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Abstract. We collect and extend results on the limit of σ1−k(1 − σ)k|v|pl+σ,p,Ω as
σ → 0+ or σ → 1−, where Ω is Rn or a smooth bounded domain, k ∈ {0, 1}, l ∈ N,
p ∈ [1,∞), and | · |l+σ,p,Ω is the intrinsic seminorm of order l + σ in the Sobolev space
W l+σ,p(Ω). In general, the above limit is equal to c[v]p, where c and [ · ] are, respectively,
a constant and a seminorm that we explicitly provide. The particular case p = 2 for
Ω = Rn is also examined and the results are then proved by using the Fourier transform.

1. Introduction. Bourgain, Brézis and Mironescu (cf. [6, 7]) proved
that, for any p ∈ [1,∞) and any v belonging to the Sobolev space W 1,p(Ω),

(1.1) lim
σ→1−

(1− σ)|v|pσ,p,Ω = p−1Kp,n

�

Ω

|∇v(x)|p dx,

where Ω is either Rn or a smooth bounded domain in Rn, with n ≥ 1,
| · |σ,p,Ω is the intrinsic or Gagliardo seminorm of order σ in the Sobolev space
W σ,p(Ω) (see Section 2 for the precise definitions), and Kp,n is a constant
that only depends on p and n. Likewise, Maz’ya and Shaposhnikova [14]
showed that

(1.2) lim
σ→0+

σ|v|pσ,p,Rn = 2p−1|Sn−1| |v|p0,p,Rn ,

where Sn−1 stands for the unit sphere in Rn (i.e. Sn−1 = {x ∈ Rn | |x| = 1})
and |Sn−1| is its area.

These results have been extended and completed by several authors. Let
us mention, for example, Milman [15], who placed them in the framework
of interpolation spaces, or Karadzhov, Milman and Xiao [11], Kolyada and
Lerner [12] and Triebel [21], who generalized them to Besov spaces.

2010 Mathematics Subject Classification: Primary 46E35; Secondary 46E30, 46F12.
Key words and phrases: Sobolev spaces, fractional order seminorms, Fourier transform,
Beppo Levi spaces.

DOI: 10.4064/sm214-2-1 [101] c© Instytut Matematyczny PAN, 2013



102 R. Arcangéli and J. J. Torrens

Our interest in this subject comes from the study of sampling inequali-
ties involving Sobolev seminorms. In [5], we have extended previous results
(cf. [3, 4]) in order to allow fractional order Sobolev seminorms on the left-
hand side of sampling inequalities. We have then realized that the complete
comprehension of the constants involved in sampling inequalities needs an
understanding of the asymptotic behaviour of the corresponding fractional
order Sobolev seminorms. In fact, we need extensions of (1.1) and (1.2) hav-
ing the following form:

(1.3) lim
σ→`

σ1−k(1− σ)k|v|pl+σ,p,Ω = c[v]p,

where ` = 0+ or 1−, Ω is Rn or a smooth bounded domain, k ∈ {0, 1},
l ∈ N, p ∈ [1,∞), and | · |l+σ,p,Ω is the intrinsic seminorm of order l + σ in
the Sobolev space W l+σ,p(Ω). On the right-hand side of (1.3), the notations
[ · ] and c stand, respectively, for a seminorm and a constant to be specified.

This paper is organized as follows. After recalling some basic facts and
definitions in Section 2, we devote Section 3 to establishing (1.3). Most of
the work may be routine, but anyway we find it useful to collect and state
in one place this kind of results and to provide explicit expressions for the
constants and seminorms involved in the limits. In Section 4, we focus on
the case of p = 2 and Ω = Rn. We show that (1.3) can be obtained by
means of the Fourier transform. This line of reasoning was suggested in [6,
Remark 2] starting from a result by Maz’ya and Nagel [13]. As a by-product,
for m ∈ N and s ≥ 0, we establish a relationship between the Sobolev space
Wm+s,2(Rn) and the Beppo Levi space Xm,s, arising in spline theory (cf. [2,
Chapter I]). Finally, in Section 5, we show an application of the limiting
results of Section 3 to the study of sampling inequalities, which was the
original motivation of this paper.

2. Preliminaries. For any x ∈ R, we shall write bxc and dxe for the
floor (or integer part) and ceiling of x, that is, the unique integers satisfying
bxc ≤ x < bxc+1 and dxe− 1 < x ≤ dxe. The letter n will always stand for
an integer belonging to N∗ = N \ {0} (by convention, 0 ∈ N). The Euclidean
norm in Rn will be denoted by | · |.

For any multi-index α = (α1, . . . , αn) ∈ Nn, we write |α| = α1 + · · ·
+αn and ∂α = ∂|α|/∂xα1

1 · · · ∂xαnn , x1, . . . , xn being the generic independent
variables in Rn. In addition, given l ∈ N and x = (x1, . . . , xn) ∈ Rn, we write(
l
α

)
= l!/(α1! · · ·αn!) and xα = xα1

1 · · ·xαnn . We shall make frequent use of
the relation

(2.1) |x|2l =
∑
|α|=l

(
l

α

)
x2α,

valid for any l ∈ N and x ∈ Rn.
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Let Ω be a nonempty open set in Rn. For any r ∈ N and p ∈ [1,∞), we
shall denote by W r,p(Ω) the usual Sobolev space defined by

W r,p(Ω) = {v ∈ Lp(Ω) | ∂αv ∈ Lp(Ω), ∀α ∈ Nn, |α| ≤ r}.
We recall that the derivatives ∂αv are taken in the distributional sense. The
space W r,p(Ω) is equipped with the seminorms | · |j,p,Ω, with j ∈ {0, . . . , r},
and the norm ‖ · ‖r,p,Ω given by

|v|j,p,Ω =
(∑
|α|=j

�

Ω

|∂αv(x)|p dx
)1/p

and ‖v‖r,p,Ω =
( r∑
j=0

|v|pj,p,Ω
)1/p

.

For any r ∈ (0,∞) \ N and p ∈ [1,∞), we shall denote by W r,p(Ω) the
Sobolev space of noninteger order r, formed by the (equivalence classes of)
functions v ∈W brc,p(Ω) such that

|v|pr,p,Ω =
∑
|α|=brc

�

Ω×Ω

|∂αv(x)− ∂αv(y)|p

|x− y|n+p(r−brc)
dx dy <∞.

