Shift-invariant functionals on Banach sequence spaces

by
Albrecht Pietsch (Jena)

To the memory of Aleksander Pełczyński

$$
\begin{aligned}
& \text { Abstract. The present paper is a continuation of [23], from which we know that the } \\
& \text { theory of traces on the Marcinkiewicz operator ideal } \\
& \qquad \mathfrak{M}(H):=\left\{T \in \mathfrak{L}(H): \sup _{1 \leq m<\infty} \frac{1}{\log m+1} \sum_{n=1}^{m} a_{n}(T)<\infty\right\}
\end{aligned}
$$

can be reduced to the theory of shift-invariant functionals on the Banach sequence space

$$
\mathfrak{w}\left(\mathbb{N}_{0}\right):=\left\{c=\left(\gamma_{l}\right): \sup _{0 \leq k<\infty} \frac{1}{k+1} \sum_{l=0}^{k}\left|\gamma_{l}\right|<\infty\right\} .
$$

The final purpose of my studies, which will be finished in [24], is the following. Using the density character as a measure, I want to determine the size of some subspaces of the dual $\mathfrak{M}^{*}(H)$. Of particular interest are the sets formed by the Dixmier traces and the Connes-Dixmier traces (see [2], [4], [6], and [13]).

As an intermediate step, the corresponding subspaces of $\mathfrak{w}^{*}\left(\mathbb{N}_{0}\right)$ are treated. This approach has a significant advantage, since non-commutative problems turn into commutative ones.

Notation and terminology. Standard notation and terminology of Banach space theory are adopted from [22]. In particular, X and Y denote real or complex Banach spaces, while H is a separable infinite-dimensional complex Hilbert space (identified with ℓ_{2}). Operators and functionals are always supposed to be linear and continuous (bounded). The symbol I stands for identity maps. The zero element of a Banach space is denoted by o.

An operator $J: X \rightarrow Y$ is called an injection if there exists some $\varrho>0$ such that $\|J x\| \geq \varrho\|x\|$ for all $x \in X$. A metric injection even satisfies the condition $\|J x\|=\|x\|$.

[^0]An operator $Q: X \rightarrow Y$ is called a surjection if there exists some $\varrho>0$ such that $\|y\| \geq \varrho \inf \{\|x\|: Q x=y\}$ for all $y \in Y$. A metric surjection even satisfies the condition $\|y\|=\inf \{\|x\|: Q x=y\}$. Note that the preceding concepts are dual to each other; see [20, pp. 26-27].

Surjections $Q: X \rightarrow Y$ are just the operators whose range is all of Y. On the other hand, a one-to-one operator $J: X \rightarrow Y$ need not be an injection.

We distinguish between $\mathbb{N}:=\{1,2,3, \ldots\}$ and $\mathbb{N}_{0}:=\{0,1,2,3, \ldots\}$. The letters m and n always stand for natural numbers different from 0 , while h, i, j, k, l range over \mathbb{N}_{0}.

Throughout, $a=\left(\alpha_{h}\right), b=\left(\beta_{k}\right), c=\left(\gamma_{l}\right)$, and $z=\left(\zeta_{i}\right)$ denote real or complex sequences; $e=(1,1,1, \ldots)$. Given any functional λ on a sequence space, we simply write $\lambda\left(\alpha_{h}\right)$ instead of $\lambda\left(\left(\alpha_{h}\right)\right)$.

1. The density character of a Banach space. The results presented in this section are well known, but spread over the literature. For the convenience of the reader, I have included some proofs.

We denote the cardinality of any set S by $|S|$. Concerning arithmetic of cardinal numbers we refer to [5, pp. 102-107]:
$|A| \cdot|B|:=|A \times B| \quad$ and $\quad|A|^{|B|}:=\mid$ set of all functions from B into $A \mid$.
The density character of a Banach space X is the smallest cardinality of all dense subsets,

$$
\operatorname{dense}(X):=\inf \{|D|: D \text { is dense in } X\}
$$

The infimum is attained, since the class of all cardinalities is well-ordered.
Let $\varrho>0$. A subset A of X is called ϱ-separated if

$$
\left\|x_{1}-x_{2}\right\| \geq \varrho \quad \text { whenever } x_{1}, x_{2} \in A \text { and } x_{1} \neq x_{2}
$$

At first glance, it looks not so obvious that dense (X) is the largest cardinality of all ϱ-separated subsets. However, this is indeed true. The following result was, for the first time, proved by Gohberg-Kreĭn [9, Lemma 6.1] and rediscovered by Kottman [12, pp. 566-567].

Lemma 1.1.
(1) If A is ϱ-separated for some $\varrho>0$, then $|A| \leq \operatorname{dense}(X)$.
(2) For every $\varrho>0$ there exists a ϱ-separated subset A such that $|A|=\operatorname{dense}(X)$.
Proof. We consider the non-trivial case that $X \neq\{\mathrm{o}\}$.
(1) For every dense subset D, the intersections $D \cap\left\{x+\frac{1}{2} \varrho U_{X}\right\}$ with $x \in A$ and $U_{X}:=\{u \in X:\|u\|<1\}$ are non-empty and mutually disjoint. Hence $|A| \leq|D|$, which yields $|A| \leq \operatorname{dense}(X)$.
(2) The collection of all ϱ-separated subsets A is inductively ordered by inclusion. So Zorn's lemma ensures the existence of maximal elements. Fix
such a maximal A. Then $|A| \geq \aleph_{0}$. Assume that

$$
D:=\left\{\sum_{i=1}^{n} \xi_{i} x_{i}: \xi_{i} \text { rational, } x_{i} \in A, n=1,2, \ldots\right\}
$$

fails to be dense in X. Then \bar{D} is a proper closed subspace. By the Riesz lemma [21, p. 139], we find $x_{0} \in X$ such that $\left\|x-x_{0}\right\| \geq \varrho$ for all $x \in \bar{D}$. Hence A can be enlarged by adding x_{0}. This contradiction shows that D is indeed a dense subset. Thus dense $(X) \leq|D| \leq \aleph_{0}^{3} \cdot|A|=|A|$.

The density character has the following elementary properties: For all closed subspaces N of X, we know that

$$
\operatorname{dense}(N) \leq \operatorname{dense}(X), \quad \operatorname{dense}(X / N) \leq \operatorname{dense}(X)
$$

and

$$
\operatorname{dense}(X) \leq \operatorname{dense}(N) \cdot \operatorname{dense}(X / N)
$$

Moreover,

$$
\operatorname{dense}(X) \leq \operatorname{dense}\left(X^{*}\right) \leq 2^{\operatorname{dense}(X)}
$$

Thus the density character provides a (coarse) tool to measure the size of a Banach space.

Remark. The dimension of a Banach space X is defined as the smallest cardinality of all subsets D whose linear span is dense in X. Note, however, that apart from the finite-dimensional case, we get $\operatorname{dim}(X)=\operatorname{dense}(X)$.

For later use, we mention that the estimate dense $(X / N) \leq \operatorname{dense}(X)$ has the following consequence.

Lemma 1.2. If there exists a surjection from X onto Y, then

$$
\text { dense }(Y) \leq \operatorname{dense}(X) .
$$

To determine the density character of $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ we need the Stone-Čech compactification $\beta \mathbb{N}_{0}$, whose points can be identified with the ultrafilters \mathcal{U} on \mathbb{N}_{0} or the non-trivial multiplicative functionals φ on $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$. The relationship between both objects is given as follows:

The ultrafilter \mathcal{U}_{φ} corresponding to φ consists of all subsets \mathbb{A} of \mathbb{N}_{0} such that $\varphi\left(e_{\mathrm{A}}\right)=1$, where e_{A} denotes the characteristic sequence of \mathbb{A}.

Conversely, with every ultrafilter \mathcal{U} one associates the functional

$$
\varphi_{\mathcal{U}}(a):=\mathcal{U}-\lim _{h} \alpha_{h} \quad \text { for all } a=\left(\alpha_{h}\right) \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)
$$

In particular, $h \in \mathbb{N}_{0}$ generates the principal ultrafilter $\mathcal{U}_{h}:=\{\mathbb{A}: h \in \mathbb{A}\}$ and the multiplicative functional $\varphi_{h}(a):=\alpha_{h}$, respectively.

Non-principal ultrafilters, also named free, are characterized by the property that all of their members are infinite sets.

Recall that $\beta \mathbb{N}_{0}$ becomes a compact Hausdorff space with respect to the weak* topology induced by $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$. The main result says that $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ can be identified with $C\left(\beta \mathbb{N}_{0}\right)$, the Banach space of all continuous functions on $\beta \mathbb{N}_{0}$.

For the purpose of this paper, the following fact is most important:

$$
\left|\beta \mathbb{N}_{0} \backslash \mathbb{N}_{0}\right|=\mid \text { set of all free ultrafilters on } \mathbb{N}_{0} \mid=2^{2^{\aleph_{0}}}
$$

see [25], [17], and [8, pp. 130-131, 139].
A functional $\varphi \in \mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$ is said to be singular if it vanishes on all sequences with finite support. The set of all singular functionals, denoted by $\mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right)$, is a weakly* closed subspace of $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$. A well-known result about annihilators shows that $\mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right)$ can be identified with the dual of $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)$. Sometimes we will use the fact that $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)$ is just the quotient of $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ modulo the null space of the seminorm

$$
s\left(a \mid \mathfrak{l}_{\infty}\right):=\limsup _{h \rightarrow \infty}\left|\alpha_{h}\right|
$$

Note that $\varphi_{\mathcal{U}} \in \mathfrak{r}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right)$ if and only if the ultrafilter \mathcal{U} is free.
Next, we prove a classical result, which goes back to Fichtenholz-Kantorovitch [7, p. 81] and Nakamura-Kakutani [18, p. 227].

Proposition 1.3. dense $\left(\mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right)\right)=\operatorname{dense}\left(\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)\right)=2^{2^{\aleph_{0}}}$.
Proof. First of all, we check the upper estimate of dense $\left(\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)\right)$:
If \mathbb{K} denotes the real or complex scalar field, then

$$
\left|\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)\right| \leq|\mathbb{K}|^{\mathbb{N}_{0} \mid}=\left(2^{\aleph_{0}}\right)^{\aleph_{0}}=2^{\aleph_{0} \cdot \aleph_{0}}=2^{\aleph_{0}}
$$

Thus

$$
\left|\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)\right| \leq|\mathbb{K}|^{\left|\mathfrak{L}_{\infty}\left(\mathbb{N}_{0}\right)\right|} \leq\left(2^{\aleph_{0}}\right)^{2^{\aleph_{0}}}=2^{\aleph_{0} \cdot 2^{\aleph_{0}}}=2^{2^{\aleph_{0}}}
$$

Next, $\mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right) \subseteq \mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$ implies dense $\left(\mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right)\right) \leq \operatorname{dense}\left(\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)\right)$.
Let \mathcal{U}_{1} and \mathcal{U}_{2} be different free ultrafilters. Then there exists a subset \mathbb{S} such that $\mathbb{S} \in \mathcal{U}_{1}$ and $\mathbb{C} \mathbb{S} \in \mathcal{U}_{2}$. Define $z=\left(\zeta_{i}\right)$ by $\zeta_{i}:=+1$ if $i \in \mathbb{S}$ and $\zeta_{i}:=-1$ if $i \in \mathbb{C}$. Now it follows from

$$
\varphi_{\mathcal{U}_{1}}(z)-\varphi_{\mathcal{U}_{2}}(z)=\mathcal{U}_{1}-\lim _{i} \zeta_{i}-\mathcal{U}_{2}-\lim _{i} \zeta_{i}=2
$$

and

$$
\left|\varphi_{\mathcal{U}_{1}}(z)-\varphi_{\mathcal{U}_{2}}(z)\right| \leq\left\|\varphi_{\mathcal{U}_{1}}-\varphi_{\mathcal{U}_{2}} \mid \mathfrak{l}_{\infty}^{*}\right\|
$$

that $\left\|\varphi_{\mathcal{U}_{1}}-\varphi_{\mathcal{U}_{2}} \mid \mathfrak{l}_{\infty}^{*}\right\| \geq 2$. This shows that $\mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right)$ contains a 2 -separated subset with cardinality $2^{2^{\aleph_{0}}}$. Hence dense $\left(\mathfrak{l}_{\infty}^{\mathrm{sgf}}\left(\mathbb{N}_{0}\right)\right) \geq 2^{2^{\aleph_{0}}}$.
2. A quotient space. Given any fixed operator S on a Banach space X, the expression

$$
u_{S}(a):=\inf \{\|a-x+S x\|: x \in X\}
$$

yields a semi-norm on X. Moreover, we know from [23, Props. 9.11 and 9.14] that

$$
u_{S}(a)=\inf _{1 \leq n<\infty}\left\|\frac{1}{n} \sum_{k=0}^{n-1} S^{k} a\right\|=\lim _{n \rightarrow \infty}\left\|\frac{1}{n} \sum_{k=0}^{n-1} S^{k} a\right\|
$$

whenever $\|S\|=1$.
The quotient of X modulo the null space of u_{S} is denoted by $X / / S$. We stress that $X / / S$ is just the usual quotient $X / \overline{\mathcal{R}}(I-S)$, where $\mathcal{R}(I-S)$ denotes the range of $I-S$. The quotient map from X onto $X / / S$ is denoted by Q_{S}^{X}. Note that the dual $(X / / S)^{*}$ can be identified with the space of all S-invariant functionals on X; see [23, Prop. 9.9].
3. Shift-invariant functionals on $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$. This section can be regarded as a preparation for Section 4 , in which the situation is more involved.

The shift operators acting on the sequences $b=\left(\beta_{k}\right)$ with $k \in \mathbb{N}_{0}$ are defined by

$$
S_{-}:\left(\beta_{k}\right) \mapsto\left(\beta_{1}, \beta_{2}, \beta_{3}, \ldots\right) \quad \text { and } \quad S_{+}:\left(\beta_{k}\right) \mapsto\left(0, \beta_{0}, \beta_{1}, \ldots\right)
$$

We call $\lambda \in \mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$ shift-invariant if

$$
\lambda\left(S_{-} b\right)=\lambda(b) \quad \text { and } \quad \lambda\left(S_{+} b\right)=\lambda(b) \quad \text { for all } b \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)
$$

By [23, Prop. 6.1], it suffices to verify the condition above either for S_{-} or S_{+}; the other one follows automatically.

