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Whitney type inequality, pointwise version

by

Yu. A. Brudnyi (Haifa) and I. E. Gopengauz (Moscow)

Abstract. The main result of the paper estimates the asymptotic behavior of local
polynomial approximation for Lp functions at a point via the behavior of µ-differences, a
generalization of the kth difference. The result is applied to prove several new and extend
classical results on pointwise differentiability of Lp functions including Marcinkiewicz–
Zygmund’s and M. Weiss’ theorems. In particular, we present a solution of the problem
posed in the 30s by Marcinkiewicz and Zygmund.

1. Introduction. The main result of the present paper, Theorem 3.1,
compares the asymptotics at a point of local polynomial approximations
for Lloc

p (Rd) functions and of a general difference characteristic named µ-
difference (µ is a discrete measure, see Section 2 for definitions).

The first global result of this kind was due to Marchaud [14, p. 379]
and sharpened by Whitney [19]. A multivariate result for a wide class of
p-integrable functions was then established in [4] and named after Whitney.
It asserts that if f ∈ Lp(G), 1 ≤ p ≤ ∞, and G ⊂ Rd is a convex domain
then for every k ∈ N there exists a polynomial m in x ∈ Rd of degree k − 1
such that

(1.1) ‖f −m‖Lp(G) ≤ C sup
h
‖∆k

hf‖Lp(Gh);

here Gh is the domain of the function x 7→ ∆k
hf .

In the present paper, we need a more general version of this result with
∆k
h replaced by µ-difference and the supremum over h by a spherical average

over h. The required result is presented in Theorem 3.2; a special case was
announced in [3] but never published.

The next key result, Theorem 3.4, compares the asymptotics at a point
for the two µ-difference characteristics of a function used in Theorems 3.2
and 3.1, respectively. It first appeared in [12, Lemma 3] (announced in [11])
devoted to the positive solution to the Marcinkiewicz–Zygmund problem
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formulated in [20, p. 7]. Since the paper [12] is now hardly available, we
briefly describe the problem and the result; see Theorem 3.6 for details.

The aforementioned problem is to find a generalization to µ-differences of
the classical Marcinkiewicz–Zygmund theorem [15] that if f is a measurable
function on R and lim suph→0 |∆k

hf(x)|/|h|k is bounded for all x from a
measurable set S, then f has the (Peano) k-differential almost everywhere
on S. This problem was solved in [16] for k = 2; in this case the µ-difference
is of the form

µh(f ;x) :=

2∑
j=0

µjf(x+ λjh)

where the measure µ =
∑2

j=0 µjδλj annihilates polynomials of degree 1 but

µ(x2) 6= 0. The problem for k > 2 was formulated in [16] (see also [20]) and
solved in [12].

Our main result, Theorem 3.1, allows one to reduce pointwise differentia-
bility problems for µ-differences to analogous problems for local polynomial
approximations. Since the latter problems were solved in [7, Appendix III]
(announced in [6]), one obtains a new approach to the former. The results
obtained are related to the more general field of so-called Taylor classes in-
troduced in the classical paper by Calderón and Zygmund [10]; see Theorems
3.5 and 3.6 below.

The reader may wonder why the results announced long ago appear after
a long period. This is explained by the peculiarities of the scientific life in
the former Soviet Union; see, e.g., the letter [1].

2. Basic definitions

2.1. Classes of measures. Let M denote a class of discrete measures
µ on R with support suppµ satisfying

(2.1) 0 ∈ suppµ, 1 < card(suppµ) <∞,
i.e., µ ∈ M is a linear combination with nonzero coefficients of δ-measures
including δ0 (here δaf := f(a), a ∈ R).

Moreover, Mk is a subclass of measures µ ∈M such that

(2.2)
�

R

tj dµ(t) =

{
0, j = 0, 1, . . . , k − 1,

c(µ) 6= 0, j = k.

The smallest closed interval containing suppµ is denoted by I(µ) or
[a(µ), b(µ)], i.e.,

(2.3) I(µ) = conv(suppµ) = [a(µ), b(µ)].