Besides the seminorms | · |j,p,Ω, with j ∈ {0, . . . , brc}, and | · |r,p,Ω, the space
W r,p(Ω) is endowed with the norm

‖v‖r,p,Ω = (‖v‖pbrc,p,Ω + |v|pr,p,Ω)
1/p.

Given j ∈ N and v ∈W j+1,p(Ω), we put

|∇v|0,p,Ω =
( �
Ω

|∇v(x)|p dx
)1/p

and |∇v|j,p,Ω =
(∑
|α|=j

|∇(∂αv)|p0,p,Ω
)1/p

.

The mapping v 7→ |∇v|j,p,Ω is a seminorm in W j+1,p(Ω) equivalent to
| · |j+1,p,Ω.

We shall use the following definition of the Fourier transform v̂ of a
function v ∈ L1(Rn):

v̂(ξ) =
�

Rn
v(x)e−ix·ξ dx, ξ ∈ Rn,

where the dot symbol · denotes the Euclidean scalar product in Rn. We refer
to standard textbooks for the properties of the Fourier transform and their
extension to the space S ′(Rn) of tempered distributions. We just recall the
following result:

(2.2) ∀v ∈ S ′(Rn), ∀α ∈ Nn, i|α|ξαv̂ = ∂̂αv.

3. General results for p ∈ [1,∞). As mentioned in the introduction,
for a smooth bounded domain Ω or for Ω = Rn, we are interested in calcu-
lating the following limit:

(3.1) lim
σ→`

σ1−k(1− σ)k|v|pl+σ,p,Ω,
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with ` ∈ {0+, 1−}, k ∈ {0, 1}, l ∈ N, p ∈ [1,∞) and v belonging to a
suitable Sobolev space. For Ω = Rn, we shall study the cases (`, k) = (0+, 0)
and (1−, 1), whereas for Ω bounded, we shall consider the cases (`, k) =
(0+, 1) and (1−, 1), taking into account that limσ→0+(1− σ) = 1. The limit
corresponding to any other combination of ` and k follows trivially from the
above cases.

Theorem 3.1. Let Ω be a bounded domain in Rn with a Lipschitz conti-
nuous boundary. Let p ∈ [1,∞) and l ∈ N. Then, for any v ∈W l+1,p(Ω),

(3.2) lim
σ→1−

(1− σ)|v|pl+σ,p,Ω = p−1Kp,n|∇v|pl,p,Ω,

where

(3.3) Kp,n =
�

Sn−1

|ω · ν|p dω,

ν being any unit vector in Rn.

Proof. The case l = 0 is a result by Bourgain, Brézis and Mironescu
(cf. [6]). For the sake of completeness, we just clarify here some details of
their proof. We use, however, the notations in [7], which are slightly simpler.
Let (ρε)ε>0 be any family of nonnegative functions, contained in L1

loc(0,∞),
such that

∞�

0

ρε(t)t
n−1 dt = 1, ∀ε > 0, and lim

ε→0

∞�

δ

ρε(t)t
n−1 dt = 0, ∀δ > 0.

It follows from Theorems 2 and 3 in [6] that, for any v ∈W 1,p(Ω),

(3.4) lim
ε→0

�

Ω×Ω

|v(x)− v(y)|p

|x− y|p
ρε(|x− y|) dx dy = Kp,n|∇v|p0,p,Ω,

where Kp,n is defined by (3.3). Let us choose the family (ρε)ε>0 given by

ρε(t) =

{
εd−εtε−n, if t ≤ d,
0, if t > d,

d being the diameter of Ω. Then (3.4) becomes

lim
ε→0

εd−ε
�

Ω×Ω

|v(x)− v(y)|p

|x− y|n+p−ε
dx dy = Kp,n|∇v|p0,p,Ω,

which implies (3.2), for l = 0, if we replace ε by p(1− σ).
Let us now consider the case l ≥ 1. Since the lth-order derivatives of

functions in W l+1,p(Ω) belong to W 1,p(Ω), by the case l = 0, for any v ∈
W l+1,p(Ω), we have



Limiting behaviour of Sobolev seminorms 105

lim
σ→1−

(1− σ)|v|pl+σ,p,Ω = lim
σ→1−

(1− σ)
∑
|α|=l

|∂αv|pσ,p,Ω

=
∑
|α|=l

lim
σ→1−

(1− σ)|∂αv|pσ,p,Ω

=
∑
|α|=l

p−1Kp,n|∇(∂αv)|p0,p,Ω = p−1Kp,n|∇v|pl,p,Ω,

which yields (3.2).

Remark 3.2. Let us provide the explicit value of the constantKp,n given
by (3.3). Since the definition of Kp,n is independent of the unit vector ν, we
can take ν = (1, 0, . . . , 0). On the one hand, we have

�

x21+···+x2n≤1

|x1|p dx =

1�

0

( �

Sn−1

tn−1|tω1|p dω
)
dt

=
( �

Sn−1

|ω · ν|p dω
) 1�

0

tn−1+p dt =
Kp,n

n+ p
.

On the other hand,

�

x21+···+x2n≤1

|x1|p dx =

1�

−1
|x1|p

( �

x22+···+x2n≤1−x21

dx2 · · · dxn
)
dx1

= ϑn−1

1�

−1
|x1|p(1− x21)(n−1)/2 dx1 = 2ϑn−1

1�

0

xp1 (1− x
2
1)

(n−1)/2 dx1

= ϑn−1

1�

0

t(p−1)/2 (1− t)(n−1)/2 dt = ϑn−1B

(
p+ 1

2
,
n+ 1

2

)
,

where ϑn−1 is the volume of the unit ball in Rn−1 and B is the Euler Beta
function. Hence,

(3.5) Kp,n = (n+ p)ϑn−1B
(p+ 1

2
,
n+ 1

2

)
=

2π(n−1)/2Γ ((p+ 1)/2)

Γ ((n+ p)/2)
,

where Γ stands for the Euler Gamma function. Although Theorem 3.1 only
requires the value of Kp,n for p ≥ 1, the above expression is valid, in fact,
for any p ≥ 0.