Banach limits are a special kind of shift-invariant functionals that have two additional properties. They are positive and normalized:

$$
\lambda\left(\beta_{k}\right) \geq 0 \quad \text { if } \beta_{k} \geq 0 \quad \text { and } \quad \lambda(e)=1, \quad \text { where } e=(1,1,1, \ldots)
$$

The latter concept was invented by Banach [1, p. 34] and Mazur [14, p. 103].
All shift-invariant functionals form a weakly* closed subspace of $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$, denoted by $\mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right)$. We know from Section 2 that $\mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right)$ can be identified with the dual of $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / / S_{-}$, the quotient of $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ modulo the null space of the seminorm

$$
u_{S_{-}}\left(b \mid \mathfrak{l}_{\infty}\right):=\inf \left\{\left\|b-y+S_{-} y \mid \mathfrak{l}_{\infty}\right\|: y \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)\right\}
$$

Note that $\mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right) \subset \mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right)$.
The Cesàro operator $C: \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) \rightarrow \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ is given by

$$
C:\left(\beta_{k}\right) \mapsto\left(\frac{1}{h+1} \sum_{k=0}^{h} \beta_{k}\right)
$$

For the convenience of the reader, we compile a list of some elementary facts.

Lemma 3.1.

$$
\begin{equation*}
C y \in \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right) \text { for all } y \in \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right) \tag{1}
\end{equation*}
$$

$$
\begin{array}{lrl}
\text { (2) } & C y-C S_{-} y \in \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right) & \text { for all } y \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) \text {, } \tag{2}\\
\text { (3) } & C S_{-} y-S_{-} C y \in \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right) & \text { for all } y \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) .
\end{array}
$$

As observed by Mazur [15, p. 173], every singular functional ψ defines a shift-invariant functional

$$
C^{*} \psi: b \mapsto \psi(C b) \quad \text { for all } b \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)
$$

This fact was already contained in lecture notes of von Neumann that circulated in a small group of insiders since 1940/41; see [19, p. 31].

The shift-invariant functionals obtained in this way are called Mazur functionals. They form a subspace of $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$, denoted by $\mathfrak{l}_{\infty}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)$.

Next, we adapt the Cesàro operator C to the shift-invariant setting.
Lemma 3.2. There exists a (unique) operator C_{0} for which the diagram

$$
\begin{gathered}
\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) \xrightarrow{C} \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) \\
\mid Q_{c_{0}^{\infty}}^{q_{\infty}^{\infty}} \\
Q_{S_{-}}^{1} \downarrow \\
\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / / S_{-} \xrightarrow{C_{0}} \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)
\end{gathered}
$$

commutes.
Proof. We know from Lemma 3.1(2) that $C y-C S_{-} y \in \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)$ for all $y \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$. Thus
$s\left(C b \mid \mathfrak{l}_{\infty}\right) \leq s\left(C b-C y+C S_{-} y \mid \mathfrak{l}_{\infty}\right)+s\left(C y-C S_{-} y \mid \mathfrak{l}_{\infty}\right) \leq\left\|b-y+S_{-} y \mid \mathfrak{l}_{\infty}\right\|$, which proves that

$$
s\left(C b \mid \mathfrak{l}_{\infty}\right) \leq u_{S_{-}}\left(b \mid \mathfrak{l}_{\infty}\right) \quad \text { for all } b \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) .
$$

Hence the required C_{0} is well-defined.
Remark. Using the identifications

$$
\left[\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / / S_{-}\right]^{*} \equiv \mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right) \quad \text { and } \quad\left[\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)\right]^{*} \equiv \mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right),
$$

we may regard the dual operator C_{0}^{*} as a map from $\mathfrak{l}_{\infty}^{\operatorname{sgf}}\left(\mathbb{N}_{0}\right)$ into $\mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right)$, which is obtained by restricting C^{*}. Then the range $\mathcal{R}\left(C_{0}^{*}\right)$ coincides with $\mathfrak{r}_{\infty}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)$.

We now refine the diagram given in Lemma 3.2. To this end, let

$$
\mathcal{N}:=\left\{y_{0} \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right): C y_{0} \in \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)\right\}
$$

and note that the norm of $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathcal{N}$ is induced by the seminorm

$$
p\left(b \mid \mathfrak{l}_{\infty}\right):=\inf \left\{\left\|b-y_{0} \mid \mathfrak{l}_{\infty}\right\|: y_{0} \in \mathcal{N}\right\} .
$$

Lemma 3.3. The operator C_{0} admits a (unique) decomposition, where Q_{0} is a quotient map, while C_{00} is one-to-one:

Proof. We know from Lemma 3.1(2) that $C y-C S_{-} y \in \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)$ for all $y \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$. Hence $y-S_{-} y \in \mathcal{N}$, which implies that
$p\left(b \mid \mathfrak{l}_{\infty}\right) \leq u_{S_{-}}\left(b \mid \mathfrak{l}_{\infty}\right):=\inf \left\{\left\|b-y+S_{-} y\right\|: y \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)\right\} \quad$ for all $b \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$. Thus the quotient map $Q_{0}: \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / / S_{-} \rightarrow \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathcal{N}$ is well-defined.

Since

$$
s\left(C b \mid \mathfrak{l}_{\infty}\right)=s\left(C b-C y_{0} \mid \mathfrak{l}_{\infty}\right) \leq\left\|b-y_{0} \mid \mathfrak{l}_{\infty}\right\| \quad \text { whenever } y_{0} \in \mathcal{N}
$$

we have

$$
s\left(C b \mid \mathfrak{l}_{\infty}\right) \leq p\left(b \mid \mathfrak{l}_{\infty}\right) \quad \text { for all } b \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)
$$

This estimate ensures the existence of $C_{00}: \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathcal{N} \rightarrow \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)$.
Define the sequences $b^{\langle m\rangle}=\left(\beta_{k}^{\langle m\rangle}\right)$ by

$$
\beta_{k}^{\langle m\rangle}:=\left\{\begin{array}{ll}
+1 & \text { if } \quad m 2^{i} \leq k<(m+1) 2^{i}, \\
-1 & \text { if }(m+1) 2^{i} \leq k<(m+2) 2^{i}, \\
0 & \text { otherwise. }
\end{array} \quad i=0,1,2, \ldots,\right.
$$

To ensure that $(m+2) 2^{i} \leq m 2^{i+1}$, we let $m \geq 2$.
Lemma 3.4. $p\left(b^{\langle m\rangle} \mid \mathfrak{l}_{\infty}\right)=1$ and $s\left(C b^{\langle m\rangle} \mid \mathfrak{l}_{\infty}\right)=\frac{1}{m+1}$.
Proof. Assume that $p\left(b^{\langle m\rangle} \mid \mathfrak{l}_{\infty}\right)<1$ for some m. Then we may choose $\varrho \in \mathbb{R}$ and $y_{0}=\left(\eta_{0, k}\right) \in \mathcal{N}$ such that

$$
p\left(b^{\langle m\rangle} \mid \mathfrak{l}_{\infty}\right)<\varrho<1 \quad \text { and } \quad\left\|b^{\langle m\rangle}-y_{0} \mid \mathfrak{l}_{\infty}\right\| \leq \varrho
$$

Hence

$$
1-\eta_{0, k} \leq \varrho \quad \text { if } m 2^{i} \leq k<(m+1) 2^{i}
$$

which implies

$$
\frac{1}{2^{i}} \sum_{k=m 2^{i}}^{(m+1) 2^{i}-1} \eta_{0, k} \geq 1-\varrho
$$

We now obtain

$$
\begin{aligned}
& \frac{1}{m 2^{i}} \sum_{k=0}^{m 2^{i}-1} \eta_{0, k}-\frac{1}{(m+1) 2^{i}} \sum_{k=0}^{(m+1) 2^{i}-1} \eta_{0, k}= \\
& \quad=\left(\frac{1}{m 2^{i}}-\frac{1}{(m+1) 2^{i}}\right) \sum_{k=0}^{m 2^{i}-1} \eta_{0, k}-\frac{1}{(m+1) 2^{i}} \sum_{k=m 2^{i}}^{(m+1) 2^{i}-1} \eta_{0, k} \\
& \quad \leq \frac{1}{m+1} \frac{1}{m 2^{i}} \sum_{k=0}^{m 2^{2}-1} \eta_{0, k}-\frac{1-\varrho}{m+1} .
\end{aligned}
$$

Since

$$
\lim _{h \rightarrow \infty} \frac{1}{h+1} \sum_{k=0}^{h} \eta_{0, k}=0
$$

letting $i \rightarrow \infty$ yields a contradiction, $0 \leq-\frac{1-\varrho}{m+1}$.
The non-negative sequence $a^{\langle m\rangle}=\left(\alpha_{h}^{\langle m\rangle}\right):=C b^{\langle m\rangle}$ attains its local maxima at the indices $(m+1) 2^{i}-1$. Thus it follows from

$$
\alpha_{(m+1) 2^{i}-1}^{\langle m\rangle}=\frac{1}{m+1}
$$

that $s\left(C b^{\langle m\rangle} \mid \mathfrak{l}_{\infty}\right)=\frac{1}{m+1}$.
Proposition 3.5. $\mathfrak{r}_{\infty}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)$ fails to be a closed subspace of $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$.
Proof. Lemma 3.4 shows that the one-to-one operator

$$
C_{00}: \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathcal{N} \rightarrow \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)
$$

defined in Lemma 3.3 is not an injection. Hence Banach's inverse mapping theorem tells us that $\mathcal{R}\left(C_{0}\right)=\mathcal{R}\left(C_{00}\right)$ cannot be closed. Therefore, by the closed range theorem, the same is true for $\mathfrak{l}_{\infty}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)=\mathcal{R}\left(C_{0}^{*}\right)$; see the remark after Lemma 3.2.

As just shown, $\mathfrak{l}_{\infty}^{\operatorname{mf}}\left(\mathbb{N}_{0}\right)$ fails to be complete. Thus we pass to the closed hull $\overline{\mathfrak{L}_{\infty}^{m f}\left(\mathbb{N}_{0}\right)}$. Unfortunately, there remains an open question concerning the weakly* closed hull.

Problem 3.6. Which of the relations

$$
\overline{\mathfrak{l}_{\infty}^{\operatorname{mf}}\left(\mathbb{N}_{0}\right)}={\overline{\mathfrak{l}_{\infty}^{\operatorname{mf}}\left(\mathbb{N}_{0}\right)}}^{\mathrm{w}^{*}} \quad \text { or } \quad \overline{\mathfrak{l}_{\infty}^{\operatorname{mf}}\left(\mathbb{N}_{0}\right)} \subset{\overline{\mathfrak{l}_{\infty}^{\operatorname{mf}}\left(\mathbb{N}_{0}\right)}}^{\mathrm{w}^{*}}
$$

is true?
So, as a precaution, we have to distinguish between $\overline{\mathfrak{m}_{\infty}^{m f}\left(\mathbb{N}_{0}\right)}$ and $\overline{\mathfrak{l}_{\infty}^{m f\left(\mathbb{N}_{0}\right)}}{ }^{\text {w}}$. In what follows, we determine the size of the Banach spaces

$$
\overline{\mathfrak{l}_{\infty}^{\operatorname{mf}}\left(\mathbb{N}_{0}\right)} \subseteq \overline{\mathfrak{l}_{\infty}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)}{ }^{\mathbf{w}^{*}} \subset \mathfrak{r}_{\infty}^{\operatorname{sif}}\left(\mathbb{N}_{0}\right) \subset \mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)
$$

and the size of their 'differences'.

Lemma 3.7. If

$$
J_{e}: z=\left(\zeta_{i}\right) \mapsto b=\left(\beta_{k}\right):=\sum_{i=0}^{\infty} \zeta_{i} e_{2 i+1}
$$

then $\left(I-S_{-}\right) J_{e}$ is a metric injection from $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ into $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$.
Proof. Since

$$
J_{e} z=\left(0, \zeta_{0}, 0, \zeta_{1}, \ldots\right)
$$

we have

$$
\left(I-S_{-}\right) J_{e} z=\left(-\zeta_{0},+\zeta_{0},-\zeta_{1},+\zeta_{1}, \ldots\right)
$$

Proposition 3.8. $\operatorname{dense}\left(\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right) / \mathfrak{l}_{\infty}^{\operatorname{sif}}\left(\mathbb{N}_{0}\right)\right) \geq 2^{2^{\aleph_{0}}}$ 。
Proof. By Lemma 1.1 and Proposition 1.3 , there exists a 2-separated subset A of $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$ with $|A|=\operatorname{dense}\left(\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)\right)=2^{2^{\aleph_{0}}}$. Lemma 3.7 tells us that $J_{e}^{*}\left(I-S_{-}\right)^{*}$ is a metric surjection from $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$ onto $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$. So, for every $\varphi \in A$, we may choose a $\psi \in \mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$ such that $\varphi=J_{e}^{*}\left(I-S_{-}\right)^{*} \psi$. The ψ 's obtained in this way form a subset of $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$, denoted by B.

Given different members $\varphi_{1}=J_{e}^{*}\left(I-S_{-}\right)^{*} \psi_{1}$ and $\varphi_{2}=J_{e}^{*}\left(I-S_{-}\right)^{*} \psi_{2}$ of A, it follows from Lemma 3.7 that

$$
\begin{aligned}
\left\|\varphi_{1}-\varphi_{2}-J_{e}^{*}\left(I-S_{-}\right)^{*} \lambda \mid \mathfrak{l}_{\infty}^{*}\right\| & =\left\|J_{e}^{*}\left(I-S_{-}\right)^{*}\left(\psi_{1}-\psi_{2}-\lambda\right) \mid \mathfrak{l}_{\infty}^{*}\right\| \\
& \leq\left\|\psi_{1}-\psi_{2}-\lambda \mid \mathfrak{l}_{\infty}^{*}\right\|
\end{aligned}
$$

for every $\lambda \in \mathfrak{l}_{\infty}^{\operatorname{sif}}\left(\mathbb{N}_{0}\right)$. Next, we take $z \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ such that

$$
\left|\varphi_{1}(z)-\varphi_{2}(z)\right| \geq \frac{1}{2}\left\|\varphi_{1}-\varphi_{2} \mid \mathfrak{l}_{\infty}^{*}\right\| \geq 1 \quad \text { and } \quad\left\|z \mid \mathfrak{l}_{\infty}\right\|=1
$$

Then

$$
\begin{aligned}
\left\|\psi_{1}-\psi_{2}-\lambda \mid \mathfrak{l}_{\infty}^{*}\right\| & \geq\left\|\varphi_{1}-\varphi_{2}-J_{e}^{*}\left(I-S_{-}\right)^{*} \lambda \mid \mathfrak{l}_{\infty}^{*}\right\| \\
& \geq\left|\varphi_{1}(z)-\varphi_{2}(z)-J_{e}^{*}\left(I-S_{-}\right)^{*} \lambda(z)\right| \\
& =\left|\varphi_{1}(z)-\varphi_{2}(z)-\lambda\left(\left(I-S_{-}\right) J_{e} z\right)\right| \\
& =\left|\varphi_{1}(z)-\varphi_{2}(z)\right| \geq 1 .
\end{aligned}
$$

This shows that the canonical image of B is 1 -separated in $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right) / \mathfrak{l}_{\infty}^{\operatorname{sif}}\left(\mathbb{N}_{0}\right)$. Moreover, $|B|=|A|=2^{2^{\aleph_{0}}}$.