Due to (2.1),

(2.4) a(µ) ≤ 0, b(µ) ≥ 0, |I(µ)| = |a(µ)|+ b(µ) > 0.
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2.2. µ-differences. A µ-difference is a linear operator on the space
C(Rd) defined by

(2.5) µh(f ;x) :=
�

R

f(x+ th) dµ(t), x, h ∈ Rd.

E.g., for µ = ∆k
1 :=

∑k
j=0(−1)k−j

(
k
j

)
δj the µh is the k-difference ∆k

h, i.e.,

(2.6) ∆k
hf(x) :=

k∑
j=0

(−1)k−j
(
k

j

)
f(x+ jh).

Some results use a symmetric version of (2.6) given by

(2.7) δkh :=
1

2
(∆k

h − (−1)k∆k
−h).

The associated measures for (2.6) and (2.7) clearly belong to Mk with
c(∆k

1) = c(δk1 ) = k!.

More generally, let f(t0, t1, . . . , tk), where t0 < t1 < · · · < tk, be the kth
divided difference of f ∈ C(R), i.e.

(2.8) f(t0, t1, . . . , tk) :=

k∑
j=0

µjf(tj),

where µj := 1/ω′(tj) with ω(t) :=
∏k
j=0(t− tj) and suppose the associated

measure µ :=
∑k

j=0 µjδtj belongs toMk (see, e.g., [13, Ch. 4, §7]). The class
of such measures is described by the conditions (see [17])

(−1)k−jµ(tj) > 0, 0 ≤ j ≤ k,

(−1)k−j
∞�

tj

dµ(t) > 0, 1 ≤ j ≤ k,
�

R

dµ(t) = 0.

It is easy to see that for µ ∈ Mk and f(x) = xα with |α| = k we have
µh(f ;x) = c(µ)hα for all x, h ∈ Rd (1).

2.3. Local polynomial approximation. The object in the title, de-
noted by Ek,p(f ;S), is a function on pairs (f, S) where f ∈ Lloc

p (Rd) and

S ⊂ Rd with d-measure 0 < |S| <∞. It is defined by

(2.9) Ek,p(f ;S) := inf
g
‖f − g‖Lp(S)

where g runs over the space Pk−1(Rd) of polynomials in x ∈ Rd of degree
k − 1.

(1) Hereafter we use standard notations, e.g., for x ∈ Rd and α ∈ Nd0, xα :=
∏d
j=1 x

αj

j ,

|α| :=
∑d
j=1 αj and α! :=

∏d
j=1(αj !).
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We also use the normalized local polynomial approximation defined by

(2.10) Ek,p(f ;S) := |S|−1/pEk,p(f ;S).

2.4. µ-modulus of continuity and µ-oscillation. Let µ ∈ Mk and
G be a domain (an open connected set) in Rd. The µ-modulus of continuity
is a function on pairs (f, r) where f ∈ Lp(G) and r ∈ R+, given by

(2.11) µp(r; f ;G) := sup
h∈Br

‖µh(f, ·)‖Lp(Gh);

hereafter Br(x) := {y ∈ Rd; ‖y − x‖ < r} stands for the Euclidean ball in
Rd of radius r and center x and Br := Br(0), while Gh denotes the domain
of the function x 7→ µh(f ;x), i.e. the set

(2.12) Gh := {x ∈ G; {x+ ht; t ∈ suppµ} ⊂ G}.
This can be empty for large h, e.g., for G bounded. We stipulate ‖f‖Lp(∅)
= 0; therefore µp is constant on [rµ,∞) where rµ is the smallest r > 0 such
that Gh = ∅ if h /∈ Br. Note that if µ = ∆k

1, then (2.11) becomes the classical
k-modulus of continuity ωk,p defined by

ωk,p(r; f ;G) := sup
h∈Br

‖∆k
h(f, ·)‖Lp(Gh).

We will also use the spherical µ-modulus of continuity denoted by µ̃p and
defined by

(2.13) µ̃p(r; f ;G) :=
{ �

Br

‖µh(f, ·)‖pLp(Gh) dh
}1/p

.