Theorem 3.3. Let p ∈ [1,∞) and l ∈ N. Then, for any v ∈W l+1,p(Rn),

(3.6) lim
σ→1−

(1− σ)|v|pl+σ,p,Rn = p−1Kp,n|∇v|pl,p,Rn ,

where Kp,n is given by (3.3).
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Proof. This result, for l = 0, is usually credited to Bourgain, Brézis
and Mironescu [6], since it is implicitly contained in their paper. It can be
proved using Theorem 3.1, first for smooth functions with compact support
and then, by density, for any element in W l+1,p(Rn). An explicit proof is
given by Milman [15, Subsection 3.1], but without providing the precise def-
inition ofKp,n, which can be deduced from Karadzhov, Milman and Xiao [11,
p. 332]. The case l > 0 is identical to that in the proof of Theorem 3.1.

Theorem 3.4. Let p ∈ [1,∞), l ∈ N and σ0 ∈ (0, 1). Then, for any
v ∈W l+σ0,p(Rn),

(3.7) lim
σ→0+

σ|v|pl+σ,p,Rn =
4πn/2

pΓ (n/2)
|v|pl,p,Rn .

Proof. Maz’ya and Shaposhnikova proved in [14, Theorem 3] that (1.2)
holds for any v belonging to

⋃
0<σ<1W

σ,p
0 (Rn), where W σ,p

0 (Rn) stands for
the completion of C∞0 (Rn) with respect to | · |σ,p,Rn (which is a norm in this
last space). The condition on v can be relaxed to v ∈

⋃
0<σ<σ0

W σ,p
0 (Rn) for

some σ0 ∈ (0, 1). Likewise, since C∞0 (Rn) is dense in W σ,p(Rn) with respect
to ‖ · ‖σ,p,Rn = (| · |p0,p,Rn+| · |

p
σ,p,Rn)

1/p, it follows thatW σ,p(Rn) ⊂W σ,p
0 (Rn).

Thus, taking into account the embedding W σ0,p(Rn) ↪→W σ,p(Rn) if σ0 ≥ σ,
and the fact that |Sn−1| = 2πn/2/Γ (n/2), we conclude that, for l = 0, (3.7)
follows from Maz’ya and Shaposhnikova’s result.

Now, let us assume that l ≥ 1. Given v ∈ W l+σ0,p(Rn), it is clear that
any lth derivative ∂αv belongs to W σ0,p(Rn). The case l = 0 implies that

lim
σ→0+

σ|v|pl+σ,p,Rn = lim
σ→0+

σ
∑
|α|=l

|∂αv|pσ,p,Rn =
∑
|α|=l

lim
σ→0+

σ|∂αv|pσ,p,Rn

=
∑
|α|=l

4πn/2

pΓ (n/2)
|∂αv|p0,p,Rn =

4πn/2

pΓ (n/2)
|v|pl,p,Rn .

The theorem follows.

As we shall next see, there exists a qualitative difference in the behaviour
of |v|l+σ,p,Ω as σ → 0+ depending on whether Ω is Rn or a bounded set. The-
orem 3.4 implies that the seminorm |v|l+σ,p,Rn blows up to infinity (except
for polynomials of degree ≤ l) as σ → 0+. However, for a bounded set Ω,
a priori, the seminorm |v|l+σ,p,Ω may remain bounded. In fact, this is always
the case. Even more, as σ → 0+, that seminorm tends to Dini’s seminorm
|v|l,Dini(p),Ω, defined, following Milman [15], by

|v|pl,Dini(p),Ω =
∑
|α|=l

�

Ω×Ω

|∂αv(x)− ∂αv(y)|p

|x− y|n
dx dy.

Let us state and establish this result. We borrow the arguments from Mil-
man [15, Theorem 3 and Example 2].
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Theorem 3.5. Let Ω be a bounded domain in Rn with a Lipschitz con-
tinuous boundary. Let p ∈ [1,∞), l ∈ N and σ0 ∈ (0, 1). Then, for any
v ∈W l+σ0,p(Ω), we have |v|l,Dini(p),Ω <∞ and

lim
σ→0+

|v|l+σ,p,Ω = |v|l,Dini(p),Ω.

Proof. As in previous results, it suffices to prove the case l = 0. Let R be
the diameter of Ω. We consider the bijective linear mapping F : Rn → Rn
given by F (x̂) = R x̂ and we write Ω̂ = F−1(Ω). Since R = diamΩ, it is
clear that diam Ω̂ = 1. Thus,

∀σ ∈ (0, σ0), ∀x̂, ŷ ∈ Ω̂, 1 ≥ |x̂− ŷ|σ ≥ |x̂− ŷ|σ0 .

Consequently, given v̂ ∈W σ0,p(Ω̂), we have

∀σ ∈ (0, σ0), |v̂|p
0,Dini(p),Ω̂

≤ |v̂|p
σ,p,Ω̂

≤ |v̂|p
σ0,p,Ω̂

<∞.

Hence, by Lebesgue’s Dominated Convergence Theorem, we get

lim
σ→0+

|v̂|p
σ,p,Ω̂

= lim
σ→0+

�

Ω̂×Ω̂

|v̂(x̂)− v̂(ŷ)|p

|x̂− ŷ|n+pσ
dx̂ dŷ

=
�

Ω̂×Ω̂

lim
σ→0+

|v̂(x̂)− v̂(ŷ)|p

|x̂− ŷ|n+pσ
dx̂ dŷ

=
�

Ω̂×Ω̂

|v̂(x̂)− v̂(ŷ)|p

|x̂− ŷ|n
dx̂ dŷ = |v̂|p

0,Dini(p),Ω̂
.

Now, for any v ∈ W σ0,p(Ω), the function v̂ = v ◦ F belongs to W σ0,p(Ω̂),
since

|v|σ0,p,Ω = R−σ0+n/p|v̂|
σ0,p,Ω̂

.

Likewise,
|v|0,Dini(p),Ω = Rn/p|v̂|

0,Dini(p),Ω̂

and, for any σ ∈ (0, σ0),

|v|σ,p,Ω = R−σ+n/p|v̂|
σ,p,Ω̂

.

From these relations, we deduce that |v|0,Dini(p),Ω is finite and that

lim
σ→0+

|v|σ,p,Ω = lim
σ→0+

R−σ+n/p|v̂|
σ,p,Ω̂

= Rn/p|v̂|
0,Dini(p),Ω̂

= |v|0,Dini(p),Ω.