Remark. When preparing this paper, I was in doubt whether the formalism of annihilators [26, pp. 95-99], which requires some additional knowledge, should be employed. Finally, I had chosen a more direct and longer approach. Only the proof of Proposition 4.20 was given via annihilators. The referee, who deserves a big 'Thank You' for his careful work, disliked my decision. As a compromise, I add a modified proof. The proofs of Propositions 3.13 and 4.10 are changed in the same way, while the proof of Proposition 4.16 is kept old-fashioned.

Proof (second version). As $\mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right)$ is the annihilator of $M:=\overline{\mathcal{R}\left(I-S_{-}\right)}$, we have the identifications

$$
M^{*} \equiv \mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right) / M^{\perp} \equiv \mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right) / \mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right)
$$

Lemma 3.7 tells us that $\left(I-S_{-}\right) J_{e}$ is an injection from $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ into M. Hence $J_{e}^{*}\left(I-S_{-}\right)^{*}$ is a surjection from M^{*} onto $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$. The required conclusion now follows from Lemma 1.2 and Proposition 1.3 .

Now we present a construction which provides the basic tool of this paper. Let $h_{i}:=2^{i+2}$ and $d_{i} \in \mathbb{N}$ (to be specified later) such that $i+1 \leq d_{i} \leq 2^{i}$. Consider the sequences $s^{[i]}=\left(\sigma_{k}^{[i]}\right)$ with

$$
\sigma_{k}^{[i]}:=\left\{\begin{array}{llc}
0 & \text { if } & k<h_{i} \\
+1 & \text { if } & h_{i} \leq k<h_{i}+d_{i} \\
-1 & \text { if } & h_{i}+d_{i} \leq k<h_{i}+2 d_{i} \\
0 & \text { if } & h_{i}+2 d_{i} \leq k
\end{array}\right.
$$

Since $h_{i}+2 d_{i}<h_{i+1}$, the supports of the $s^{[i]}$'s are mutually disjoint. Because of this fact, the next result is obvious.

Lemma 3.9. The rule

$$
J_{s}: z=\left(\zeta_{i}\right) \mapsto b=\left(\beta_{k}\right):=\sum_{i=0}^{\infty} \zeta_{i} s^{[i]}
$$

defines a metric injection from $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ into $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$.
Next, we establish a counterpart of Lemma 3.2.
Lemma 3.10. There exists a (unique) metric injection $J_{s, 0}$ such that the diagram

commutes.
Proof. Since, by [23, Lemma 9.17],

$$
\begin{aligned}
u_{S_{-}}\left(J_{s} z \mid \mathfrak{l}_{\infty}\right) & \leq u_{S_{-}}\left(J_{s}(z-x) \mid \mathfrak{l}_{\infty}\right)+u_{S_{-}}\left(J_{s} x \mid \mathfrak{l}_{\infty}\right) \\
& \leq\left\|J_{s}(z-x)\left|\mathfrak{l}_{\infty}\|\leq\| z-x\right| \mathfrak{l}_{\infty}\right\|
\end{aligned}
$$

for all sequences x with finite support, we get $u_{S_{-}}\left(J_{s} z \mid \mathfrak{l}_{\infty}\right) \leq s\left(z \mid \mathfrak{l}_{\infty}\right)$. Thus $J_{s, 0}$ is well-defined.

According to Section 2,

$$
u_{S_{-}}\left(b \mid \mathfrak{l}_{\infty}\right)=\inf _{1 \leq n<\infty} \sup _{0 \leq h<\infty} \frac{1}{n}\left|\sum_{k=0}^{n-1} \beta_{h+k}\right| .
$$

Fix n and let $b=\left(\beta_{k}\right):=J_{s}\left(\zeta_{i}\right)$. If $j \geq n-1$, then it follows from

$$
\frac{1}{n} \sum_{k=0}^{n-1} \beta_{h_{j}+k}^{[j]}=\frac{1}{n} \sum_{k=0}^{n-1} \zeta_{j} \sigma_{h_{j}+k}^{[j]}=\zeta_{j}
$$

that

$$
\sup _{0 \leq h<\infty} \frac{1}{n}\left|\sum_{k=0}^{n-1} \beta_{h+k}\right| \geq \frac{1}{n}\left|\sum_{k=0}^{n-1} \beta_{h_{j}+k}\right|=\left|\zeta_{j}\right|
$$

Hence

$$
\sup _{0 \leq h<\infty} \frac{1}{n}\left|\sum_{k=0}^{n-1} \beta_{h+k}\right| \geq \sup _{j \geq n-1}\left|\zeta_{j}\right| \geq \limsup _{j \rightarrow \infty}\left|\zeta_{j}\right|,
$$

which proves that $u_{S_{-}}\left(J_{s} z \mid \mathfrak{l}_{\infty}\right) \geq s\left(z \mid \mathfrak{l}_{\infty}\right)$. So $J_{s, 0}$ is a metric injection.
The operator $J_{s}: \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) \rightarrow \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ depends on the choice of $\left(d_{i}\right)$. In what follows, we need only the limiting cases $d_{i}=i+1$ and $d_{i}=2^{i}$.

Lemma 3.11. Let $a:=C b$ and $b:=J_{s} z$ for $z \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$.
(1) If $d_{i}=i+1$, then $a \in \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)$.
(2) If $d_{i}=2^{i}$, then $\alpha_{h_{i}+d_{i}-1}=\frac{1}{5} \zeta_{i}$.

Proof. Recall that $h_{i}=2^{i+2}$ and $\beta_{k}=\sum_{i=0}^{\infty} \zeta_{i} \sigma_{k}^{[i]}$.
(1) If $h_{i} \leq h<h_{i+1}$, then

$$
\left|\alpha_{h}\right|=\frac{1}{h+1}\left|\sum_{k=0}^{h} \beta_{k}\right|=\frac{1}{h+1}\left|\sum_{k=h_{i}}^{h} \zeta_{i} \sigma_{k}^{[i]}\right| \leq \frac{d_{i}}{h_{i}+1}\left|\zeta_{i}\right|=\frac{i+1}{2^{i+2}+1}\left|\zeta_{i}\right| .
$$

Therefore $C J_{s}\left(\zeta_{i}\right) \in \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)$.
(2) Indeed,

$$
\alpha_{h_{i}+d_{i}-1}=\frac{1}{h_{i}+d_{i}} \sum_{k=0}^{h_{i}+d_{i}-1} \beta_{k}=\frac{1}{h_{i}+d_{i}} \sum_{k=h_{i}}^{h_{i}+d_{i}-1} \zeta_{i}^{[i]} \sigma_{k}^{[i]}=\frac{d_{i}}{h_{i}+d_{i}} \zeta_{i}=\frac{1}{5} \zeta_{i} .
$$

Proposition 3.12. dense $\left(\overline{\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)}\right) \geq 2^{2^{\aleph_{0}}}$.
Proof. Specify the operator J_{s} by letting $d_{i}:=2^{i}$.
With every free ultrafilter \mathcal{U} we associate the singular functional

$$
\psi_{\mathcal{u}}(a):=\mathcal{U}-\lim _{i} \alpha_{h_{i}+d_{i}-1} \quad \text { for all } a \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right),
$$

which in turn generates the Mazur functional $\kappa_{u}:=C^{*} \psi_{u}$. If $z \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ and $a:=C J_{s} z$, then it follows from $\alpha_{h_{i}+d_{i}-1}=\frac{1}{5} \zeta_{i}$ (Lemma 3.11) that

$$
\kappa_{\mathcal{U}}\left(J_{s} z\right)=\psi_{\mathcal{U}}\left(C J_{s} z\right)=\mathcal{U}-\lim _{i} \alpha_{h_{i}+d_{i}-1}=\frac{1}{5} \mathcal{U}-\lim _{i} \zeta_{i} .
$$

Let \mathcal{U}_{1} and \mathcal{U}_{2} be different free ultrafilters. Then there exists a subset \mathbb{S} such that $\mathbb{S} \in \mathcal{U}_{1}$ and $\mathbb{C} \mathbb{S} \in \mathcal{U}_{2}$. Define $z=\left(\zeta_{i}\right)$ by $\zeta_{i}:=+1$ if $i \in \mathbb{S}$ and $\zeta_{i}:=-1$ if $i \in \mathbb{C}$. We infer from

$$
\kappa_{\mathcal{U}_{1}}\left(J_{s} z\right)-\kappa_{\mathcal{U}_{2}}\left(J_{s} z\right)=\frac{1}{5} \mathcal{U}_{1}-\lim _{i} \zeta_{i}-\frac{1}{5} \mathcal{U}_{2}-\lim \zeta_{i}=\frac{2}{5}
$$

and Lemma 3.9 that

$$
\frac{2}{5}=\left|\kappa_{\mathcal{U}_{1}}\left(J_{s} z\right)-\kappa_{\mathcal{U}_{2}}\left(J_{s} z\right)\right| \leq\left\|\kappa_{\mathcal{U}_{1}}-\kappa_{\mathcal{U}_{2}}| |_{\infty}^{*}\right\| .
$$

So the $\kappa_{\mathcal{u}}$'s form a $2 / 5$-separated subset of $\overline{\mathfrak{l}_{\infty}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)}$. Since the set of all free ultrafilters on \mathbb{N}_{0} has cardinality $2^{2^{\aleph_{0}}}$, the estimate dense $\left(\overline{\mathfrak{l}_{\infty}^{m f}\left(\mathbb{N}_{0}\right)}\right) \geq 2^{2^{\aleph_{0}}}$ follows from Lemma 1.1 .

The observation that $\mathfrak{l}_{\infty}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)$ is a proper subset of $\mathfrak{l}_{\infty}^{\operatorname{sif}}\left(\mathbb{N}_{0}\right)$ was already made by Jerison [10, p. 80]. Now we show that the difference between both spaces is very big.

Proposition 3.13. dense $\left(\sin _{\infty}^{\operatorname{sif}}\left(\mathbb{N}_{0}\right) /{\overline{l_{\infty}}\left(\mathbb{N}_{0}\right)}^{\mathrm{w}^{*}}\right) \geq 2^{2^{\mathrm{x}_{0}}}$.
Proof. Specify the operator J_{s} by letting $d_{i}:=i+1$.
Using the identifications

$$
\left[\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / / S_{-}\right]^{*} \equiv \mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right) \quad \text { and } \quad\left[\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)\right]^{*} \equiv \mathfrak{l}_{\infty}^{\mathrm{sgf}}\left(\mathbb{N}_{0}\right)
$$

we may regard $J_{s, 0}^{*}$ as a restriction of J_{s}^{*}. Hence, by Lemma 3.10 , the surjection J_{s}^{*} induces a surjection from $\mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right)$ onto $\mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right)$.

If $\kappa \in \overline{\mathfrak{l}}_{\infty}^{\operatorname{mf}\left(\mathbb{N}_{0}\right)}{ }^{\mathbf{w}^{*}}$, then there exists a net $\left(\psi_{\imath}\right)_{\iota \in \mathbb{I}}$ in $\mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right)$ such that $\left(C^{*} \psi_{\iota}\right)_{\iota \in \mathbb{I}}$ converges to κ in the weak ${ }^{*}$ topology of $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$. Since Lemma 3.11 implies that $C J_{s} z \in \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)$ for $z \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$, we get

$$
\kappa\left(J_{s} z\right)=\lim _{\iota \in \mathbb{I}} C^{*} \psi_{\iota}\left(J_{s} z\right)=\lim _{\iota \in \mathbb{I}} \psi_{\iota}\left(C J_{s} z\right)=0
$$

Therefore $J_{s, 0}^{*} \kappa=\mathrm{o}$, which means that $\overline{\mathfrak{l}_{\infty}^{\operatorname{mf}\left(\mathbb{N}_{0}\right)}}{ }^{\mathrm{w}}$ is included in the null space of $J_{s, 0}^{*}$. Consequently, $J_{s, 0}^{*}$ induces a surjection from $\mathfrak{l}_{\infty}^{\operatorname{sif}}\left(\mathbb{N}_{0}\right) / \overline{\mathfrak{l}_{\infty}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)} \mathrm{w}^{*}$ onto $\mathfrak{l}_{\infty}^{\mathrm{sgf}}\left(\mathbb{N}_{0}\right)$. The required conclusion now follows from Lemma 1.2 and Proposition 1.3 .

Theorem 3.14. All of the Banach spaces

$$
\begin{aligned}
& \overline{\mathfrak{l}_{\infty}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)} \subseteq \overline{\mathfrak{l}_{\infty}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)}{ }^{\mathrm{w}^{*}} \subset \mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right) \subset \mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right), \\
& \mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right) / \overline{\mathfrak{l}_{\infty}^{m f}\left(\mathbb{N}_{0}\right)} \subset \mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right) / \overline{\mathfrak{m f f}_{\infty}\left(\mathbb{N}_{0}\right)}, \\
& \mathfrak{l}_{\infty}^{\operatorname{sif}}\left(\mathbb{N}_{0}\right) / \overline{\mathfrak{l}_{\infty}^{m f}\left(\mathbb{N}_{0}\right)}{ }^{\mathrm{w}^{*}} \subset \mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right) / \overline{\mathfrak{l} m}_{\infty}^{\left(\mathbb{N}_{0}\right)}{ }^{\mathrm{w}^{*}},
\end{aligned}
$$

and

$$
\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right) / \mathfrak{l}_{\infty}^{\operatorname{sif}}\left(\mathbb{N}_{0}\right)
$$

have the same density character, namely $2^{2^{\alpha_{0}}}$.

Proof. The upper estimates follow from

$$
\operatorname{dense}\left(\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)\right) \leq 2^{2^{\aleph_{0}}} \quad(\text { Proposition 1.3), }
$$

while the lower estimates are implied by

$$
\begin{aligned}
& \operatorname{dense}\left(\overline{\mathfrak{l}_{\infty}^{m f}\left(\mathbb{N}_{0}\right)}\right) \geq 2^{2^{\aleph_{0}}} \quad \text { (Proposition 3.12), } \\
& \operatorname{dense}\left(\mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right) /{\overline{\mathfrak{l}_{\infty}^{m f}}\left(\mathbb{N}_{0}\right)}^{\mathrm{w}^{*}}\right) \geq 2^{2^{\mathrm{x}_{0}}} \quad \text { (Proposition 3.13), }
\end{aligned}
$$

and

$$
\operatorname{dense}\left(v_{\infty}^{*}\left(\mathbb{N}_{0}\right) / \mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right)\right) \geq 2^{2^{\aleph_{0}}} \quad \text { (Proposition 3.8). }
$$

Remark. A long time ago, the formula dense $\left(\mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right)\right)=2^{2^{\aleph_{0}}}$ was proved in [3, p. 199].
4. Shift-invariant functionals on $\mathfrak{w}\left(\mathbb{N}_{0}\right)$. The Banach space $\mathfrak{w}\left(\mathbb{N}_{0}\right)$ consists of all sequences $c=\left(\gamma_{l}\right)$ for which

$$
\left\|\left.c\left|\mathfrak{w} \|:=\sup _{0 \leq k<\infty} \frac{1}{k+1} \sum_{l=0}^{k}\right| \gamma_{l} \right\rvert\,\right.
$$

is finite.
A functional $\varphi \in \mathfrak{w}^{*}\left(\mathbb{N}_{0}\right)$ is said to be singular if it vanishes on all sequences with finite support. The set of all singular functionals, denoted by $\mathfrak{w}^{\text {sgf }}\left(\mathbb{N}_{0}\right)$, is a weakly* closed subspace of $\mathfrak{w}^{*}\left(\mathbb{N}_{0}\right)$.