Clearly, µ̃p(r; f ;G)|Br|−1/p ≤ µp(f ; r;G) for p ∈ [1,∞).
In what follows, two local versions of the µ-modulus of continuity will

be of use. The first is defined by

(2.14) µp(f ;Br(x)) :=
{ �

Br

|µh(f ;x)|p dh
}1/p

,

while the second, called the µ-oscillation on a subset S, is given by

(2.15) µ̃p(f ;S) :=

{
1

|Br|

�

Br

‖µh(f, ·)‖pLp(Sh) dh
}1/p

;

here r is the largest number such that Sh 6= ∅ for ‖h‖ ≤ r.
For p =∞ and µ := ∆k

1 this coincides with the classical kth oscillation

osck(f ;B) := ess sup
x,h

{|∆k
h(f ;x)|; x+ jh ∈ B, j = 0, 1, . . . , k}.

2.5. Majorants. A continuous function ω : R+ → R+ is said to be a
majorant if ω(+0) = 0, ω is increasing and for some C ≥ 1 and all t > 0,

ω(2t) ≤ Cω(t).



Whitney type inequality 171

The well-known example of majorant is the k-modulus of continuity
ωk,p(t; f ;G). Since µp(t; f ;G) for µ ∈ Mk and G = Rd is equivalent to
ωk,p(t; f ;G) (see Theorem 3.3 and Remark 3.2 below), µp(t; f ;G) is also a
majorant.

3. Formulation of main results

3.1. Pointwise estimate of local approximation. In the subsequent
formulations, f belongs to Lloc

p (R), 1 ≤ p ≤ ∞, and S ⊂ Rd is measurable
and of finite measure |S| > 0. Moreover, in the three results below, the
measure µ belongs to Mk. The first result estimates the normalized local
polynomial approximation of a function via the spherical p-average of µ(f)
(see (2.10) and (2.14), respectively).

Theorem 3.1. Let ω be a majorant. There exists a constant C > 0
independent of f and x such that for almost every x ∈ S,

(3.1) lim sup
r→0

Ek,p(f ;Br(x))

ω(r)
≤ C lim sup

r→0

µp(f ;Br(x))

ω(r)

provided the right-hand side is finite on S.

3.2. Norm estimates. In the subsequent text, we write C = C(a, b, . . .)
for a positive constant depending only on the parameters in the brackets.
It may change from line to line. Moreover, equivalence of functions ϕ ≈ ψ
means that for some constants C1, C2 > 0,

(3.2) C1ϕ ≤ ψ ≤ C2ϕ

for an explicitly indicated set of arguments of these functions.

Theorem 3.2. There exist constants C = C(µ, k, d) and λ = λ(µ, k, d)
> 1 such that for every ball Br(x),

(3.3) Ek,p(f ;Br(x)) ≤ Cµ̃p(f ;Bλr(x)).

The next result connects local polynomial approximations with the spher-
ical µ-modulus of continuity on Rd (see (2.13)).

Theorem 3.3. Let f ∈ Lp(Rd) + Pk−1(Rd). Then

(3.4) µ̃p(r; f ;Rd) ≈
{ �

Rd
Ek,p(f ;Br(x))p dx

}1/p

with constants independent of f and r.

From these two results one can derive the converse inequality, mentioned
in Subsection 2.4, between the µ-modulus of continuity and its spherical
counterpart. Actually, it asserts that for all r > 0,

(3.5) µp(r; f ;Rd) ≤ C(µ, k, d)µ̃p(r; f ;Rd)|Br|−1/p.
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This inequality is known for ωk,p, i.e., for µh = ∆k
h: see, e.g., [13, Ch. 6]

where the proof is based on the identity

∆k
hf(x) =

k∑
j=0

(−1)j
(
k

j

)
[∆k

jhf(x+ jh̃)−∆h+jh̃f(x)], h, h̃ ∈ Rd.

This argument clearly cannot be used for (3.5).

Remark 3.1. In Theorems 3.2 and 3.3, the class Mk can be widened
by adding all measures satisfying the following conditions:

(a) µ has compact support with isolated point {0};
(b) µ is orthogonal to Pk−1;
(c) c(µ) 6= 0;

cf. conditions (2.1) and (2.2).

The reader can easily verify that the proofs presented below are valid
for this class.

Remark 3.2. Theorem 3.2 implies that every µ-modulus µp with
G = Rd and µ belonging, the above extension of Mk is equivalent to the
kth modulus of continuity.