Remark 3.6. It is worth noting that, under the conditions of Theo-
rem 3.5, the arguments in its proof lead, in general, to the following bound:
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∀v ∈W l+σ0,p(Ω), |v|l,Dini(p),Ω ≤ Rσ|v|l+σ,p,Ω ≤ Rσ0 |v|l+σ0,p,Ω,
with R = diamΩ.

Remark 3.7. By a change of variables and Fubini’s Theorem, it can be
seen that

|v|0,Dini(p),Ω =

(
n

∞�

0

ω(v, t)pp
t

dt

)1/p

,

where ω(v, t)p is the averaged modulus of smoothness, given by

ω(v, t)pp = t−n
�

|h|≤t

|∆hv|p0,p,Ω dh, t > 0,

with ∆hv(x) = v(x+ h)− v(x), if x, x+ h ∈ Ω, and ∆hf(x) = 0 otherwise.
Hence, for l = 0, Theorem 3.5 establishes that, for any v ∈ W σ0,p(Ω), the
function ω(v, · )p satisfies a Dini-type condition. Analogous comments can be
made for l > 0. This justifies the name given to the seminorm | · |l,Dini(p),Ω.
Likewise, since ω(v, t)p is equivalent to the usual modulus of smoothness
ω(v, t)p = sup|h|≤t|∆hv|0,p,Ω, Theorem 3.5 includes as a particular case the
result given by Milman (cf. [15, Example 2]).

Remark 3.8. The seminorm | · |r,p,Rn can be normalized as follows:

(3.8) [v]r,p,Rn = λσ,p|v|r,p,Rn ,
where σ = r − brc and

(3.9) λσ,p =

{
(σ(1− σ))1/p if σ ∈ (0, 1),

1 if σ = 0.
Then the seminorm [ · ]r,p,Rn is continuous in the scale of Sobolev spaces(
W r,p(Rn)

)
r≥0 in the following sense:

∀r > 0, ∀v ∈W r,p(Rn), lim
s→r−

[v]s,p,Rn ≈ [v]r,p,Rn ,

∀r ≥ 0, ∀ε > 0, ∀v ∈W r+ε,p(Rn), lim
s→r+

[v]s,p,Rn ≈ [v]r,p,Rn ,

where the symbol ≈ means that there exist positive constants c1 and c2,
independent of v, such that

c1[v]r,p,Rn ≤ lim
s→r±

[v]s,p,Rn ≤ c2[v]r,p,Rn .

In fact, if r /∈ N, both lateral limits are equal to [v]r,p,Rn . For r ∈ N, these
relations are direct consequences of Theorems 3.3 and 3.4, whereas, for r /∈ N,
they come from Lebesgue’s Dominated Convergence Theorem.

For a bounded domain Ω ⊂ Rn with a Lipschitz continuous boundary,
we could also consider the normalization [v]r,p,Ω = λσ,p|v|r,p,Ω. But, due to
Theorem 3.5, for any r ∈ N, we would get

∀ε > 0, ∀v ∈W r+ε,p(Ω), lim
s→r+

[v]s,p,Ω = 0,
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which is quite unnatural. A better normalization is

dver,p,Ω = (1− σ)1/p|v|r,p,Ω
with σ = r − brc. We now have

∀r > 0, r /∈ N, ∀v ∈W r,p(Ω), lim
s→r−

dves,p,Ω ≈ dver,p,Ω,

∀r ≥ 0, ∀ε > 0, ∀v ∈W r+ε,p(Ω), lim
s→r+

dves,p,Ω ≈
{ dver,p,Ω if r /∈ N,
|v|r,Dini(p),Ω if r ∈ N.

Observe that, given r ∈ N and ε > 0, the seminorms | · |r,Dini(p),Ω and | · |r,p,Ω
are not equivalent on W r+ε,p(Ω) (| · |r,Dini(p),Ω is null for polynomials of de-
gree ≤ r, while | · |r,p,Ω is null only for polynomials of degree ≤ r − 1).
Consequently, the seminorm d · er,p,Ω is not right-continuous for r ∈ N.

4. The particular case p = 2. The purpose of this section is to pro-
vide an alternative proof of Theorems 3.3 and 3.4 based on the Fourier
transform. We start with two results which just reformulate a well-known
characterization of the space W σ,2(Rn) for σ ∈ (0, 1). See, for example,
Goulaouic [9, Theorem VIII.4], Stein [19, Chapter V, Proposition 4] or Tar-
tar [20, Lemma 16.3]. We also seize the opportunity to compute explicitly
a certain integral appearing in these results.

Lemma 4.1. For any n ∈ N and σ ∈ (0, 1), let

(4.1) Gσ,n =
πK2σ,n

Γ (1 + 2σ) sin(πσ)
,

where K2σ,n is given by (3.3) (or (3.5)) with p = 2σ. Then, for any ξ ∈ Rn,

(4.2)
�

Rn

|eiξ·y − 1|2

|y|n+2σ
dy = Gσ,n|ξ|2σ.

Proof. The relation (4.2) is obviously true if ξ = 0, so let us assume that
ξ 6= 0. Let ν = ξ/|ξ|. By the change of variables x = |ξ|y/2, we get

�

Rn

|eiξ·y − 1|2

|y|n+2σ
dy =

|ξ|2σ

22σ

�

Rn

|e2iν·x − 1|2

|x|n+2σ
dx =

|ξ|2σ

22σ

�

Rn

4 sin2(ν · x)
|x|n+2σ

dx.

Using spherical integrals and the change t = ρ|ν · ω|, we derive that

�

Rn

4 sin2(ν · x)
|x|n+2σ

dx =
�

Sn−1

(∞�
0

ρn−1
4 sin2(ρν · ω)
|ρω|n+2σ

dρ

)
dω

=
�

Sn−1

|ν · ω|2σ
(∞�

0

4 sin2 t

t1+2σ
dt

)
dω = K2σ,n

∞�

0

4 sin2 t

t1+2σ
dt.
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Hence,
�

Rn

|eiξ·y − 1|2

|y|n+2σ
dy = |ξ|2σK2σ,n2

2−2σ
∞�

0

sin2 t

t1+2σ
dt.

Taking (4.1) into account, in order to prove (4.2), it suffices to see that

(4.3) 22−2σ
∞�

0

sin2 t

t1+2σ
dt =

π

Γ (1 + 2σ) sin(πσ)
.