A functional $\mu \in \mathfrak{w}^{*}\left(\mathbb{N}_{0}\right)$ is called shift-invariant if

$$
\mu\left(S_{-} c\right)=\mu(c) \quad \text { and } \quad \mu\left(S_{+} c\right)=\mu(c) \quad \text { for all } c \in \mathfrak{w}\left(\mathbb{N}_{0}\right) .
$$

By [23, Prop. 2.3], it suffices to verify the condition above either for S_{-} or S_{+}; the other one follows automatically.

All shift-invariant functionals form a weakly* closed subspace of $\mathfrak{w}^{*}\left(\mathbb{N}_{0}\right)$, denoted by $\mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right)$. We know from Section 2 that $\mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right)$ can be identified with the dual of $\mathfrak{w}\left(\mathbb{N}_{0}\right) / / S_{-}$, the quotient of $\mathfrak{w}\left(\mathbb{N}_{0}\right)$ modulo the null space of the seminorm

$$
u_{S_{-}}(c \mid \mathfrak{w}):=\inf \left\{\left\|c-z+S_{-} z \mid \mathfrak{w}\right\|: z \in \mathfrak{w}\left(\mathbb{N}_{0}\right)\right\} .
$$

Note that $\mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right) \subset \mathfrak{w}^{\operatorname{sgf}}\left(\mathbb{N}_{0}\right)$.
The Cesàro operator $C_{\mathfrak{w}}: \mathfrak{w}\left(\mathbb{N}_{0}\right) \rightarrow \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ is given by

$$
C_{\mathfrak{w}}:\left(\gamma_{l}\right) \mapsto\left(\frac{1}{k+1} \sum_{l=0}^{k} \gamma_{l}\right) .
$$

Now we are able to introduce two special kinds of shift-invariant functionals on $\mathfrak{w}\left(\mathbb{N}_{0}\right)$:

A Dixmier functional has the form $\mu=C_{\mathfrak{w}}^{*} \lambda$ with $\lambda \in \mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right)$.
A Connes-Dixmier functional has the form $\mu=C_{\mathfrak{w}}^{*} C^{*} \psi$ with $\psi \in \mathfrak{l}_{\infty}^{\mathrm{sgf}}\left(\mathbb{N}_{0}\right)$.
The space consisting of all Dixmier functionals is denoted by $\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)$, and $\mathfrak{w}^{\text {cdf }}\left(\mathbb{N}_{0}\right)$ stands for the space of all Connes-Dixmier functionals.

Next, we adapt the Cesàro operator $C_{\mathfrak{w}}$ to the shift-invariant setting; see [23, Lemma 9.18].

Lemma 4.1. There exists a (unique) operator $C_{\mathfrak{w}, 0}$ for which the diagram

commutes.
Remark. Using the identifications

$$
\left[\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / / S_{-}\right]^{*} \equiv \mathfrak{l}_{\infty}^{\operatorname{sif}}\left(\mathbb{N}_{0}\right) \quad \text { and } \quad\left[\mathfrak{w}\left(\mathbb{N}_{0}\right) / / S_{-}\right]^{*} \equiv \mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right),
$$

the dual operator $C_{\mathfrak{w}, 0}^{*}$ may be regarded as a map from $\mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right)$ into $\mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right)$, which is obtained by restricting $C_{\mathfrak{w}}^{*}$. The range $\mathcal{R}\left(C_{\mathfrak{w}, 0}^{*}\right)$ coincides with $\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)$. Analogously, because

$$
\left[l_{\infty}\left(\mathbb{N}_{0}\right) / \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)\right]^{*} \equiv \mathfrak{l}_{\infty}^{\mathrm{sgf}}\left(\mathbb{N}_{0}\right),
$$

Lemmas 3.2 and 4.1 show that $C_{\mathfrak{w}, 0}^{*} C_{0}^{*}$ may be regarded as a map from $\mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right)$ into $\mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right)$, which is obtained by restricting $C_{\mathfrak{w}}^{*} C^{*}$. The range $\mathcal{R}\left(C_{\mathfrak{w}, 0}^{*} C_{0}^{*}\right)$ coincides with $\mathfrak{w}^{\text {cdf }}\left(\mathbb{N}_{0}\right)$.

To prove Proposition 4.4 below, we need an analogue of Lemma 3.1(3), which is taken from [23, Lemma 6.3].

Lemma 4.2. $C_{\mathfrak{w}} S_{-} z-S_{-} C_{\mathfrak{w}} z \in \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)$ for all $z \in \mathfrak{w}\left(\mathbb{N}_{0}\right)$.
Next, we extend Lemma 3.3. To this end, let

$$
\begin{aligned}
\mathcal{N}_{\Delta} & :=\left\{z_{0} \in \mathfrak{w}\left(\mathbb{N}_{0}\right): C C_{\mathfrak{w}} z_{0} \in \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)\right\}, \\
\mathcal{N} & :=\left\{y_{0} \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right): C y_{0} \in \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)\right\} .
\end{aligned}
$$

Note that the norms of $\mathfrak{w}\left(\mathbb{N}_{0}\right) / \mathcal{N}_{\diamond}$ and $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathcal{N}$ are induced by the seminorms

$$
\begin{aligned}
q(c \mid \mathfrak{w}) & :=\inf \left\{\left\|c-z_{0} \mid \mathfrak{w}\right\|: z_{0} \in \mathcal{N}_{\diamond}\right\}, \\
p\left(b \mid \mathfrak{l}_{\infty}\right) & :=\inf \left\{\left\|b-y_{0} \mid \mathfrak{l}_{\infty}\right\|: y_{0} \in \mathcal{N}\right\},
\end{aligned}
$$

respectively.

Lemma 4.3. The operator $C_{0} C_{\mathfrak{w}, 0}$ admits a (unique) decomposition, where Q_{\diamond} and Q_{0} are quotient maps, while $C_{\mathfrak{w}, \diamond}$ and C_{00} are one-to-one:

Proof. The following reasoning is based on the proof of Lemma 3.3 . If $z \in \mathfrak{w}\left(\mathbb{N}_{0}\right)$, then we infer from Lemmas 3.1 and 4.2 that

$$
C C_{\mathfrak{w}} z-C S_{-} C_{\mathfrak{w}} z \in \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right) \quad \text { and } \quad C S_{-} C_{\mathfrak{w}} z-C C_{\mathfrak{w}} S_{-} z \in \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right) .
$$

Hence $C C_{\mathfrak{w}} z-C C_{\mathfrak{w}} S_{-} z \in \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)$, which means that $z-S_{-} z \in \mathcal{N}_{\diamond}$. Therefore $q(c \mid \mathfrak{w}) \leq u_{S_{-}}(c \mid \mathfrak{w})=\inf \left\{\left\|c-z+S_{-} z \mid \mathfrak{w}\right\|: z \in \mathfrak{w}\left(\mathbb{N}_{0}\right)\right\} \quad$ for all $c \in \mathfrak{w}\left(\mathbb{N}_{0}\right)$. This estimate ensures the existence of $Q_{\diamond}: \mathfrak{w}\left(\mathbb{N}_{0}\right) / / S_{-} \rightarrow \mathfrak{w}\left(\mathbb{N}_{0}\right) / \mathcal{N}_{\diamond}$.

It follows from $C_{\mathfrak{w}}\left(\mathcal{N}_{\diamond}\right) \subseteq \mathcal{N}$ that

$$
p\left(C_{\mathfrak{w}} c \mid \mathfrak{l}_{\infty}\right) \leq q(c \mid \mathfrak{w}) \quad \text { for all } c \in \mathfrak{w}\left(\mathbb{N}_{0}\right) .
$$

Thus the operator $C_{\mathfrak{w}, \diamond}: \mathfrak{w}\left(\mathbb{N}_{0}\right) / \mathcal{N}_{\diamond} \rightarrow \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathcal{N}$ is well-defined.
Proposition 4.4. $\mathfrak{w}^{\text {cdf }}\left(\mathbb{N}_{0}\right)$ fails to be a closed subspace of $\mathfrak{w}^{*}\left(\mathbb{N}_{0}\right)$.
Proof. Using the sequences $b^{\langle m\rangle}=\left(\beta_{k}^{\langle m\rangle}\right)$ defined before Lemma 3.4, we let $c^{\langle m\rangle}=\left(\gamma_{l}^{\langle m\rangle}\right):=C_{\mathfrak{w}}^{-1} b^{\langle m\rangle}$. That is, $\gamma_{l}^{\langle m\rangle}=\beta_{l}^{\langle m\rangle}+l\left(\beta_{l}^{\langle m\rangle}-\beta_{l-1}^{\langle m\rangle}\right)$ or, more precisely,
$\gamma_{l}^{\langle m\rangle}:=\left\{\begin{array}{lll}m 2^{i}+1 & \text { if } & l=m 2^{i}, \\ +1 & \text { if } \quad m 2^{i}<l<(m+1) 2^{i}, \\ -2(m+1) 2^{i}-1 & \text { if } & l=(m+1) 2^{i}, \\ -1 & \text { if }(m+1) 2^{i}<l<(m+2) 2^{i}, \\ (m+2) 2^{i} & \text { if } & l=0,1,2, \ldots, \\ 0 & \text { otherwise. } & l=(m+2) 2^{i},\end{array}\right.$
It follows from

$$
\sum_{l=m 2^{i}}^{(m+2) 2^{i}}\left|\gamma_{l}^{\langle m\rangle}\right|=(4 m+6) 2^{i}
$$

that the sequences $c^{\langle m\rangle}$ belong to $\mathfrak{w}\left(\mathbb{N}_{0}\right)$.
We know from Lemma 3.4 and the preceding proof that

$$
q\left(c^{\langle m\rangle} \mid \mathfrak{w}\right) \geq p\left(C_{\mathfrak{w}} c^{\langle m\rangle} \mid \mathfrak{l}_{\infty}\right)=p\left(b^{\langle m\rangle} \mid \mathfrak{l}_{\infty}\right)=1
$$

and

$$
s\left(C C_{\mathfrak{w}} c^{\langle m\rangle} \mid \mathfrak{l}_{\infty}\right)=s\left(C b^{\langle m\rangle} \mid \mathfrak{l}_{\infty}\right)=\frac{1}{m+1}
$$

Therefore the one-to-one operator

$$
C_{00} C_{\mathfrak{w}, \diamond}: \mathfrak{w}\left(\mathbb{N}_{0}\right) / \mathcal{N}_{\diamond} \rightarrow \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathcal{N} \rightarrow \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)
$$

is not an injection. Hence Banach's inverse mapping theorem tells us that $\mathcal{R}\left(C_{0} C_{\mathfrak{w}, 0}\right)=\mathcal{R}\left(C_{00} C_{\mathfrak{w}, \diamond}\right)$ cannot be closed. Therefore, by the closed range theorem, the same follows for $\mathfrak{w}^{\text {cdf }}\left(\mathbb{N}_{0}\right)=\mathcal{R}\left(C_{\mathfrak{w}, 0}^{*} C_{0}^{*}\right)$; see the remark after Lemma 4.1.

As just shown, $\mathfrak{w}^{\text {cdf }}\left(\mathbb{N}_{0}\right)$ fails to be complete. Thus we pass to the closed hull $\overline{\mathfrak{w}^{\text {cdf }}\left(\mathbb{N}_{0}\right)}$. Unfortunately, there remains an open question concerning the weakly* closed hull.

Problem 4.5. Which of the relations

$$
\overline{\mathfrak{w}^{\mathrm{cdf}}\left(\mathbb{N}_{0}\right)}={\overline{\mathfrak{w}^{\mathrm{cdf}}\left(\mathbb{N}_{0}\right)}}^{\mathrm{w}^{*}} \quad \text { or } \quad \overline{\mathfrak{w}^{\mathrm{cdf}}\left(\mathbb{N}_{0}\right)} \subset{\overline{\mathfrak{w}^{\mathrm{cdf}}\left(\mathbb{N}_{0}\right)}}^{\mathrm{w}^{*}}
$$

is true?
In the case of $\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)$, my knowledge is even more unsatisfactory.
Problem 4.6. Does $\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)$ fail to be a closed subspace of $\mathfrak{w}^{*}\left(\mathbb{N}_{0}\right)$?
REmARK. By the closed graph theorem, it suffices to show that the range $\mathcal{R}\left(C_{\mathfrak{w}, 0}\right)$ is not closed in $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / / S_{-}$(see Lemma 4.1).

Problem 4.7. Which of the relations

$$
\overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)}=\overline{\mathfrak{w}}^{\mathrm{df}\left(\mathbb{N}_{0}\right)}{ }^{\mathrm{w}^{*}} \quad \text { or } \quad \overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)} \subset \overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)}{ }^{\mathrm{w}^{*}}
$$

is true?
Unfortunately, the open questions raised above force us to distinguish between $\overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)}$ and $\overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)}{ }^{\mathrm{w}^{*}}$ as well as between $\overline{\mathfrak{w}^{\operatorname{cdf}}\left(\mathbb{N}_{0}\right)}$ and $\overline{\mathfrak{w}^{\mathrm{cdf}}\left(\mathbb{N}_{0}\right)}{ }^{\mathbf{w}^{*}}$.