3.3. Pointwise estimate for spherical µ-oscillation. The key result
of the present paper, Theorem 3.1, is a direct consequence of Theorem 3.2
and the estimate for µ̃p via µp given below (see (2.15) and (2.14) for defini-
tions). Unlike the previous results, µ now belongs to the wider classM (see
§2.1).

Theorem 3.4. Let µ ∈ M and let ω be a majorant. There exists a
constant C > 0 independent of f and x such that for almost all x ∈ S,

(3.6) lim sup
r→0

µ̃p(f ;Br(x))

ω(r)
≤ C lim sup

r→0

µp(f ;Br(x))

ω(r)

provided the right-hand side is finite on S.

3.4. Pointwise differentiability of Lp functions. We will use the
Taylor classes introduced by Calderón and Zygmund [10]. Let us recall that
a function f ∈ Lloc

p (Rd) belongs to the Taylor class T λp (x), λ > 0, x ∈ Rd,
if there exists a polynomial m of degree strictly less than λ such that

(3.7) ‖f −m; Br(x)‖p ≤ Crλ

for all r ∈ (0, 1] and some C > 0. Hereafter ‖·;S‖p stands for the normalized
p-norm given for 0 < |S| <∞ by

(3.8) ‖f ;S‖p :=

{
1

|S|

�

S

|f(x)|p dx
}1/p

.
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Further, the class tλp(x) is defined by replacing the right-hand side in

(3.7) by o(rλ) as r → 0, and assuming m to be a polynomial of degree less
than or equal to λ. In particular, tλp(x) is a proper subclass of T λp (x).

It is easy to check that the polynomial m for f ∈ tλp(x) or f ∈ T λp (x) is
unique; if λ ∈ N, this polynomial is called the Peano (λ, p)-differential of f
at x.

Theorem 3.5. Let µ ∈ Mk. A function f belongs to tkp(x) for almost
all points x of S if and only if

(3.9) µp(f ;Br(x)) = O(rk) as r → 0 for almost all x ∈ S.

If p =∞, (3.9) can be written as

(3.10) lim sup
h→0

|µh(f ;x)|
‖h‖k

<∞ for almost all x ∈ S.

For µh = ∆k
h and measurable functions on R the last result gives Marcin-

kiewicz and Zygmund’s classical theorem [15]. In [16], these authors ex-
tended their result to µh with µ ∈M2 and asked about the case of µ ∈Mk

with k ≥ 2 (see, e.g. [20, p. 7]). A positive answer in the general case fol-
lowing from Theorem 3.4 was announced in [11] and proved in [12].

Another consequence of Theorem 3.5 is the next result given by M. Weiss
[18] in the one-dimensional case. To formulate it, we recall that a function
f ∈ Lloc

p (Rd) has the symmetric (k, p)-differential at x0 if the associated

symmetric function f̂(x) := 1
2(f(x0 +x)− (−1)kf(x0−x)) belongs to tkp(0).

Corollary 3.1. If f has the symmetric (k, p)-differential at all x ∈ S,
then it has the Peano (k, p)-differential at almost all x ∈ S.

Theorem 3.6.

(a) If 0 < λ < k and λ is noninteger or λ = k, then f ∈ T λp (x) for
almost all x ∈ S if and only if

(3.11) µp(f ;Br(x)) = O(rλ) as r → 0 for almost all x ∈ S.

(b) For noninteger λ ∈ (0, k), f ∈ tλp(x) for almost all x ∈ S if and only
if

(3.12) µp(f ;Br(x)) = o(rλ) as r → 0 for almost all x ∈ S.

Moreover, f ∈ tkp(x) for almost all x ∈ S if and only if there exists a
family {mx}x∈S of homogeneous polynomials of degree k such that

(3.13)

{
1

|Br|

�

Br

|µh(f ;x)−mx(h)|p dh
}1/p

= o(rk) as h→ 0

for almost all x ∈ S.
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4. Proofs. Since Theorem 3.1 is a direct consequence of Theorems 3.2
and 3.4, one begins with Theorem 3.2. The other one, unlike the other
theorems, deals with the wider class of measures and therefore we postpone
its proof to the last subsection.