This relation holds if σ = 1/2, since the integral on the left-hand side then
equals π/2 (see, for example, Gradshteyn and Ryzhik [10, relation 3.821.9]).
Now, let σ ∈ (0, 1/2) ∪ (1/2, 1). From relation 3.823 in [10], we obtain

22−2σ
∞�

0

sin2 t

t1+2σ
dt = −2Γ (−2σ) cos(πσ),

from which, together with the identity

Γ (z)Γ (1− z) = π

sinπz
, z /∈ Z,

we deduce (4.3). The lemma follows.

Proposition 4.2. Let σ ∈ (0, 1). Then

(4.4) W σ,2(Rn) = L2(Rn) ∩ H̃σ(Rn),

with

(4.5) H̃σ(Rn) =
{
v ∈ S ′(Rn)

∣∣∣ v̂ ∈ L1
loc(Rn),

�

Rn
|ξ|2σ|v̂(ξ)|2 dξ <∞

}
.

In fact, for any v ∈W σ,2(Rn),

(4.6) |v|2σ,2,Rn = (2π)−nGσ,n
�

Rn
|ξ|2σ|v̂(ξ)|2 dξ,

where Gσ,n is the constant given by (4.1).

Proof. Let v ∈ L2(Rn). We first remark that v is, in particular, a tem-
pered distribution and, by Plancherel’s Theorem, v̂∈L2(Rn), so v̂∈L1

loc(Rn).
Thus, to prove (4.4), it suffices to see that the seminorm |v|σ,2,Rn is finite if
and only if the integral

	
Rn |ξ|

2σ|v̂(ξ)|2 dξ is finite. But this is a consequence
of (4.6). So let us show that (4.6) holds.

To this end, we follow, for example, the reasoning of Goulaouic [9, p. 101].
For any y ∈ Rn, the Fourier transform of the translated function x 7→ v(x+y)
is the function ξ 7→ eiy·ξ v̂(ξ). Hence, by Parseval’s identity, we have

�

Rn
|v(x+ y)− v(x)|2 dx = (2π)−n

�

Rn
|v̂(ξ)|2|eiy·ξ − 1|2 dξ.
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Then, by Fubini’s Theorem and Lemma 4.1, we finally deduce that

|v|2σ,2,Rn =
�

Rn×Rn

|v(x+ y)− v(x)|2

|y|n+2σ
dx dy

= (2π)−n
�

Rn
|v̂(ξ)|2

( �

Rn

|eiy·ξ − 1|2

|y|n+2σ
dy

)
dξ

= (2π)−nGσ,n
�

Rn
|ξ|2σ|v̂(ξ)|2 dξ,

which yields (4.6) and completes the proof.

The following two lemmas concern, for a suitable function v, the be-
haviour of the integral

	
Rn |ξ|

2σ|v̂(ξ)|2 dξ as σ → 0+ or σ → 1−.

Lemma 4.3. Let σ0 ∈ (0, 1). Then, for any v ∈W σ0,2(Rn),

lim
σ→0+

�

Rn
|ξ|2σ|v̂(ξ)|2 dξ = (2π)n|v|20,2,Rn .

Proof. Let v ∈W σ0,2(Rn). For any σ ∈ (0, σ0], let us consider the integral
Iσ =

	
Rn gσ(ξ) dξ, where gσ(ξ) = (1 − |ξ|2σ)|v̂(ξ)|2. This integral is well

defined: since v ∈ W σ0,2(Rn), v also belongs to L2(Rn) and W σ,2(Rn), so
v̂ ∈ L2(Rn) and, by Proposition 4.2, v ∈ H̃σ(Rn).

Let 0 < r ≤ 1 < R. We set

Iσ =
�

|ξ|≤r

gσ(ξ) dξ +
�

r<|ξ|<R

gσ(ξ) dξ +
�

|ξ|≥R

gσ(ξ) dξ = J1 + J2 + J3.

Let ε > 0 be given. Let us show that we can choose r, R and σ ∈ (0, σ0)
such that |Iσ| < ε. We have

|J1| ≤
�

|ξ|≤r

|v̂(ξ)|2 dξ.

Clearly, |J1| ≤ ε/3 for r small enough, since v̂ ∈ L2(Rn). Moreover,

|J3| ≤
�

|ξ|≥R

|v̂(ξ)|2 dξ +
�

|ξ|≥R

|ξ|2σ0 |v̂(ξ)|2 dξ,

and the two terms on the right are arbitrarily small when R is large enough:
the first because v̂ ∈ L2(Rn), and the second because, by Proposition 4.2,
v ∈ H̃σ0(Rn). So, |J3| < ε/3 for R sufficiently large. Once r and R have been
chosen, it suffices to take σ small enough to achieve |J2| < ε/3.

The preceding reasoning implies that

lim
σ→0+

�

Rn
gσ(ξ) dξ = 0.
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Consequently, taking Plancherel’s Theorem into account, we conclude that

lim
σ→0+

�

Rn
|ξ|2σ|v̂(ξ)|2 dξ =

�

Rn
|v̂(ξ)|2 dξ = (2π)n|v|20,2,Rn .

Lemma 4.4. For any v ∈W 1,2(Rn),

lim
σ→1−

�

Rn
|ξ|2σ|v̂(ξ)|2 dξ = (2π)n|∇v|20,2,Rn .

Proof. Let v ∈W 1,2(Rn). For any σ ∈ (0, 1), we now consider the integral
Iσ =

	
Rn gσ(ξ) dξ, with gσ(ξ) = (|ξ|2−|ξ|2σ)|v̂(ξ)|2. It is clear that |Iσ| <∞:

on the one hand, the embeddingW 1,2(Rn) ↪→W σ,2(Rn) and Proposition 4.2
imply that v ∈ H̃σ(Rn); on the other hand, since v ∈W 1,2(Rn),

�

Rn
|ξ|2|v̂(ξ)|2 dξ =

∑
|β|=1

�

Rn
ξ2β|v̂(ξ)|2 dξ =

∑
|β|=1

�

Rn
|iξβ v̂(ξ)|2 dξ(4.7)

=
∑
|β|=1

�

Rn
|∂̂βv(ξ)|2 dξ =

∑
|β|=1

(2π)n
�

Rn
|∂βv(x)|2 dx

= (2π)n|∇v|20,2,Rn ,

which is finite.
As in the proof of Lemma 4.3, we set

Iσ =
�

|ξ|≤r

gσ(ξ) dξ +
�

r<|ξ|<R

gσ(ξ) dξ +
�

|ξ|≥R

gσ(ξ) dξ = J1 + J2 + J3,

with 0 < r ≤ 1 < R. Let ε > 0 be given. Clearly, we have

|J1| ≤ 2
�

|ξ|≤r

|v̂(ξ)|2 dξ and |J3| ≤ 2
�

|ξ|≥R

|ξ|2|v̂(ξ)|2 dξ.