In what follows, we determine the size of the spaces
and the size of their 'differences'; see also Section 5 .
Proposition 4.8. dense $\left(\mathfrak{w}^{*}\left(\mathbb{N}_{0}\right)\right) \leq 2^{2^{\aleph_{0}}}$.
Proof. If \mathbb{K} denotes the real or complex scalar field, then

$$
\left|\mathfrak{w}\left(\mathbb{N}_{0}\right)\right| \leq|\mathbb{K}|^{\left|\mathbb{N}_{0}\right|}=\left(2^{\aleph_{0}}\right)^{\aleph_{0}}=2^{\aleph_{0} \cdot \aleph_{0}}=2^{\aleph_{0}}
$$

Thus

$$
\left|\mathfrak{w}^{*}\left(\mathbb{N}_{0}\right)\right| \leq|\mathbb{K}|^{\left|\mathfrak{w}\left(\mathbb{N}_{0}\right)\right|} \leq\left(2^{\aleph_{0}}\right)^{2^{\aleph_{0}}}=2^{\aleph_{0} \cdot 2^{\aleph_{0}}}=2^{2^{\aleph_{0}}}
$$

We proceed to a counterpart of Lemma 3.7 .
Lemma 4.9. If

$$
J_{d}: z=\left(\zeta_{i}\right) \mapsto c=\left(\gamma_{l}\right):=\sum_{i=0}^{\infty} 2^{i} \zeta_{i} e_{2^{i+1}},
$$

then $\left(I-S_{-}\right) J_{d}$ is an injection from $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ into $\mathfrak{w}\left(\mathbb{N}_{0}\right)$ such that

$$
\frac{2}{3}\left\|z\left|\mathfrak{l}_{\infty}\|\leq\|\left(I-S_{-}\right) J_{d} z\right| \mathfrak{w}\right\| \leq 2\left\|z \mid \mathfrak{l}_{\infty}\right\| .
$$

Proof. If $2^{j} \leq k+1<2^{j+1}$, then it follows from

$$
\left(\delta_{l}\right):=\left(I-S_{-}\right) J_{d} z=\left(0,-\zeta_{0},+\zeta_{0},-2 \zeta_{1},+2 \zeta_{1}, 0, \ldots, 0,-2^{i} \zeta_{i},+2^{i} \zeta_{i}, 0, \ldots\right)
$$

that

$$
\frac{1}{k+1} \sum_{l=0}^{k}\left|\delta_{l}\right| \leq \frac{1}{2^{j}} \sum_{i=0}^{j-1} 2 \cdot 2^{i}\left|\zeta_{i}\right| \leq \frac{2\left(2^{j}-1\right)}{2^{j}}\left\|z \mid \mathfrak{l}_{\infty}\right\| .
$$

Therefore

$$
\left\|\left(I-S_{-}\right) J_{d} z\left|\mathfrak{w}\left\|=\sup _{0 \leq k<\infty} \frac{1}{k+1} \sum_{l=0}^{k}\left|\delta_{l}\right| \leq 2\right\| z\right| \mathfrak{l}_{\infty}\right\| .
$$

On the other hand, for $j \geq 1$,

$$
\left\|\left.\left(I-S_{-}\right) J_{d} z\left|\mathfrak{w} \| \geq \frac{1}{2^{j}+1} \sum_{l=0}^{2^{j}}\right| \delta_{l}\left|\geq \frac{1}{2^{j}+1}\left(\left|\delta_{2^{j}-1}\right|+\left|\delta_{2^{j}}\right|\right) \geq \frac{2^{j}}{2^{j}+1}\right| \zeta_{j-1} \right\rvert\, .\right.
$$

Hence $\left\|\left(I-S_{-}\right) J_{d} z\left|\mathfrak{w}\left\|\geq \frac{2}{3}\right\| z\right| \mathfrak{l}_{\infty}\right\|$.
Next, we establish an analogue of Proposition 3.8 .
Proposition 4.10. dense $\left(\mathfrak{w}^{*}\left(\mathbb{N}_{0}\right) / \mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right)\right) \geq 2^{2^{\aleph_{0}}}$.
Proof. Since $\mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right)$ is the annihilator of $M:=\overline{\mathcal{R}\left(I-S_{-}\right)}$, we have the identification

$$
M^{*} \equiv \mathfrak{w}^{*}\left(\mathbb{N}_{0}\right) / M^{\perp} \equiv \mathfrak{w}^{*}\left(\mathbb{N}_{0}\right) / \mathfrak{w}^{\operatorname{sif}}\left(\mathbb{N}_{0}\right)
$$

By Lemma 4.9, we can regard $\left(I-S_{-}\right) J_{d}$ as an injection from $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ into M. Then $J_{d}^{*}\left(I-S_{-}\right)^{*}$ becomes a surjection from M^{*} onto $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$. The required conclusion now follows from Lemma 1.2 and Proposition 1.3 .

Now we extend the basic construction described before Lemma 3.9, To this end, let $t^{[i]}=\left(\tau_{l}^{[i]}\right):=C_{\mathfrak{w}}^{-1} s^{[i]}$. That is, $\tau_{l}^{[i]}=\sigma_{l}^{[i]}+l\left(\sigma_{l}^{[i]}-\sigma_{l-1}^{[i]}\right)$ or, more precisely,

$$
\tau_{l}^{[i]}:=\left\{\begin{array}{llr}
0 & \text { if } & l<h_{i} \\
h_{i}+1 & \text { if } & l=h_{i} \\
+1 & \text { if } & h_{i}<l<h_{i}+d_{i} \\
-2 h_{i}-2 d_{i}-1 & \text { if } & l=h_{i}+d_{i} \\
-1 & \text { if } & h_{i}+d_{i}<l<h_{i}+2 d_{i} \\
h_{i}+2 d_{i} & \text { if } & l=h_{i}+2 d_{i} \\
0 & \text { if } & h_{i}+2 d_{i}<l .
\end{array}\right.
$$

Since $h_{i}+2 d_{i}<h_{i+1}$, the supports of the $t^{[i]}$'s are mutually disjoint.
Lemma 4.11. The rule

$$
J_{t}: z=\left(\zeta_{i}\right) \mapsto c=\left(\gamma_{l}\right):=\sum_{i=0}^{\infty} \zeta_{i} t^{[i]}
$$

defines an injection from $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ into $\mathfrak{w}\left(\mathbb{N}_{0}\right)$ such that

$$
3\left\|z\left|\mathfrak{l}_{\infty}\|\leq\| J_{t} z\right| \mathfrak{w}\right\| \leq 11\left\|z \mid \mathfrak{l}_{\infty}\right\|
$$

Proof. Recall that $h_{i}=2^{i+2}$ and $i+1 \leq d_{i} \leq 2^{i}$. It follows from

$$
\sum_{l=h_{i}}^{h_{i}+2 d_{i}}\left|\tau_{l}^{[i]}\right|=4 h_{i}+6 d_{i} \leq 22 \cdot 2^{i}
$$

that

$$
\sum_{l=0}^{h_{j}+2 d_{j}}\left|\gamma_{l}\right| \leq \sum_{i=0}^{j}\left|\zeta_{i}\right|\left(4 h_{i}+6 d_{i}\right) \leq 22\left\|z\left|\mathfrak{l}_{\infty}\left\|\sum_{i=0}^{j} 2^{i} \leq 22 \cdot 2^{j+1}\right\| z\right| \mathfrak{l}_{\infty}\right\|
$$

If $k \geq h_{0}=4$, then there exists j such that $h_{j} \leq k<h_{j+1}$. Hence

$$
\frac{1}{k+1} \sum_{l=0}^{k}\left|\gamma_{l}\right| \leq \frac{1}{h_{j}+1} \sum_{l=0}^{h_{j}+2 d_{j}}\left|\gamma_{l}\right| \leq 11\left\|z \mid \mathfrak{l}_{\infty}\right\|
$$

Since the estimate above is trivial for $k \leq 3$, we obtain

$$
\left\|J_{t} z|\mathfrak{w}\|\leq 11\| z| \mathfrak{l}_{\infty}\right\| \quad \text { for all } z \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)
$$

On the other hand, we infer from

$$
\sum_{l=0}^{h_{j}+2 d_{j}}\left|\gamma_{l}\right| \geq \sum_{l=h_{j}}^{h_{j}+2 d_{j}}\left|\zeta_{j}\right|\left|\tau_{l}^{[j]}\right|=\left(4 h_{j}+6 d_{j}\right)\left|\zeta_{j}\right|
$$

that

$$
\left\|\left.J_{t} z\left|\mathfrak{w} \| \geq \frac{1}{h_{j}+2 d_{j}+1} \sum_{l=0}^{h_{j}+2 d_{j}}\right| \gamma_{l}\left|\geq \frac{4 h_{j}+6 d_{j}}{h_{j}+2 d_{j}+1}\right| \zeta_{j}|\geq 3| \zeta_{j} \right\rvert\,\right.
$$

Thus $\left\|J_{t} z|\mathfrak{w}\|\geq 3\| z| \mathfrak{l}_{\infty}\right\|$.

Lemma 4.12. $C_{\mathfrak{w}} J_{t}=J_{s}$.
Proof. The equation above follows from $C_{\mathfrak{w}} t^{[i]}=s^{[i]}$.
Next, we transfer Lemma 3.10 from J_{s} to J_{t}.
Lemma 4.13. There exists a (unique) injection $J_{t, 0}$ such that the diagram
commutes.
Proof. Since, by [23, Lemma 9.17],

$$
\begin{aligned}
u_{S_{-}}\left(J_{t} z \mid \mathfrak{w}\right) & =u_{S_{-}}\left(J_{t}(z-x) \mid \mathfrak{w}\right)+u_{S_{-}}\left(J_{t} x \mid \mathfrak{w}\right) \\
& \leq\left\|J_{t}(z-x)|\mathfrak{w}\|\leq 11\| z-x| \mathfrak{l}_{\infty}\right\|
\end{aligned}
$$

for all sequences x with finite support, we get $u_{S_{-}}\left(J_{t} z \mid \mathfrak{w}\right) \leq 11 s\left(z \mid \mathfrak{l}_{\infty}\right)$. Thus $J_{t, 0}$ is well-defined.

Combining the diagram just obtained with that in Lemma 4.1 yields

$$
\begin{aligned}
& C_{\mathfrak{w}} J_{t}=J_{s}
\end{aligned}
$$

We know from Lemma 3.10 that $J_{s, 0}$ is an injection. So $J_{t, 0}$ must be an injection as well.

For later reference, we formulate a byproduct of the preceding proof.
Lemma 4.14. $C_{\mathfrak{w}, 0} J_{t, 0}=J_{s, 0}$.
The following result is analogous to Proposition 3.12.
Proposition 4.15. dense $\left(\overline{\mathfrak{w}^{\text {cdf }}\left(\mathbb{N}_{0}\right)}\right) \geq 2^{2^{N_{0}}}$.
Proof. Specify the operators J_{s} and J_{t} by letting $d_{i}:=2^{i}$.
With every free ultrafilter \mathcal{U} we associate the singular functional

$$
\psi_{u}(a):=\mathcal{U}-\lim _{i} \alpha_{h_{i}+d_{i}-1} \quad \text { for all } a \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right),
$$

which in turn generates the Connes-Dixmier functional $\kappa_{\mathcal{U}}:=C_{\mathfrak{w}}^{*} C^{*} \psi_{\mathcal{u}}$. If $z \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ and $a:=C J_{s} z:=C C_{\mathfrak{w}} J_{t} z$, then it follows from $\alpha_{h_{i}+d_{i}-1}=\frac{1}{5} \zeta_{i}$ (Lemma 3.11) that

$$
\kappa_{\mathcal{U}}\left(J_{t} z\right)=\psi_{\mathcal{U}}\left(C C_{\mathfrak{w}} J_{t} z\right)=\mathcal{U}-\lim _{i} \alpha_{h_{i}+d_{i}-1}=\frac{1}{5} \mathcal{U}-\lim _{i} \zeta_{i} .
$$

Let \mathcal{U}_{1} and \mathcal{U}_{2} be different free ultrafilters. Then there exists a subset \mathbb{S} such that $\mathbb{S} \in \mathcal{U}_{1}$ and $\mathbb{C} \mathbb{S} \in \mathcal{U}_{2}$. Define $z=\left(\zeta_{i}\right)$ by $\zeta_{i}:=+1$ if $i \in \mathbb{S}$ and $\zeta_{i}:=-1$ if $i \in \mathbb{C}$. We infer from

$$
\kappa_{\mathcal{U}_{1}}\left(J_{t} z\right)-\kappa_{\mathcal{U}_{2}}\left(J_{t} z\right)=\frac{1}{5} \mathcal{U}_{1}-\lim _{i} \zeta_{i}-\frac{1}{5} \mathcal{U}_{2}-\lim \zeta_{i}=\frac{2}{5}
$$

and from Lemma 4.11 that

$$
\frac{2}{5}=\left|\kappa_{u_{1}}\left(J_{t} z\right)-\kappa_{u_{2}}\left(J_{t} z\right)\right| \leq 11\left\|\kappa_{u_{1}}-\kappa_{\mathfrak{u}_{2}} \mid \mathfrak{w}^{*}\right\| .
$$

So the $\kappa_{\mathcal{u}}$'s form a $2 / 55$-separated subset of $\overline{\mathfrak{w}^{c d f}\left(\mathbb{N}_{0}\right)}$. Since the set of all free ultrafilters on \mathbb{N}_{0} has cardinality $2^{2^{\aleph_{0}}}$, the estimate dense $\left(\overline{\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)}\right) \geq 2^{2^{\aleph_{0}}}$ follows from Lemma 1.1

Next, we establish an analogue of Proposition 3.13.
Proposition 4.16.
$\operatorname{dense}\left(\overline{\mathfrak{w}^{\operatorname{df}}\left(\mathbb{N}_{0}\right)} / \overline{\mathfrak{w}^{\text {cdf }}\left(\mathbb{N}_{0}\right)}\right) \geq 2^{2^{\aleph_{0}}}, \quad$ dense $\left(\overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)}{ }^{w^{*}} / \overline{\mathfrak{w}^{\text {cdf }}\left(\mathbb{N}_{0}\right)}{ }^{\mathbf{w}^{*}}\right) \geq 2^{2^{\aleph_{0}}}$.
Proof. Specify the operators J_{s} and J_{t} by letting $d_{i}:=i+1$.
Using the identifications

$$
\left[\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / / S_{-}\right]^{*} \equiv \mathfrak{s}_{\infty}^{\operatorname{sif}}\left(\mathbb{N}_{0}\right), \quad\left[\mathfrak{w}\left(\mathbb{N}_{0}\right) / / S_{-}\right]^{*} \equiv \mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right)
$$

and

$$
\left[\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)\right]^{*} \equiv \mathfrak{l}_{\infty}^{\mathrm{sgf}}\left(\mathbb{N}_{0}\right),
$$

we may regard $J_{s, 0}^{*}, J_{t, 0}^{*}$, and $C_{\mathfrak{w}, 0}^{*}$ as restrictions of J_{s}^{*}, J_{t}^{*}, and $C_{\mathfrak{w}}^{*}$, respectively. Hence, by Lemmas 3.10 and 4.14 the surjection J_{s}^{*} induces a surjection from $\mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right)$ onto $\mathfrak{l}_{\infty}^{\text {sgt }}\left(\mathbb{N}_{0}\right)$ via $\mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right)$:

$$
J_{s, 0}^{*}: I_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right) \xrightarrow{C_{w, 0}^{*}} \mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right) \xrightarrow{J_{t, 0}^{*}} \mathfrak{l}_{\infty}^{\operatorname{sgf}}\left(\mathbb{N}_{0}\right) .
$$

By Lemma 1.1 and Proposition 1.3 , there exists a 2 -separated subset A of $\mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right)$ with $|A|=\operatorname{dense}\left(\mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right)\right)=2^{2^{\aleph_{0}}}$. So, for every $\varphi \in A$, we may choose a $\lambda \in \mathfrak{r}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right)$ such that $\varphi=J_{t}^{*} C_{\mathfrak{w}}^{*} \lambda$. The functionals $\mu:=C_{\mathfrak{v}}^{*} \lambda$ form a subset of $\mathfrak{w d f}\left(\mathbb{N}_{0}\right)$, denoted by B.