4.1. Proof of Theorem 3.2. By shifting and rescaling the required
inequality, (3.3) can be reduced to the case of B1 := B1(0), i.e., to the
inequality

Ek,p(f ;B1) := |B1|−1/pEk,p(f ;B1)

≤ C(µ, k, d)

{
1

|Bλ|

�

Bλ

‖µh(f)‖pLp((Bλ)h) dh
}1/p

where (Bλ)h := {x ∈ Bλ; x+ th ∈ Bλ for all t ∈ I(µ)}. We have

(Bλ)h ⊃ Bλ̃
for λ̃ := λ− |I(µ)|. By the definition of λ given below, λ̃ > 0 and λ > 1.

With these λ, λ̃ inequality (3.3) will follow from a stronger one,

(4.1) Ek,p(f ;B1) ≤ C(µ, k, d)
1

|Bλ|

�

Bλ

‖µh(f)‖Lp(Bλ̃) dh.

In fact, the mean on the right-hand side is bounded for p ≥ 1 by{
1

|Bλ|

�

Bλ

‖µh(f)‖pLp((Bλ)h) dh
}1/p

.

The choice of λ and λ̃ will be indicated at the end of the proof via an
intermediate constant λ0 given by

(4.2) λ0 := 3 + 2(|a(µ)|+ b(µ)) + (|a(µ)|+ b(µ))2.

To find the polynomial approximation giving (4.1) we need several aux-
iliary results.

Lemma 4.1. Let

ek(t) :=
1

(k − 1)!
(t+)k−1

where t+ := max{0, t} and

(4.3) v(t) := (ek ∗ µ)(t) =
�

R

ek(t− s) dµ(s).

Then

(a) supp v = I(µ);
(b) v(k) = µ (distributional derivative);
(c)

	
R v(t) dt = (−1)kc(µ)/k! 6= 0.
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Proof. (a) If t < a(µ) then t − s < 0 for s ∈ suppµ; therefore v(t) = 0.
Moreover, if t > b(µ) then t− s > 0 for s ∈ suppµ and

v(t) =
�

R

(t− s)k−1

(k − 1)!
dµ(s) = 0.

(b) Since (ek)
(k) = δ0, we obtain v(k) = δ0 ∗ µ = µ.

(c) We have

�

R

v(t) dt =
�

I(µ)

dt
�

R

ek(t− s) dµ(s) =
�

R

dµ(s)

b(µ)�

s

(t− s)k−1

(k − 1)!
dt

=
�

R

(b(µ)− s)k

k!
dµ(s) =

(−1)k

k!

�

R

sk dµ(s) =
(−1)k

k!
c(µ).

Now normalize v by setting

(4.4) V (t) :=
k!

(−1)kc(µ)
v(t+ 1 + |a(µ)|), t ∈ R.

Further, define a measure µ as the shift of µ by 1+ |a(µ)|, i.e., for f ∈ C(R),�

R

f(t) dµ(t) =
�

R

f(t+ 1 + |a(µ)|) dµ(t).

In particular, due to (2.5),

(4.4a) µh(f ;x) = µh(f ;x+ (1 + |a(µ)|)h))

and moreover

(4.4b) suppµ = suppµ+ (1 + |a(µ)|).
The previous lemma immediately implies

Lemma 4.2.

(a) suppV = [1, 1 + b(µ) + |a(µ)|].
(b) V (k) = µ.
(c)

	
R V (t) dt = 1.

Given f ∈ Lloc
1 (Rd) define a function ϕh, h ∈ Sd−1 := ∂B1, as follows:

assuming without loss of generality µ({0}) = 1, we write µ = δ0 − µ̂, i.e.,

µ̂({s}) = −µ({s}) if s 6= 0 and µ̂({0}) = 0.

Now set, for x ∈ Rd,

(4.5) ϕh(x) :=
�

R

V (t)
( �

R

f(x+ γsth) dµ̂(s)
)
dt

where

(4.6) γ :=
λ0 − 1

(b(µ) + |a(µ)|)(b(µ) + |a(µ)|+ 1)

with λ0 given by (4.2).
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Clearly, the linear operator Lh : f 7→ ϕh acts in the space of locally inte-
grable functions on Rd. We now check that Lh maps Lp(Bλ0) into Lp(B1).