Then the assumption v ∈ W 1,2(Rn) implies that r and R can be chosen in
such a way that |J1| and |J3| be ≤ ε/3. We have just to take σ sufficiently
close to 1 to achieve |J2| < ε/3. Consequently,

lim
σ→1+

�

Rn
gσ(ξ) dξ = 0.

From this relation and (4.7), we finally derive that

lim
σ→1−

�

Rn
|ξ|2σ|v̂(ξ)|2 dξ =

�

Rn
|ξ|2|v̂(ξ)|2 dξ = (2π)n|∇v|20,2,Rn .

We are now ready to prove the main result in this section, which estab-
lishes Theorems 3.3 and 3.4 in the particular case p = 2. The reader may
want to check that the constants on the right-hand side of (3.6) and (3.7)
are, for p = 2, equal to those in (4.9) and (4.8), respectively.
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Theorem 4.5. Let l ∈ N.

(i) Let σ0 ∈ (0, 1). Then, for any v ∈W l+σ0,2(Rn),

(4.8) lim
σ→0+

σ|v|2l+σ,2,Rn =
2πn/2

Γ (n/2)
|v|2l,2,Rn .

(ii) For any v ∈W l+1,2(Rn),

(4.9) lim
σ→1−

(1− σ)|v|2l+σ,2,Rn =
πn/2

nΓ (n/2)
|∇v|2l,2,Rn .

Proof. Let us first assume that l = 0. It readily follows from (3.5), (4.1)
and the properties of the Γ function that

lim
σ→0+

σGσ,n =
2πn/2

Γ (n/2)
and lim

σ→1−
(1− σ)Gσ,n =

πn/2

nΓ (n/2)
.

Consequently, by Proposition 4.2 and Lemma 4.3, we have

lim
σ→0+

σ|v|2σ,2,Rn = lim
σ→0+

σ(2π)−nGσ,n
�

Rn
|ξ|2σ|v̂(ξ)|2 dξ = 2πn/2

Γ (n/2)
|v|20,2,Rn .

Likewise, by Proposition 4.2 and Lemma 4.4,

lim
σ→1−

(1− σ)|v|2σ,2,Rn

= lim
σ→1−

(1− σ)(2π)−nGσ,n
�

Rn
|ξ|2σ|v̂(ξ)|2 dξ = πn/2

nΓ (n/2)
|∇v|20,2,Rn .

The reasoning for l ≥ 1 follows the same pattern already shown in Theo-
rems 3.3 and 3.4.

In the proof of Theorem 4.5 and the preceding lemmas, Proposition 4.2
plays a fundamental role. This result can be extended to characterize the
space W r,2(Rn) for any r ≥ 0. Although it is not required here, we include
such an extension in this section for the sake of completeness.

Theorem 4.6. Let r ∈ [0,∞). Then

(4.10) W r,2(Rn) = L2(Rn) ∩ H̃r(Rn),

where H̃r(Rn) is given by (4.5) with r instead of σ. Moreover, for any m ∈ N
and s ≥ 0 such that r = m+ s,

(4.11) W r,2(Rn) = L2(Rn) ∩Xm,s,

where Xm,s = {v ∈ D′(Rn) | ∂αv ∈ H̃s(Rn), ∀α ∈ Nn, |α| = m}, D′(Rn)
being the space of distributions on Rn.
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Proof. We put r = l + σ, with l = brc and σ ∈ [0, 1). Let m ∈ N and
s ≥ 0 be such that r = m+ s. We remark that m ≤ l.

Since L2(Rn) ⊂ S ′(Rn) and L2(Rn) ⊂ L1
loc(Rn), it is clear that

(4.12) L2(Rn) ∩ H̃r(Rn) =
{
v ∈ L2(Rn)

∣∣∣ �

Rn
|ξ|2r|v̂(ξ)|2 dξ <∞

}
and

(4.13) L2(Rn) ∩Xm,s =
{
v ∈ L2(Rn)

∣∣∣ ∀α ∈ Nn, |α| = m,

∂̂αv ∈ L1
loc(Rn) and

�

Rn
|ξ|2s|∂̂αv(ξ)|2 dξ <∞

}
.

We divide the proof into several steps: Steps 1 and 2 prove (4.10), whereas
Steps 3 and 4 establish (4.11).

Step 1: W r,2(Rn) ⊂ L2(Rn)∩ H̃r(Rn). Let v ∈W r,2(Rn). By (4.12), we
have just to show that

	
Rn |ξ|

2r|v̂(ξ)|2 dξ is finite. Let us first consider the case
σ ∈ (0, 1). Every lth derivative ∂αv belongs toW σ,2(Rn). By Proposition 4.2,
we have

�

Rn
|ξ|2r|v̂(ξ)|2 dξ

=
�

Rn
|ξ|2σ|ξ|2l|v̂(ξ)|2 dξ =

∑
|α|=l

(
l

α

) �

Rn
|ξ|2σξ2α|v̂(ξ)|2 dξ

=
∑
|α|=l

(
l

α

) �

Rn
|ξ|2σ|∂̂αv(ξ)|2 dξ =

∑
|α|=l

(
l

α

)
(2π)nG−1σ,n|∂αv|2σ,2,Rn

≤M(2π)nG−1σ,n
∑
|α|=l

|∂αv|2σ,2,Rn =M(2π)nG−1σ,n|v|2r,2,Rn <∞,

with M = max
{(

l
α

) ∣∣ α ∈ Nn, |α| = l
}
. If σ = 0, the above reasoning is

still valid, by taking Gσ,n = 1 and using Plancherel’s Theorem instead of
Proposition 4.2.