If $\left.\nu \in \overline{\mathfrak{w}^{\text {cdf }}\left(\mathbb{N}_{0}\right)}\right)^{\mathbf{w}^{*}}$, then there exists a net $\left(\psi_{\iota}\right)_{\iota \in \mathbb{I}}$ in $\mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right)$ such that $\left(C_{\mathfrak{w}}^{*} C^{*} \psi_{\iota}\right)_{\iota \in \mathbb{I}}$ converges to ν in the weak* topology of $\mathfrak{w}^{*}\left(\mathbb{N}_{0}\right)$. Since Lemmas 3.11 and 4.12 imply $C C_{\mathfrak{w}} J_{t} z=C J_{s} z \in \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)$ for $z \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$, we get

$$
\nu\left(J_{t} z\right)=\lim _{\iota \in \mathbb{I}} C_{\mathfrak{w}}^{*} C^{*} \psi_{\iota}\left(J_{t} z\right)=\lim _{\iota \in \mathbb{I}} \psi_{\iota}\left(C C_{\mathfrak{w}} J_{t} z\right)=0 .
$$

Given different members $\varphi_{1}=J_{t}^{*} C_{\mathfrak{w}}^{*} \lambda_{1}$ and $\varphi_{2}=J_{t}^{*} C_{\mathfrak{w}}^{*} \lambda_{2}$ of A, we let $\mu_{1}:=C_{\mathfrak{w}}^{*} \lambda_{1}$ and $\mu_{2}:=C_{\mathfrak{w}}^{*} \lambda_{2}$. It follows from Lemma 4.11 that

$$
\left\|\varphi_{1}-\varphi_{2}-J_{t}^{*} \nu| |_{\infty}^{*}\right\|=\left\|J_{t}^{*}\left(\mu_{1}-\mu_{2}-\nu\right)\left|\mathfrak{r}_{\infty}^{*}\|\leq 11\| \mu_{1}-\mu_{2}-\nu\right| \mathfrak{w}^{*}\right\| .
$$

Next, we take $z \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ such that

$$
\left|\varphi_{1}(z)-\varphi_{2}(z)\right| \geq \frac{1}{2}\left\|\varphi_{1}-\varphi_{2} \mid \mathfrak{l}_{\infty}^{*}\right\| \geq 1 \quad \text { and } \quad\left\|z \mid \mathfrak{l}_{\infty}\right\|=1 .
$$

Hence

$$
\begin{aligned}
11\left\|\mu_{1}-\mu_{2}-\nu \mid \mathfrak{w}^{*}\right\| & \geq\left\|\varphi_{1}-\varphi_{2}-J_{t}^{*} \nu\left|\mathfrak{l}_{\infty}^{*} \| \geq\left|\varphi_{1}(z)-\varphi_{2}(z)-J_{t}^{*} \nu(z)\right|\right.\right. \\
& =\left|\varphi_{1}(z)-\varphi_{2}(z)-\nu\left(J_{t} z\right)\right|=\left|\varphi_{1}(z)-\varphi_{2}(z)\right| \geq 1
\end{aligned}
$$

Since B is contained in $\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)$, the canonical image of B is $1 / 11$-separated in $\overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)} / \overline{\mathfrak{w}^{\mathrm{cdf}}\left(\mathbb{N}_{0}\right)}$ and, all the more, in $\overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)} \bar{w}^{*} / \overline{\mathfrak{w}}^{\text {cdf }\left(\mathbb{N}_{0}\right)}{ }^{\mathrm{w}^{*}}$. Moreover, $|B|=|A|=2^{2^{\aleph_{0}}}$.

Remark. In my opinion, the preceding proof (though a little bit longer) is more transparent than the following argument:

Keep in mind that $J_{s, 0}^{*}, J_{t, 0}^{*}$, and $C_{\mathfrak{w}, 0}^{*}$ are restrictions of J_{s}^{*}, J_{t}^{*}, and $C_{\mathfrak{w}}^{*}$, respectively. As shown above,

$$
J_{s, 0}^{*}: \mathfrak{s}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right) \xrightarrow{C_{w, 0}^{*}} \mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right) \xrightarrow{J_{t, 0}^{*}} \mathfrak{l}_{\infty}^{\mathrm{sgf}}\left(\mathbb{N}_{0}\right)
$$

is a surjection. Since, by definition, $C_{\mathfrak{w}}^{*}$ maps $\mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right)$ onto $\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)$, the restriction of $J_{t, 0}^{*}$ to $\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)$ remains surjective. We also know that $J_{t, 0}^{*}$ van-
 $\left.\overline{\mathfrak{w}^{\text {df }}\left(\mathbb{N}_{0}\right)}\right)^{\mathfrak{w}^{*}} / \overline{\mathfrak{w}}^{\text {cdf }}\left(\mathbb{N}_{0}\right) ~{ }^{\mathfrak{w}^{*}}$ onto $\mathfrak{l}_{\infty}^{\text {sef }}\left(\mathbb{N}_{0}\right)$. The required conclusions now follow from Lemma 1.2 and Proposition 1.3 .

Lemma 4.17. The rule

$$
J_{a}: z=\left(\zeta_{i}\right) \mapsto x=\left(\xi_{p}\right)=\sum_{i=1}^{\infty} \zeta_{i} \sum_{p \in \Delta_{i}} e_{p},
$$

where $\Delta_{i}:=\left\{p \in \mathbb{N}: 2^{i} \leq p<2^{i+1}\right\}$, defines a metric injection from $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ into $\mathfrak{l}_{\infty}(\mathbb{N})$.

Letting $l_{p}:=2 p^{2}$ and $d_{p}:=p$ for $p=1,2, \ldots$, we consider the sequences $r^{[p]}=\left(\varrho_{l}^{[p]}\right)$ given by

$$
\varrho_{l}^{[p]}:=\left\{\begin{array}{llr}
0 & \text { if } & l<l_{p}, \\
+1 & \text { if } & l_{p} \leq l<l_{p}+d_{p}, \\
0 & \text { if } & l_{p}+d_{p} \leq l<l_{p}+2 d_{p}, \\
-1 & \text { if } & l_{p}+2 d_{p} \leq l<l_{p}+3 d_{p}, \\
0 & \text { if } & l_{p}+3 d_{p} \leq l .
\end{array}\right.
$$

Lemma 4.18. The rule

$$
J_{r}: x=\left(\xi_{p}\right) \mapsto c=\left(\gamma_{l}\right):=\sum_{p=1}^{\infty} \xi_{p} r^{[p]}
$$

defines an operator from $\mathfrak{l}_{\infty}(\mathbb{N})$ into $\mathfrak{w}\left(\mathbb{N}_{0}\right)$ such that $\left\|J_{r}: \mathfrak{l}_{\infty} \rightarrow \mathfrak{w}\right\|=1$. Moreover, $C_{\mathfrak{w}} J_{r} x \in \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)$.

Proof. Since $l_{p}+3 d_{p}<l_{p+1}$, the supports of the $r^{[p]}$'s are mutually disjoint. Thus

$$
\sum_{p=1}^{\infty}\left|\varrho_{l}^{[p]}\right| \leq 1 \quad \text { for } l=0,1, \ldots
$$

which implies

$$
\frac{1}{k+1} \sum_{l=0}^{k}\left|\gamma_{l}\right| \leq \frac{1}{k+1} \sum_{l=0}^{k} \sum_{p=1}^{\infty}\left|\xi_{p}\right|\left|\varrho_{l}^{[p]}\right| \leq\left\|x \mid \mathfrak{l}_{\infty}\right\| .
$$

Therefore $\left\|J_{r} x|\mathfrak{w}\|\leq\| x| \mathfrak{l}_{\infty}\right\|$.
The non-negative sequence $C_{\mathfrak{w}} r^{[p]}$ has support $\left[l_{p}, l_{p}+3 d_{p}-2\right]$ and attains its maximum at the index $l_{p}+d_{p}-1$. Hence it follows from

$$
\frac{1}{l_{p}+d_{p}} \sum_{l=0}^{l_{p}+d_{p}-1} \varrho_{l}^{[p]}=\frac{d_{p}}{l_{p}+d_{p}}=\frac{1}{2 p+1}
$$

that $C_{\mathfrak{w}} J_{r} x \in \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)$.
Lemma 4.19. There exist (unique) operators $J_{a, 0}$ and $J_{r, 0}$ for which the diagram
commutes. Moreover, $J_{r, 0} J_{a, 0}$ is an injection such that

$$
\frac{1}{4} s\left(z \mid \mathfrak{l}_{\infty}\right) \leq u_{S_{-}}\left(J_{r} J_{a} z \mid \mathfrak{w}\right) \leq s\left(z \mid \mathfrak{l}_{\infty}\right) .
$$

Proof. The existence of $J_{a, 0}$ is obvious.
Since, by [23, Lemma 9.17] and Lemma 4.18,

$$
\begin{aligned}
u_{S_{-}}\left(J_{r} x \mid \mathfrak{w}\right) & \leq u_{S_{-}}\left(J_{r}\left(x-x_{0}\right) \mid \mathfrak{w}\right)+u_{S_{-}}\left(J_{r} x_{0} \mid \mathfrak{w}\right) \\
& \leq\left\|J_{r}\left(x-x_{0}\right)\left|\mathfrak{w}\|\leq\| x-x_{0}\right| \mathfrak{l}_{\infty}\right\|
\end{aligned}
$$

for all sequences x_{0} with finite support, we get $u_{S_{-}}\left(J_{r} x \mid \mathfrak{w}\right) \leq s\left(x \mid \mathfrak{l}_{\infty}\right)$. Thus $J_{r, 0}$ is well-defined and

$$
u_{S_{-}}\left(J_{r} J_{a} z \mid \mathfrak{w}\right) \leq s\left(J_{a} z \mid \mathfrak{l}_{\infty}\right)=s\left(z \mid \mathfrak{l}_{\infty}\right) .
$$

Let

$$
c=\left(\gamma_{l}\right):=J_{r} J_{a} z=\sum_{i=0}^{\infty} \zeta_{i} \sum_{p \in \Delta_{i}} r^{[p]} .
$$

To obtain a lower estimate of

$$
u_{S_{+}}\left(J_{r} J_{a} z \mid \mathfrak{w}\right)=u_{S_{+}}(c \mid \mathfrak{w})=\inf _{1 \leq n<\infty}\left\|\left.\frac{1}{n} \sum_{k=0}^{n-1} S_{+}^{k} c \right\rvert\, \mathfrak{w}\right\|
$$

we define

$$
A_{n} c=\left(\gamma_{l, n}\right):=\frac{1}{n} \sum_{k=0}^{n-1} S_{+}^{k} c=\left(\frac{1}{n} \sum_{k=0}^{n-1} \gamma_{l-k}\right)
$$

with the understanding that $\gamma_{l-k}:=0$ whenever $l-k<0$. Assuming that $2^{i} \geq n$, we consider the finite sets

$$
\mathbb{L}_{i, n}^{+}:=\bigcup_{p \in \Delta_{i}}\left\{l \in \mathbb{N}_{0}: l_{p}+n-1 \leq l<l_{p}+d_{p}\right\}
$$

and

$$
\mathbb{L}_{i, n}^{-}:=\bigcup_{p \in \Delta_{i}}\left\{l \in \mathbb{N}_{0}: l_{p}+2 d_{p}+n-1 \leq l<l_{p}+3 d_{p}\right\} .
$$

Then
$\gamma_{l, n}= \pm \zeta_{i} \quad$ for all $l \in \mathbb{L}_{i, n}^{ \pm} \quad$ and $\quad\left|\mathbb{L}_{i, n}^{ \pm}\right|=\sum_{p \in \Delta_{i}}\left(d_{p}-n+1\right) \geq 2^{i}\left(2^{i}-n+1\right)$.
Moreover, we have

$$
l_{p}+3 d_{p}<l_{p+1} \leq l_{2^{i+1}} \quad \text { whenever } p \in \Delta_{i}
$$

Hence

$$
\begin{aligned}
\left\|A_{n} c \mid \mathfrak{w}\right\| & \geq \frac{1}{l_{2^{i+1}}} \sum_{l=0}^{l_{2^{i+1}-1}}\left|\gamma_{l, n}\right| \geq \frac{1}{2 \cdot\left(2^{i+1}\right)^{2}}\left(\left|\mathbb{L}_{i, n}^{+}\right|+\left|\mathbb{L}_{i, n}^{-}\right|\right)\left|\zeta_{i}\right| \\
& \geq \frac{2^{i}-n+1}{2^{i+2}}\left|\zeta_{i}\right|
\end{aligned}
$$

Passing to the limit as $i \rightarrow \infty$ yields

$$
\left\|\left.A_{n} c\left|\mathfrak{w} \| \geq \limsup _{i \rightarrow \infty} \frac{1}{4}\right| \zeta_{i} \right\rvert\, .\right.
$$

Therefore, by [23, Prop. 9.16],

$$
u_{S_{-}}\left(J_{r} J_{a} z \mid \mathfrak{w}\right)=u_{S_{+}}\left(J_{r} J_{a} z \mid \mathfrak{w}\right)=\inf _{1 \leq n<\infty}\left\|A_{n} c \mid \mathfrak{w}\right\| \geq \frac{1}{4} s\left(z \mid \mathfrak{l}_{\infty}\right)
$$

Proposition 4.20. dense $\left(\mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right) /{\overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)}}^{\mathrm{w}^{*}}\right) \geq 2^{2^{\aleph_{0}}}$.
Proof. Lemmas 4.18 and 4.19 tell us that $J_{r, 0} J_{a, 0}$ is an injection whose range is contained in the null space $\mathcal{N}\left(C_{\mathfrak{w}, 0}\right)$ of $C_{\mathfrak{w}, 0}$. Hence it induces an injection

$$
J: \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right) \rightarrow \mathcal{N}\left(C_{\mathfrak{w}, 0}\right)
$$

In view of $\left[\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)\right]^{*} \equiv \mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right)$ and

$$
\begin{aligned}
\mathfrak{w}^{\mathrm{sif}}\left(\mathbb{N}_{0}\right) / \overline{\mathfrak{w}}^{\mathrm{df}\left(\mathbb{N}_{0}\right)} \mathrm{w}^{*} & \equiv\left(\mathfrak{w}\left(\mathbb{N}_{0}\right) / / S_{-}\right)^{*} / \overline{\mathcal{R}\left(C_{\mathfrak{w}, 0}^{*}\right)}{ }^{\mathrm{w}^{*}} \\
& \equiv\left(\mathfrak{w}\left(\mathbb{N}_{0}\right) / / S_{-}\right)^{*} / \mathcal{N}\left(C_{\mathfrak{w}, 0}\right)^{\perp} \equiv \mathcal{N}\left(C_{\mathfrak{w}, 0}\right)^{*}
\end{aligned}
$$

the dual operator

$$
J^{*}: \mathfrak{w}^{\mathrm{sif}}\left(\mathbb{N}_{0}\right) /{\overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)}}^{\mathrm{w}^{*}} \rightarrow \mathfrak{l}_{\infty}^{\mathrm{sgf}}\left(\mathbb{N}_{0}\right)
$$

is a surjection. Therefore, by Lemma 1.2 and Proposition 1.3 ,

$$
\operatorname{dense}\left(\mathfrak{w}^{\operatorname{sif}}\left(\mathbb{N}_{0}\right) /{\overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)}}^{\mathrm{w}^{*}}\right) \geq \operatorname{dense}\left(\mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right)\right) \geq 2^{2^{\aleph_{0}}}
$$