If s ∈ suppµ ⊂ [a(µ), b(µ)] and t ∈ suppV then for ‖h‖ = 1 and ‖x‖ ≤ 1
one has

‖x+ γsth‖ ≤ 1 + γ|st| ≤ 1 + γ(b(µ) + |a(µ)|)(1 + b(µ) + |a(µ)|) = λ0,

i.e., (4.5) defines ϕh on B1 for every f ∈ Lp(Bλ0).

Lemma 4.3.

(a) The norm of the restriction of Lh to Lp(Bλ0), denoted by ‖Lh‖,
satisfies

‖Lh‖ ≤ C(µ).

(b) f − Lhf =
	
R V (t)µγth(f) dt.

(c) The kth directional derivative Dk
hLh(f), h ∈ B1, satisfies

(4.7) Dk
hLh(f ;x) = (−1)k−1

∑
s∈supp µ̂

µ({s})
(γs)k

µγsh(f ;x+ (1 + |a(µ)|)h).

Note that by the definition dist(0, supp µ̂) > 0 and therefore s in (4.7) is
separated from 0.

Proof. (a) and (b) are a matter of definitions.

(c) Write x = xhh + xh where h ∈ Rd and xh is orthogonal to h. Then
consider fx,h : xh 7→ f(xhh+ xh) where x ∈ B1 and h ∈ Sd−1.

We have

DhLh(f ;x) =
d

dxh

[ �

R2

V (t)fx,h(xh + γst) dµ̂(s) dt
]
.

Changing variables and differentiating we get

DhLh(f ;x) = −
�

R2

V ′(t)fx,h(xh + γst)
dµ̂(s)

γs
dt

=
∑

s∈supp µ̂

µ({s})
γs

�

R

V ′(t)f(x+ γsth) dt.

Iterating the differentiation k times and using at the last step assertions (b)
and then (a) of Lemma 4.2, we obtain (4.7).

At the next stage, define a linear operator Ph, ‖h‖ = 1, to be the Taylor
polynomial at 0 of degree k − 1 for the function (Lhf)x,h.

Then Phf for f ∈ Lloc
1 (Rd) is a polynomial in xh of degree k − 1 with

coefficients depending on xh; in particular, Ph acts in the space Lloc
1 (Rd).
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Lemma 4.4.

(a) Dk
hPhf = 0.

(b) For any h, h′ ∈ Sd−1,

PhPh′ = Ph′Ph.

(c) For every f ∈ Lp(Bλ0),

(4.8) ‖f − Phf‖Lp(B1) ≤
�

R

‖µth(f)‖Lp(Bλ1 ) dν(t);

here

dν := c(µ, k)[1suppV dt+ d|µ̂|] and λ1 := 3 + |a(µ)|.
Clearly, λ1 < λ0, see (4.2).

(d) Ph maps Lp(Bλ0) into Lp(B1) with norm

‖Ph‖ ≤ C(µ, k).

Proof. Assertions (a) and (b) are clear.
(c) Apply to (Lh)x,h the Taylor formula with integral remainder to obtain

‖(Lh − Ph)f‖Lp(B1) =
1

(k − 1)!

∥∥∥ xh�
0

τk−1Dk
hf((xh − τ)h+ xh) dτ

∥∥∥
Lp(B1)

≤ 1

(k − 1)!

1�

0

τk−1‖Dk
hf(x− τh)‖Lp(B1) dτ

≤
(

1

(k − 1)!

1�

0

τk−1 dτ

)
‖Dk

hf‖Lp(B2);

the last inequality follows from B1 − τh ⊂ B2 (as ‖τh‖ ≤ 1).
Now write, skipping the subscript Lp(B1),

‖f − Ph‖ ≤ ‖f − Lhf‖+ ‖(Lh − Ph)f‖ ≤ ‖f − Lhf‖+
1

k!
‖Dk

hf‖Lp(B2).

Estimating the terms on the right-hand side by (b) and (c) of Lemma
4.3, respectively, we obtain the bound

�

R

|V (t)| ‖µth(f)‖Lp(B1) dt

+
1

k!

∑
s∈supp µ̂

|µ({s})|
(γ|s|)k

‖µγsh(f ;x+ (1 + |a(µ)|)h)‖Lp(B2).