Step 2: L2(Rn) ∩ H̃r(Rn) ⊂ W r,2(Rn). Let v ∈ L2(Rn) ∩ H̃r(Rn). For
any α ∈ Nn such that |α| ≤ l, we have

�

Rn
|ξ|2r|v̂(ξ)|2 dξ =

�

Rn
|ξ|2(r−|α|)|ξ|2|α||v̂(ξ)|2 dξ

=
∑
|β|=|α|

(
|α|
β

) �

Rn
|ξ|2(r−|α|)ξ2β|v̂(ξ)|2 dξ.
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Consequently, ∂̂αv = i|α|ξαv̂ belongs to L2(Rn), since
�

Rn
|ξαv̂(ξ)|2 dξ =

�

|ξ|<1

ξ2α|v̂(ξ)|2 dξ +
�

|ξ|≥1

ξ2α|v̂(ξ)|2 dξ

≤
�

|ξ|<1

|v̂(ξ)|2 dξ +
(
|α|
α

) �

|ξ|≥1

|ξ|2(r−|α|)ξ2α|v̂(ξ)|2 dξ

≤
�

Rn
|v̂(ξ)|2 dξ +

�

Rn
|ξ|2r|v̂(ξ)|2 dξ <∞.

We deduce from Plancherel’s Theorem that v ∈ W l,2(Rn). If σ ∈ (0, 1), we
still have to see that |v|r,2,Rn is finite. But a reasoning analogous to that
in Step 1 shows, as desired, that

|v|2r,2,Rn ≤ (2π)−nGσ,n
�

Rn
|ξ|2r|v̂(ξ)|2 dξ <∞.

Step 3: L2(Rn) ∩ Xm,s ⊂ W r,2(Rn). Let v ∈ L2(Rn) ∩ Xm,s. Then,
taking (4.13) into account, we have

�

Rn
|ξ|2r|v̂(ξ)|2 dξ =

�

Rn
|ξ|2s|ξ|2m|v̂(ξ)|2 dξ =

∑
|α|=m

(
m

α

) �

Rn
|ξ|2sξ2α|v̂(ξ)|2 dξ

=
∑
|α|=m

(
m

α

) �

Rn
|ξ|2s|∂̂αv(ξ)|2 dξ <∞.

Thus, it follows from (4.10) and (4.12) that v ∈W r,2(Rn).

Step 4: W r,2(Rn) ⊂ L2(Rn) ∩ Xm,s. Let v ∈ W r,2(Rn). Using (4.10),
the reasoning in Step 2 shows that, for any α ∈ Nn such that |α| = m, ∂̂αv
belongs to L2(Rn) ⊂ L1

loc(Rn) and�

Rn
|ξ|2s|∂̂αv(ξ)|2 dξ =

�

Rn
|ξ|2sξ2α|v̂(ξ)|2 dξ

≤
∑
|β|=m

(
m

β

) �

Rn
|ξ|2sξ2β|v̂(ξ)|2 dξ

=
�

Rn
|ξ|2r|v̂(ξ)|2 dξ <∞.

We conclude that, by (4.13), v ∈ L2(Rn) ∩Xm,s.

Remark 4.7. For any r ≥ 0 and v ∈ L2(Rn), it is clear that | · |rv̂ ∈
L2(Rn) if and only if (1 + | · |2)r/2v̂ ∈ L2(Rn), thanks to Plancherel’s Theo-
rem, and that
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�

Rn
|ξ|2r|v̂(ξ)|2 dξ ≤

�

Rn
(1 + |ξ|2)r|v̂(ξ)|2 dξ

=
�

|ξ|≤1

(1 + |ξ|2)r|v̂(ξ)|2 dξ +
�

|ξ|≥1

(1 + |ξ|2)r|v̂(ξ)|2 dξ

≤ 2r
�

Rn
|v̂(ξ)|2 dξ + 2r

�

Rn
|ξ|2r|v̂(ξ)|2 dξ.

Hence, the relation (4.10) follows immediately from the well-known char-
acterization of the space W r,2(Rn) in terms of Bessel potentials (see, for
example, Adams [1, Theorem 7.63(f)] or Goulaouic [9, Corollary VIII.2]). To
our knowledge, however, the relation (4.11) is new. It involves the Beppo
Levi space Xm,s, which plays an essential role in spline theory (cf. [2]).

Remark 4.8. Let r > 0. Theorem 4.6 allows us to endowW r,2(Rn) with
seminorms defined in H̃r(Rn) or Xm,s. For example, the mapping

(4.14) | · |0,r : v 7→
( �

Rn
|ξ|2r|v̂(ξ)|2 dξ

)1/2
is a seminorm in H̃r(Rn) (in fact, a hilbertian norm if r < n/2; cf. [2]), so
it is in W r,2(Rn). It follows from Steps 1 and 2 in the proof of Theorem 4.6
that | · |0,r and | · |r,2,Rn are equivalent seminorms. The equivalence constants
depend on σ, since they contain Gσ,n. In fact, taking into account (3.5),
(4.1) and the continuity of the Gamma function, it is readily seen that,
given l ∈ N, there exist constants C1 and C2, depending on n and l, such
that, for all σ ∈ (0, 1) and v ∈W l+σ,2(Rn),

C1|v|0,l+σ ≤ (2σ(1− σ))1/2|v|l+σ,2,Rn ≤ C2|v|0,l+σ.

5. Application to sampling inequalities. Sampling inequalities in
Sobolev spaces have become an essential tool for error and convergence anal-
ysis in fields like interpolation and smoothing by radial basis functions or
meshless methods for the numerical solution of partial differential equations
(cf., for example, [3, 16, 17, 18]). Given a domain Ω and suitable values of
p, q ∈ [1,∞], these inequalities typically yield bounds of the | · |s,q,Ω Sobolev
seminorm of a function u ∈W r,p(Ω) in terms of the | · |r,p,Ω seminorm of u,
with r ≥ s ≥ 0, the values of u in a discrete set A ⊂ Ω, and the fill distance
d between Ω and A given by

(5.1) d = sup
x∈Ω

inf
a∈A
|x− a|.