Theorem 4.21. All of the Banach spaces

$$
\begin{aligned}
& \overline{\mathfrak{w}^{\mathrm{ddf}}\left(\mathbb{N}_{0}\right)} \subset \overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)} \\
& \frac{\mathfrak{w}^{\mathrm{ddf}}\left(\mathbb{N}_{0}\right)}{\mathrm{w}^{*}} \subset \frac{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)}{} \mathrm{w}^{*} \subset \mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right) \subset \mathfrak{w}^{*}\left(\mathbb{N}_{0}\right), \\
& \overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)} / \overline{\mathfrak{w}^{\mathrm{ddf}}\left(\mathbb{N}_{0}\right)} \subset \mathfrak{w}^{\mathrm{sif}}\left(\mathbb{N}_{0}\right) / \overline{\mathfrak{w}^{\operatorname{cdf}}\left(\mathbb{N}_{0}\right)} \subset \mathfrak{w}^{*}\left(\mathbb{N}_{0}\right) / \overline{\mathfrak{w}^{\mathrm{ddf}}\left(\mathbb{N}_{0}\right)}, \\
& \overline{\mathfrak{w}^{\text {df }}\left(\mathbb{N}_{0}\right)} \bar{w}^{*} /{\overline{\mathfrak{w}^{\text {cdf }}\left(\mathbb{N}_{0}\right)}}^{\mathrm{w}^{*}} \subset \mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right) / \overline{\mathfrak{w}^{\mathrm{cdf}}\left(\mathbb{N}_{0}\right)}{ }^{\mathrm{w}^{*}} \subset \mathfrak{w}^{*}\left(\mathbb{N}_{0}\right) / \overline{\mathfrak{w}}^{\text {cdf }\left(\mathbb{N}_{0}\right)}{ }^{\mathrm{w}^{*}}, \\
& \mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right) / \overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)} \subset \mathfrak{w}^{*}\left(\mathbb{N}_{0}\right) / \overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)}, \\
& \mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right) / \overline{\mathfrak{w}}^{\mathrm{df}\left(\mathbb{N}_{0}\right)}{ }^{\mathrm{w}^{*}} \subset \mathfrak{w}^{*}\left(\mathbb{N}_{0}\right) / \overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)}{ }^{\mathrm{w}^{*}},
\end{aligned}
$$

and

$$
\mathfrak{w}^{*}\left(\mathbb{N}_{0}\right) / \mathfrak{w}^{\operatorname{sif}}\left(\mathbb{N}_{0}\right)
$$

have the same density character, namely $2^{2^{\aleph_{0}}}$.
Proof. The upper estimates follow from

$$
\operatorname{dense}\left(\mathfrak{w}^{*}\left(\mathbb{N}_{0}\right)\right) \leq 2^{2^{\aleph_{0}}} \quad(\text { Proposition } 4.8)
$$

while the lower estimates are implied by

$$
\begin{aligned}
& \operatorname{dense}\left(\overline{\mathfrak{w}^{\operatorname{cdf}}\left(\mathbb{N}_{0}\right)}\right) \geq 2^{2^{\aleph_{0}}} \\
& \operatorname{dense}\left(\overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)} / \overline{\mathfrak{w}^{\mathrm{cdf}}\left(\mathbb{N}_{0}\right)}\right) \geq 2^{2^{\aleph_{0}}} \quad \text { (Proposition 4.16), } \\
& \operatorname{dense}\left(\overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)} \mathrm{w}^{*} /{\overline{\mathfrak{w}^{\mathrm{cdf}}\left(\mathbb{N}_{0}\right)}}^{\mathrm{w}^{*}}\right) \geq 2^{2^{\aleph_{0}}} \quad \text { (Proposition 4.16), } \\
& \operatorname{dense}\left(\mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right) /{\overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)}}^{\mathrm{w}^{*}}\right) \geq 2^{2^{\aleph_{0}}} \quad \text { (Proposition 4.20), } \\
& \operatorname{dense}\left(\mathfrak{w}^{*}\left(\mathbb{N}_{0}\right) / \mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right)\right) \geq 2^{2^{\aleph_{0}}} \quad \text { (Proposition 4.10). }
\end{aligned}
$$

5. Medium-sized subspaces of a Banach space. A closed subspace N of a Banach space X has precisely one of the following properties:

- N is large:

$$
\operatorname{dense}(N)=\operatorname{dense}(X) \quad \text { and } \quad \text { dense }(X / N)<\operatorname{dense}(X)
$$

- N is small:

$$
\operatorname{dense}(N)<\operatorname{dense}(X) \quad \text { and } \quad \operatorname{dense}(X / N)=\operatorname{dense}(X)
$$

- N is medium-sized:

$$
\operatorname{dense}(N)=\operatorname{dense}(X) \quad \text { and } \quad \operatorname{dense}(X / N)=\operatorname{dense}(X)
$$

The fourth property, namely

$$
\operatorname{dense}(N)<\operatorname{dense}(X) \quad \text { and } \quad \operatorname{dense}(X / N)<\operatorname{dense}(X)
$$

cannot occur because dense $(X) \leq \operatorname{dense}(N) \cdot \operatorname{dense}(X / N)$.
For example, it follows from $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)=\mathfrak{l}_{1}^{* *}\left(\mathbb{N}_{0}\right)=\mathfrak{l}_{1}\left(\mathbb{N}_{0}\right) \oplus \mathfrak{l}_{\infty}^{\mathrm{sgf}}\left(\mathbb{N}_{0}\right)$, Proposition 1.3. Theorem 3.14, and dense $\left(\mathfrak{l}_{1}\left(\mathbb{N}_{0}\right)\right)=\aleph_{0}$ that $\mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right)$ is a large, $\mathfrak{l}_{1}\left(\mathbb{N}_{0}\right)$ is a small, and $\mathfrak{l}_{\infty}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)$ is a medium-sized subspace of $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$.

Using the terminology above, we state an immediate consequence of Theorem 4.21, which summarizes the main results of this paper.

Theorem 5.1. In the pairs

$$
\begin{array}{ll}
\overline{\mathfrak{w}^{\mathrm{ddf}}\left(\mathbb{N}_{0}\right)} \subset \overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)}, & \overline{\mathfrak{w}^{\operatorname{cdf}}\left(\mathbb{N}_{0}\right)}{ }^{\mathbf{w}^{*}} \subset \overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)}{ }^{\mathrm{w}^{*}} \\
\overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)} \subset \mathfrak{w}^{\mathrm{sif}}\left(\mathbb{N}_{0}\right), & \overline{\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)}{ }^{\mathrm{w}^{*}} \subset \mathfrak{w}^{\operatorname{sif}}\left(\mathbb{N}_{0}\right)
\end{array}
$$

and

$$
\mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right) \subset \mathfrak{w}^{*}\left(\mathbb{N}_{0}\right)
$$

the left-hand members are medium-sized subspaces of the right-hand members.
6. Positive shift-invariant functionals on $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$. In the rest of this paper, we restrict our considerations to the real case.

Since $\mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)$ is a closed ideal of the Banach lattice $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$, the quotient $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)$ becomes a Banach lattice as well [28, p. 85]. Its norm is induced by the seminorm

$$
s(a):=\limsup _{h \rightarrow \infty}\left|\alpha_{h}\right| .
$$

We know that $\mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right)$, the space of singular functionals, can be identified with the topological dual $\left(\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / \mathfrak{c}_{0}\left(\mathbb{N}_{0}\right)\right)^{*}$. Therefore it is a weakly* closed linear sublattice of $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$.

Similarly, $\mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right)$, the space of shift-invariant functionals, coincides with $\left(\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / / S_{-}\right)^{*}$. Unfortunately, I do not know whether $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) / / S_{-}$becomes a lattice under its canonical ordering. Therefore we use another (and even more direct) argument to show that $\mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right)$ is a linear sublattice of $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$.

Recall from the theory of linear lattices that the positive part λ_{+}of a functional $\lambda \in \mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$ is the linear extension of

$$
\lambda_{+}(a):=\sup \left\{\lambda\left(a_{0}\right): a \geq a_{0} \geq \mathrm{o}\right\} \quad \text { for all } a \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right) \text { with } a \geq \mathrm{o}
$$

Since

$$
\mu \vee \nu=(\mu-\nu)_{+}+\nu \quad \text { whenever } \mu, \nu \in \mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)
$$

it suffices to prove the following result.
Proposition 6.1. If $\lambda \in \mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$ is shift-invariant, then so is λ_{+}.

Proof. Since $a \geq a_{0} \geq \mathrm{o}$ implies $S_{ \pm} a \geq S_{ \pm} a_{0} \geq$ o, we have

$$
\begin{aligned}
\lambda_{+}(a) & =\sup \left\{\lambda\left(a_{0}\right): a \geq a_{0} \geq \mathrm{o}\right\} \\
& \leq \sup \left\{\lambda(b): S_{ \pm} a \geq S_{ \pm} b \geq \mathrm{o}\right\} \\
& =\sup \left\{\lambda\left(S_{ \pm} b\right): S_{ \pm} a \geq S_{ \pm} b \geq \mathrm{o}\right\} \\
& \leq \sup \left\{\lambda\left(c_{ \pm}\right): S_{ \pm} a \geq c_{ \pm} \geq \mathrm{o}\right\}=\lambda_{+}\left(S_{ \pm} a\right)
\end{aligned}
$$

It follows from

$$
\lambda_{+}(a) \leq \lambda_{+}\left(S_{+} a\right) \leq \lambda_{+}\left(S_{-} S_{+} a\right)=\lambda_{+}(a)
$$

that λ_{+}is S_{+}-invariant, and therefore shift-invariant.
Note that the cone $\mathfrak{l}_{\infty,+}^{\text {sif }}\left(\mathbb{N}_{0}\right):=\left\{\lambda \in \mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right): \lambda \geq 0\right\}$ is weakly* closed.
The situation is unclear for $\mathfrak{l}_{\infty}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)$, the space of Mazur functionals. Of course, $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$ induces a partial ordering on $\mathfrak{l}_{\infty}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)$ and we may consider the cone

$$
\mathfrak{l}_{\infty,+}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right):=\left\{C^{*} \psi: \psi \in \mathfrak{l}_{\infty}^{\mathrm{sgf}}\left(\mathbb{N}_{0}\right), C^{*} \psi \geq \mathrm{o}\right\}
$$

formed by the positive Mazur functionals. However, I doubt that $\mathfrak{l}_{\infty}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)$ is a linear sublattice of $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$.

Moreover, letting

$$
\mathfrak{l}_{\infty,++}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right):=\left\{C^{*} \psi: \psi \in \mathfrak{l}_{\infty}^{\mathrm{sgf}}\left(\mathbb{N}_{0}\right), \psi \geq \mathrm{o}\right\}
$$

yields another natural cone, whose members are referred to as strictly positive Mazur functionals. Obviously, every strictly positive Mazur functional is positive, which means that

$$
\mathfrak{l}_{\infty,++}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right) \subseteq \mathfrak{l}_{\infty,+}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)
$$

To show that the preceding inclusion is proper, we need some preparation.
Lemma 6.2. There exists a sequence $b_{\odot} \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ such that
$C b_{\odot} \geq 0 \quad$ and $\quad s\left(C b_{\odot}-C y \mid \mathfrak{l}_{\infty}\right) \geq 1 \quad$ for all positive $y \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$.
Proof. Let $h_{i}:=2 \cdot 2^{i}-2$ and $k_{i}:=3 \cdot 2^{i}-2$. Then $k_{i}-h_{i}=2^{i}$ and $h_{i+1}-k_{i}=2^{i}$. Define $b_{\varrho}=\left(\beta_{k}\right)$ by

$$
\beta_{k}:=\left\{\begin{array}{ll}
+8 & \text { if } h_{i} \leq k<k_{i}, \\
-8 & \text { if } k_{i} \leq k<h_{i+1}
\end{array} \quad i=0,1,2, \ldots,\right.
$$

Then all terms α_{h} of $a_{\circlearrowleft}:=C b_{\circlearrowleft}$ are non-negative. In particular,

$$
\alpha_{k_{i}-1}=8 \cdot 2^{i} / k_{i} \quad \text { and } \quad \alpha_{h_{i+1}-1}=0
$$

Assuming that $s\left(a_{\odot}-C y \mid \mathfrak{l}_{\infty}\right)<1$, we have

$$
\frac{8 \cdot 2^{i}}{k_{i}}-\frac{1}{k_{i}} \sum_{k=0}^{k_{i}-1} \eta_{k} \leq 1 \quad \text { and } \quad \frac{1}{h_{i+1}} \sum_{k=0}^{h_{i+1}-1} \eta_{k} \leq 1
$$

for all i sufficiently large. In view of $\eta_{k} \geq 0$, it follows that

$$
8 \cdot 2^{i}-k_{i} \leq \sum_{k=0}^{k_{i}-1} \eta_{k} \leq \sum_{k=0}^{h_{i+1}-1} \eta_{k} \leq h_{i+1} .
$$

Hence

$$
8 \cdot 2^{i} \leq h_{i+1}+k_{i}=7 \cdot 2^{i}-4 .
$$

Dividing by 2^{i} and letting $i \rightarrow \infty$ yields a contradiction.
Now we are prepared to verify the proper inclusion

$$
\mathfrak{l}_{\infty,++}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right) \subset \mathfrak{l}_{\infty,+}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right) .
$$

Theorem 6.3. There exists a positive Mazur functional λ_{∞} on $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ that fails to be strictly positive.