Since B2 + (1 + |a(µ)|)h ⊂ Bλ1 with λ1 := 3 + |a(µ)|, one concludes that
this is bounded by the right-hand side of (4.8), with

C(µ, k) :=
1

k!
sup

s∈supp µ̂

|µ({s})|
(γ|s|)k

.
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(d) Writing

‖Phf‖Lp(B1) ≤ ‖f − Phf‖Lp(B1) + ‖f‖Lp(B1)

and using (4.8) for the first summand, we get

‖Phf‖Lp(B1) ≤
�

R

‖µthf‖Lp(Bλ1 ) dν(t) + ‖f‖Lp(B1).

It remains to show that the norm in the integrand is bounded by
C(µ, k)‖f‖Lp(Bλ0 ). By definition of µh (see (2.5)),

‖µthf‖Lp(Bλ1 ) ≤
∑

s∈suppµ
|µ({s})| ‖f‖Lp(Bλ1+ sth)

and the result will follow from the embedding

(4.9) Bλ1 + sth ⊂ Bλ0 where t ∈ supp ν, s ∈ suppµ and ‖h‖ = 1.

In fact, supp ν = (suppV )∪(supp µ̂) ⊂ [1, 1+ |a(µ)|+b(µ)]∪ [a(µ), b(µ)],
i.e., |t| ≤ 1 + |a(µ)| + b(µ). Moreover, |s| ≤ |I(µ)| = |a(µ)| + b(µ), and
λ1 = 3 + |a(µ)|. This implies

λ1 + ‖tsh‖ ≤ 3 + 2(|a(µ)|+ b(µ)) + (|a(µ)|+ b(µ))2 = λ0

(see (4.2)). Assertion (d) is proved.

Let E = {ej}1≤j≤d be the standard orthonormal basis of Rd and

(4.10) n(k, d) := card{xα; |α| = k} =

(
k + d− 1

d− 1

)
.

Denote by Hk the class of finite subsets H ⊂ Sd−1 satisfying the conditions

(4.11) E ⊂ H and cardH = n(k, d).

Due to the Kemperman identity (see, e.g., [9, p. 170] for every α with
|α| = k there exists a subset H(α) ∈ Hk such that the α-derivatives sat-
isfy

(4.12) Dα =
∑

h∈H(α)

ahD
k
h.

Now set H(k) :=
⋃
|α|=kH(α). Define a linear operator P by

(4.13) P :=
∏

h∈H(k)

Ph.

Lemma 4.5.

(a) Pf ∈ Pk−1(Rd); in particular,

(4.14) Ek,p(f ;B1) ≤ ‖f − Pf‖Lp(B1).
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(b) The inequality

(4.15) ‖f − Phf‖ ≤ C
∑

h∈H(k)

�

R

‖µth(f)‖Lp(Bλ0 ) dν(t)

holds with a constant C = C(k, µ, d) and ν defined in (4.8).

Proof. (a) As PhPh′ = Ph′Ph one can write

P =
( ∏
h∈E

Ph

)( ∏
h∈H(k)\E

Ph

)
.

Since for g ∈ Lloc
1 (Rd), the function Phg with h = ej is a polynomial of

degree k − 1 in xj with coefficients depending only on xi, i 6= j, and the Ph
commute, the function

(∏
h∈E Ph

)
g is a polynomial in x ∈ Rd. Therefore

Pf is a polynomial too.

It remains to show that Pf ∈ Pk−1(Rd), i.e.,

(4.16) DαPf = 0 for every |α| = k.

Writing

Pf =
( ∏
h∈H(α)

Ph

)( ∏
h∈H(k)\H(α)

Ph

)
f

and using (4.12) one has

DαPf =
( ∑
h∈H(α)

ah(Dk
hPh)

)( ∏
h∈H(k)\H(α)

Ph

)
f.

Since Dk
hPh = 0 by definition of Ph, equality (4.16) is proved.

(b) Enumerate H(k) as {hj}1≤j≤n where n := cardH(k) = [card{α;
|α| = k}]2.