We remark that, since A has no accumulation points and d must be finite,
the set A must also be finite if Ω is bounded, and countably infinite if Ω is
unbounded.
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Let us consider a simplified version of the sampling inequalities proven
in [5], which, however, will suffice for our purposes here. Assume that Ω is
Rn or a bounded domain with a Lipschitz continuous boundary. Assume also
that 1 ≤ p ≤ q, r > n/p, and 0 ≤ s ≤ d`0e − 1, with `0 = r − n(1/p− 1/q).
Then, for any discrete set A ⊂ Ω having a sufficiently small fill distance d
and for any u ∈W r,p(Ω), the following sampling inequality holds:

(5.2) |u|s,q,Ω ≤ Cs(d
r−s−n(1/p−1/q)|u|r,p,Ω + dn/q−s‖u|A‖p),

where

‖u|A‖p =
(∑
a∈A
|u(a)|p

)1/p
and Cs is a constant independent of u and A. The subscript s on Cs indicates
that, a priori, this constant depends on s.

The above inequality is first proven for nonnegative integer values of s
following a strategy which dates back to Duchon [8]. Then, to derive (5.2) for
noninteger values of s, we apply theK-method for real interpolation between
Sobolev spaces. See [3] and [5] for details.

Likewise, we have shown in [5] that the constant Cs can be written as

(5.3) Cs = C∗λ−1σ,q

where σ = s − bsc, λσ,q is given by (3.9) with q instead of p, and C∗ is a
constant that only depends on n, r, p, q and also on Ω if this set is bounded.
Since λσ,q = (σ(1 − σ))1/q for σ ∈ (0, 1), it is clear that λ−1σ,q → ∞ as
σ → 0+ or σ → 1−. This fact may reduce the usefulness of the sampling
inequality for values of s near integers or cause difficulties from a theoretical
or a numerical standpoint. Thus, one may wonder whether the presence
of λ−1σ,q, through Cs, on the right-hand side of (5.2) is an intrinsic feature
of the sampling inequality or an undesirable by-product of the interpolation
technique used to derive it. In other words, we must pay attention to the
problem stated below, which we shall partially solve with the help of the
limiting results in Section 3:

Problem 5.1. Is it possible to obtain the sampling inequality (5.2) with a
constant Cs not growing to∞ as σ → 0+ or σ → 1−, or growing, respectively,
at rates lower than those of σ−1/q or (1 − σ)−1/q? In this sense, does the
relation (5.3) really provide a sharp expression of Cs?

Let us first consider the case Ω = Rn. We rewite (5.2) as

(5.4) |u|l+σ,q,Rn ≤ Cl+σ d
−(l+σ)[[u]]A,

where l = bsc, σ = s− l and

(5.5) [[u]]A = dr−n(1/p−1/q)|u|r,p,Rn + dn/q‖u|A‖p.
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Let us fix a set A with small fill distance d and a function u ∈ W r,p(Rn)
such that [[u]]A <∞ (since, in this case, the set A is countably infinite, the
second term of [[u]]A contains a series whose convergence has to be ensured).
By Theorem 3.3, the product (1−σ)1/q|u|l+σ,q,Rn has a finite limit as σ → 1−.
Hence, unless u is a polynomial of degree ≤ l,

lim
σ→1−

|u|l+σ,q,Rn =∞,

from which, by taking limits in (5.4) as σ → 1−, we derive that

lim
σ→1−

Cl+σ =∞.

In fact, since |u|l+σ,q,Rn grows to∞ as σ → 1− at the same rate as (1−σ)−1/q,
this should also be the case of Cl+σ. The same kind of reasoning applies
when σ → 0+. By Theorem 3.4, except for polynomials of degree ≤ l − 1,
the seminorm |u|l+σ,q,Rn blows up as σ → 0+, forcing Cl+σ to tend to ∞ at
the same rate as σ−1/q. This solves Problem 5.1: the presence of both factors
(1− σ)−1/q and σ−1/q on the right-hand side of (5.2) is absolutely required
by the intrinsic nature of the seminorm |u|s,q,Rn ; thus, the expression for the
constant Cs given by (5.3) is sharp.

The preceding discussion suggests that, to avoid (1− σ)−1/q and σ−1/q,
it is worth rewriting the sampling inequality as

(5.6) [u]s,q,Rn ≤ C?(dr−s−n(1/p−1/q)|u|r,p,Rn + dn/q−s‖u|A‖p),

where [ · ]s,q,Rn = λσ,q| · |s,q,Rn is the first of the normalized seminorms consid-
ered in Remark 3.8. Of course, for p = 2, we could use instead the seminorm
| · |0,s given by (4.14) (with r replaced by s), as justified by Remark 4.8.

Let us now assume that Ω is a bounded domain with a Lipschitz contin-
uous boundary. Again, we express (5.2) as

(5.7) |u|l+σ,q,Ω ≤ Cl+σ d
−(l+σ)[[u]]A,

where [[ · ]]A is given by (5.5) with Ω instead Rn. By Theorem 3.1, which is
formally identical to Theorem 3.3, we arrive here at the same conclusions,
when σ → 1−, as in the case Ω = Rn: the constant Cl+σ must grow to ∞ at
the rate of (1− σ)−1/q as σ → 1−. However, things are quite different when
σ → 0+. Theorem 3.5 implies that

lim
σ→0+

|u|l+σ,q,Ω = |u|l,Dini(q),Ω.

Hence, by taking limits in (5.7), nothing can be deduced about the asymp-
totic behaviour of Cl+σ as σ → 0+: it may well tend to ∞, but it also may
remain bounded. To our knowledge, there is no objective reason for the pres-
ence of the factor σ−1/q on the right-hand side of the sampling inequality.
We state this as follows:
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Conjecture. When Ω is a domain with a Lipschitz continuous bound-
ary, the sampling inequality (5.2) holds with Cs = C∗(1 − σ)−1/q, where C∗

is a constant independent of u, A and s, and σ = s− bsc.
In the present case, we could also rewrite (5.2) by using the seminorm

[ · ]s,q,Ω = λσ,q| · |s,q,Ω on the left-hand side. However, this seminorm is not
satisfactory, since, by Theorem 3.5, as already noted in Remark 3.8,

lim
σ→0+

[u]l+σ,q,Ω = 0.

Of course, if the above conjecture were true, a suitable normalized seminorm
would be d · es,q,Ω = (1 − σ)1/q| · |s,q,Ω (cf. the second part of Remark 3.8).
In such a situation, the sampling inequality would become

dues,q,Ω ≤ C?(dr−s−n(1/p−1/q)|u|r,p,Ω + dn/q−s‖u|A‖p).
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