Proof. Define a sublinear functional on $\mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)$ by letting

$$
r\left(a \mid \mathfrak{l}_{\infty}\right):=\inf \left\{s\left(a-C y \mid \mathfrak{l}_{\infty}\right): y \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right), y \geq 0\right\} .
$$

Now we use the positive sequence $a_{\odot}:=C b_{\odot}$ constructed in the proof of the preceding lemma. Since $r\left(a_{\odot} \mid \mathfrak{l}_{\infty}\right) \geq 1$, we have

$$
\varphi\left(\xi a_{\odot}\right):=\xi \leq r\left(\xi a_{\odot} \mid \mathfrak{l}_{\infty}\right) \quad \text { for all } \xi \in \mathbb{R} .
$$

The Hahn-Banach theorem yields an extension $\varphi_{\circlearrowleft}$ such that

$$
\varphi_{\infty}(a) \leq r\left(a \mid \mathfrak{l}_{\infty}\right) \leq s\left(a \mid \mathfrak{l}_{\infty}\right) \quad \text { for all } a \in \mathfrak{l}_{\infty}\left(\mathbb{N}_{0}\right)
$$

Then it follows from

$$
C^{*} \varphi_{\rho}(b)=\varphi_{\rho}(C b) \leq r\left(C b \mid \mathfrak{l}_{\infty}\right)=0 \quad \text { if } b \geq 0
$$

that the Mazur functional $\lambda_{\odot}:=-C^{*} \varphi_{\odot}$ is positive. On the other hand, the existence of a representation $\lambda_{\varrho}=C^{*} \psi$ with some positive functional $\psi \in \mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right)$ would lead to a contradiction:

$$
-1=-\varphi_{\odot}\left(a_{\odot}\right)=-\varphi_{\varrho}\left(C b_{\odot}\right)=\lambda_{\odot}\left(b_{\odot}\right)=\psi\left(a_{\odot}\right) \geq 0 .
$$

Compared with Proposition 3.5, the following result looks surprising.
Proposition 6.4. The cone $\mathfrak{l}_{\infty,++}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)$ is weakly closed in $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$.
Proof. Let $B\left(\mathfrak{l}_{\infty,++}^{\mathrm{mf}}\right)$ and $B\left(\mathfrak{l}_{\infty,+}^{\mathrm{sgf}}\right)$ consist of all functionals in $\mathfrak{l}_{\infty,++}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)$ and $\mathfrak{l}_{\infty,+}^{\mathrm{sgf}}\left(\mathbb{N}_{0}\right):=\left\{\psi \in \mathfrak{l}_{\infty}^{\mathrm{sgf}}\left(\mathbb{N}_{0}\right): \psi \geq 0\right\}$, respectively, whose norms are less than or equal to 1 .

Given $\lambda \in B\left(\mathfrak{l}_{\infty,++}^{\mathrm{mf}}\right)$, we choose $\psi \in \mathfrak{l}_{\infty,+}^{\mathrm{sgf}}\left(\mathbb{N}_{0}\right)$ such that $\lambda=C^{*} \psi$. Since $\left\|\psi\left|\left.\right|_{\infty} ^{*} \|=\psi(e)=\psi(C e)=\lambda(e) \leq 1\right.\right.$
implies $\psi \in B\left(\mathfrak{l}_{\infty,+}^{\mathrm{sgf}}\right)$, we see that $B\left(\mathfrak{l}_{\infty,++}^{\mathrm{mf}}\right)$ is the weakly* continuous image of the weakly* compact set $B\left(\mathrm{l}_{\infty,+}^{\mathrm{sgf}}\right)$ (Bourbaki-Alaoglu theorem). The required conclusion now follows by applying the Kreĭn-Šmulian theorem (see [16, p. 242] or [27, p. 152]).

Unfortunately, I have no idea whether the preceding proposition remains true if $\mathfrak{l}_{\infty,++}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)$ is replaced by $\mathfrak{l}_{\infty,+}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)$.

Problem 6.5. Does the cone $\mathfrak{l}_{\infty,+}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)$ fail to be closed in $\mathfrak{l}_{\infty}^{*}\left(\mathbb{N}_{0}\right)$?
Finally, I stress that both cones $\mathfrak{l}_{\infty,+}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)$ and $\mathfrak{l}_{\infty,++}^{\mathrm{mf}}\left(\mathbb{N}_{0}\right)$ generate $\mathfrak{l}_{\infty}^{\operatorname{mf}}\left(\mathbb{N}_{0}\right)$.
7. Positive shift-invariant functionals on $\mathfrak{w}\left(\mathbb{N}_{0}\right)$. We begin with an analogue of Proposition 6.1, whose proof can be adopted word for word.

Proposition 7.1. If $\mu \in \mathfrak{w}^{*}\left(\mathbb{N}_{0}\right)$ is shift-invariant, then so is μ_{+}.
As a consequence, we observe that $\mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right)$ is a linear sublattice of $\mathfrak{w}^{*}\left(\mathbb{N}_{0}\right)$. Note that the cone $\mathfrak{w}_{+}^{\text {sif }}\left(\mathbb{N}_{0}\right):=\left\{\mu \in \mathfrak{w}^{\text {sif }}\left(\mathbb{N}_{0}\right): \mu \geq \mathrm{o}\right\}$ is weakly* closed.

The situation remains unclear for $\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)$ and $\mathfrak{w}^{\mathrm{cdf}}\left(\mathbb{N}_{0}\right)$. Of course, $\mathfrak{w}^{*}\left(\mathbb{N}_{0}\right)$ induces partial orderings on both spaces. So we may consider the cones

$$
\mathfrak{w}_{+}^{\mathrm{df}}\left(\mathbb{N}_{0}\right):=\left\{C_{\mathfrak{w}}^{*} \lambda: \lambda \in \mathfrak{l}_{\infty}^{\mathrm{sif}}\left(\mathbb{N}_{0}\right), C_{\mathfrak{w}}^{*} \lambda \geq \mathfrak{o}\right\}
$$

and

$$
\mathfrak{w}_{+}^{\mathrm{cdf}}\left(\mathbb{N}_{0}\right):=\left\{C^{*} C_{\mathfrak{w}} \psi: \psi \in \mathfrak{l}_{\infty}^{\mathrm{sgf}}\left(\mathbb{N}_{0}\right), C_{\mathfrak{w}}^{*} C^{*} \psi \geq \mathrm{o}\right\}
$$

formed by the positive Dixmier and positive Connes-Dixmier functionals, respectively. However, I doubt that $\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)$ and $\mathfrak{w}^{\text {cdf }}\left(\mathbb{N}_{0}\right)$ are linear sublattices of $\mathfrak{w}^{*}\left(\mathbb{N}_{0}\right)$,

Moreover, letting

$$
\mathfrak{w}_{++}^{\mathrm{df}}\left(\mathbb{N}_{0}\right):=\left\{C_{\mathfrak{w}}^{*} \lambda: \lambda \in \mathfrak{l}_{\infty}^{\text {sif }}\left(\mathbb{N}_{0}\right), \lambda \geq \mathfrak{o}\right\}
$$

and

$$
\mathfrak{w}_{++}^{\operatorname{cdf}}\left(\mathbb{N}_{0}\right):=\left\{C^{*} C_{\mathfrak{w}} \psi: \psi \in \mathfrak{l}_{\infty}^{\mathrm{sgf}}\left(\mathbb{N}_{0}\right), \psi \geq \mathrm{o}\right\}
$$

yields other natural cones. The members of $\mathfrak{w}_{++}^{\text {df }}\left(\mathbb{N}_{0}\right)$ and $\mathfrak{w}_{++}^{\text {cdf }}\left(\mathbb{N}_{0}\right)$ are called strictly positive Dixmier and strictly positive Connes-Dixmier functionals, respectively. Obviously, we have

$$
\mathfrak{w}_{++}^{\mathrm{df}}\left(\mathbb{N}_{0}\right) \subseteq \mathfrak{w}_{+}^{\mathrm{df}}\left(\mathbb{N}_{0}\right) \quad \text { and } \quad \mathfrak{w}_{++}^{\operatorname{cdf}}\left(\mathbb{N}_{0}\right) \subseteq \mathfrak{w}_{+}^{\operatorname{cdf}}\left(\mathbb{N}_{0}\right)
$$

A result of Kalton-Sukochev [11, p. 75] shows that the left-hand inclusion is proper; see also [23, Prop. 9.31].

Theorem 7.2. There exists a positive Dixmier functional on $\mathfrak{w}\left(\mathbb{N}_{0}\right)$ that fails to be strictly positive.

The right-hand inclusion $\mathfrak{w}_{++}^{\text {cdf }}\left(\mathbb{N}_{0}\right) \subseteq \mathfrak{w}_{+}^{\text {cdf }}\left(\mathbb{N}_{0}\right)$ is proper as well. This can be checked by continuing the proof of Theorem 6.3 .

TheOrem 7.3. There exists a positive Connes-Dixmier functional on $\mathfrak{w}\left(\mathbb{N}_{0}\right)$ that fails to be strictly positive.

Proof. Obviously, $\mu_{\odot}:=C_{\mathfrak{w}}^{*} \lambda_{\varrho}=-C_{\mathfrak{w}}^{*} C^{*} \varphi_{\odot}$ is a positive Connes-Dixmier functional.

Use the positive sequence $a_{\odot}:=C b_{\odot}$ constructed in the proof of Lemma 6.2 and let $c_{\varrho}=\left(\gamma_{l}\right):=C_{\mathfrak{w}}^{-1} b_{\odot}$. Since

$$
\gamma_{l}:=\left\{\begin{array}{ll}
+16 h_{i}+8 & \text { if } \quad l=h_{i} \\
+8 & \text { if } h_{i}<l<k_{i}, \\
-16 k_{i}-8 & \text { if } \quad l=k_{i}, \\
-8 & \text { if } k_{i}<l<h_{i+1},
\end{array} \quad i=0,1,2, \ldots,\right.
$$

we get $c_{\circlearrowleft} \in \mathfrak{w}\left(\mathbb{N}_{0}\right)$. Then the existence of a representation $\mu_{\odot}=C_{\mathfrak{w}}^{*} C^{*} \psi$ with some positive $\psi \in \mathfrak{l}_{\infty}^{\text {sgf }}\left(\mathbb{N}_{0}\right)$ leads to a contradiction:

$$
-1=-\varphi_{\varrho}\left(a_{\varrho}\right)=-\varphi_{\varrho}\left(C C_{\mathfrak{w}} c_{\odot}\right)=\mu_{\circlearrowleft}\left(c_{\circlearrowleft}\right)=\psi\left(a_{\circlearrowleft}\right) \geq 0
$$

The next result can be obtained by a slight modification of the proof of Proposition 6.4.

Proposition 7.4. The cones $\mathfrak{w}_{++}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)$ and $\mathfrak{w}_{++}^{\text {cdf }}\left(\mathbb{N}_{0}\right)$ are weakly* closed in $\mathfrak{w}^{*}\left(\mathbb{N}_{0}\right)$.

Unfortunately, I have no idea whether the preceding proposition remains true for $\mathfrak{w}_{+}^{\text {df }}\left(\mathbb{N}_{0}\right)$ and $\mathfrak{w}_{+}^{\text {cdf }}\left(\mathbb{N}_{0}\right)$.

Problem 7.5. Do the cones $\mathfrak{w}_{+}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)$ and $\mathfrak{w}_{+}^{\text {cdf }}\left(\mathbb{N}_{0}\right)$ fail to be closed in $\mathfrak{w}^{*}\left(\mathbb{N}_{0}\right)$?

Finally, I stress that both cones $\mathfrak{w}_{+}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)$ and $\mathfrak{w}_{++}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)$ generate $\mathfrak{w}^{\mathrm{df}}\left(\mathbb{N}_{0}\right)$. Similarly, $\mathfrak{w}_{+}^{\text {cdf }}\left(\mathbb{N}_{0}\right)$ and $\mathfrak{w}_{++}^{\text {cdf }}\left(\mathbb{N}_{0}\right)$ generate $\mathfrak{w}^{\text {cdf }}\left(\mathbb{N}_{0}\right)$.

References

[1] S. Banach, Théorie des opérations linéaires, Warszawa, 1932.
[2] A. L. Carey and F. A. Sukochev, Dixmier traces and some applications to noncommutative geometry, Russian Math. Surveys 61 (2006), 1039-1099.
[3] C. Chou, On the size of the set of left invariant means on a semigroup, Proc. Amer. Math. Soc. 23 (1969), 199-205.
[4] A. Connes, Noncommutative Geometry, Academic Press, New York, 1994.
[5] K. J. Devlin, Fundamentals of Contemporary Set Theory, Springer, New York, 1979.
[6] J. Dixmier, Existence de traces non normales, C. R. Acad. Sci. Paris Sér. A 262 (1966), 1107-1108.
[7] G. Fichtenholz et L. Kantorovitch, Sur les opérations linéaires dans l'espace des fonctions bornées, Studia Math. 5 (1934), 69-98.
[8] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, 1960.
[9] I. C. Gohberg and M. G. Krĕn, The basic propositions on defect numbers, root numbers and indices of linear operators, Uspekhi Mat. Nauk 12 (1957), no. 2, 43-118 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 13 (1960), 185-264.
[10] M. Jerison, The set of all generalized limits of bounded sequences, Canad. J. Math. 9 (1957), 79-89.
[11] N. Kalton and F. A. Sukochev, Rearrangement-invariant functionals with applications to traces on symmetrically normed ideals, Canad. Math. Bull. 51 (2008), 67-80.
[12] C. A. Kottman, Packing and reflexivity in Banach spaces, Trans. Amer. Math. Soc. 150 (1970), 565-576.
[13] S. Lord, A. Sedaev, and F. A. Sukochev, Dixmier traces as singular symmetric functionals and applications to measurable operators, J. Funct. Anal. 224 (2005), 72-106.
[14] S. Mazur, On summability methods, Supplément aux Ann. Soc. Polon. Math. 1929, 102-107 (in Polish).
[15] S. Mazur, On the generalized limit of bounded sequences, Colloq. Math. 2 (1951), 173-175.
[16] R. E. Megginson, An Introduction to Banach Space Theory, Springer, New York, 1998.
[17] S. Mrówka, On the potency of subsets of βN, Colloq. Math. 2 (1951), 173-175.
[18] M. Nakamura and S. Kakutani, Banach limits and the Čech compactification of a countable discrete set, Proc. Imp. Acad. Tokyo 19 (1943), 224-229.
[19] J. von Neumann, Invariant Measures, Amer. Math. Soc., Providence, 1999 (Lecture Notes, Princeton Univ. 1940/41).
[20] A. Pietsch, Operator Ideals, Deutscher Verlag Wiss., Berlin, 1978; North-Holland, Amsterdam, 1980.
[21] A. Pietsch, Eigenvalues and s-Numbers, Geest\&Portig, Leipzig, and Cambridge Univ. Press, 1987.
[22] A. Pietsch, History of Banach Spaces and Linear Operators, Birkhäuser, Boston, 2007.
[23] A. Pietsch, Dixmier traces of operators on Banach and Hilbert spaces, Math. Nachr. 285 (2012), 1999-2028.
[24] A. Pietsch, Connes-Dixmier versus Dixmier traces, Integral Equations Operator Theory, to appear.
[25] B. Pospíšil, Remarks on bicompact spaces, Ann. of Math. 38 (1937), 845-846.
[26] W. Rudin, Functional Analysis, 2nd ed., McGraw-Hill, New York, 1991.
[27] H. H. Schaefer, Topological Vector Spaces, Macmillan, New York, 1966.
[28] H. H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin, 1974.
Albrecht Pietsch
Biberweg 7, D-07749 Jena, Germany
E-mail: a.pietsch@uni-jena.de

Received April 26, 2012
Revised version February 18, 2013

[^0]: 2010 Mathematics Subject Classification: Primary 46B45, 47B10; Secondary 47B37.
 Key words and phrases: shift-invariant functional, Banach sequence space, trace, operator ideal.

