . . . , π2ld) if j = 0. In what follows, we suppose that

∑m
i=n = 0 and∏m

i=n = 0 if n > m.

First, we choose ε > 0, p∗ ∈ (p, p0] and p∗i > pi, j + 1 ≤ i ≤ d, such that(
1−

j∑
i=1

1 + ε

2ri
−

d∑
i=j+1

1

2ri

)
1

p∗
+

j∑
i=1

1 + ε

2ripi
+

d∑
i=j+1

1

2rip∗i
=

1

2

and
j∑
i=1

1 + ε

2ri
+

d∑
i=j+1

1

2ri
< 1.

Applying Hölder’s inequality, we obtain

‖∆1, r
u f‖2 ≤ S1S2S3,

where

S1 = ‖f‖
1−

∑j
i=1

1+ε
2ri
−
∑d
i=j+1

1
2ri

p∗ , S2 =

j∏
i=1

‖∆ei, ri
h(ki)

f‖
1+ε
2ri
pi ,

S3 =

d∏
i=j+1

‖∆ei, ri
h(−li)f‖

1
2ri
p∗i
.

Further, repeating the proof of estimates (5.7) and (5.8), it is easy to show
that

‖∆1, r
u f‖2 = O

(
2
− 1+ε

2

∑j
i=1 ki+

1
2

∑d
i=j+1

pi
p∗
i
li
)
.

The last estimate readily yields the convergence of (5.16).

The proof of (b) is similar to the proof of (b) in Theorem 2.2.

5.4. Proofs of Corollaries 2.6 and 2.7. We only prove Corollary 2.6
for condition (2.5). The proofs of Corollary 2.6 with (2.4) and of Corollary
2.7 go along the same lines.

Let us rewrite (2.5) as ∑
0≤η≤1

γη = d2d−1 + ε.
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For each η, let us choose pη so that γηpη = d+ ε/2d. Then∑
0≤η≤1

d+ ε/2d

pη
= d2d−1 + ε.

Since ∑
0≤η≤1

ε/2d

pη
< ε,

we have ∑
0≤η≤1

d

pη
> d2d−1.

This is equivalent to (2.2), and hence f ∈ A(Rd).
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