Further, let Pj denote Ph with h = hj and write

f − Pf = (f − P1f) + P1(f − P2f) + · · ·+
( ∏

1≤j<n
Pj

)
(f − Pnf).

Then write

(4.17)
( ∏

1≤i<j
Pi

)∣∣∣
Lp(B1)

=
∏

1≤i<j
Pij

where Pij is the restriction of Pi to Lp(Bλj−i−1
0

). The rescaled version of

Lemma 4.4 with B1 replaced by Br asserts that Pij acts from Lp(Bλj−i−1
0

)

into Lp(Bλj−i0
) with norm bounded by C(k, µ). Together with (4.17) this

implies

‖f − Pf‖Lp(B1) ≤ C(k, µ)n
∑

h∈H(k)

‖f − Phf‖Lp(B1).
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Finally we estimate the summands above by using (4.8) to obtain the re-
quired inequality (4.15) with C := C(k, µ)n and n = [card{α; |α| = k}]2 =(
k+d−1
d−1

)2
.

Let us now estimate each summand of (4.15),

(4.18) J(h) :=
�

R

‖µth(f)‖Lp(Bλ0 ) dν(t),

in order to obtain the final result (4.1). To this end we need the following
known fact (see, e.g., [2, Ch. III]).

Let dχ be the normalized Haar measure on the orthogonal group O(d))
acting on Rd. Then

(4.19)
�

O(d)

g(χ−1)(x) dχ =
1

σd

�

y∈Sd−1

g(‖x‖y) dy

where σd := volSd−1.
Note that inequality (4.15) also holds with the set χ−1(H(k)), χ ∈ O(d),

substituted for H(k) (with the orthonormal basis χ−1(E)={χ−1(ej)}1≤j≤d).
Hence,

Ek,p(f ;B1) ≤ C(k, µ, d)
∑

h∈H(k)

J(χ−1(h)).

Now integrate this over O(d) using (4.19) to get

Ek,p(f ;B1) ≤
C(k, µ, d)

σj
cardH(k)

�

‖y‖=1

J(y) dy.

Then use (4.18) to rewrite this as

Ek,p(f ;B1) ≤ C
�

R

dν(s)
�

‖y‖=1

‖µsy(f)‖Lp(Bλ0 ) dy

with C := (σd)
−1C(kµ, d) cardH(k).

Further, change variable in the inner integral by setting y = z/(t|s|) with
t satisfying

(4.20) 1/λ0 ≤ t ≤ 1

to obtain for this t and for all s ∈ supp ν the inequality

(4.21) Ek,p(f ;B1) ≤ C
�

R

dν(s)

(t|s|)d−1
�

‖z‖=t|s|

‖µt−1z(f)‖Lp(Bλ0 ) dz.

Lemma 4.6. For f ∈ Lp(Bλ0) and for t and s as above

(4.22) Ek,p(f ;B1/λ0) ≤ C
�

R

dν(s)

(t|s|)d−1
�

‖z‖=t|s|

‖µz(f)‖Lp(Bλ0 ) dz.
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Proof. One changes variables in (4.22) as follows. Due to the definition
(2.5) of µh,

µt−1z(f ;x) =
�

R

f(t−1[tx+ sz]) dµ(s) = µz(ft; tx)

where ft(x) := f(t−1x), x ∈ Btλ0 . Now change variables to get

‖µt−1z(f)‖Lp(Bλ0 ) = ‖µz(ft; tx)‖Lp(Bλ0 ) = t−d/p‖µz(ft)‖Lp(Btλ0 ).

Further, by scaling one has Ek,p(f ;B1) = t−d/pEk,p(ft;Bt).
Insert these in (4.21) to obtain

(4.23) Ek,p(ft;Bt) ≤ C
�

R

dν(s)

(t|s|)d−1
�

‖z‖=t|s|

‖µz(ft)‖Lp(Btλ0 ) dz.

Set g := (f |Btλ0 )t−1 . Then g ∈ Lp(Bλ0) and gt = f on Btλ0 . Moreover,
Btλ0 ⊂ Bλ0 and B1/λ0 ⊂ Bt as 1/λ0 ≤ t ≤ 1. Finally, replace f in (4.23) by
g to obtain the result.

One can now complete the proof of Theorem 3.2. Rescale the inequality
(4.23) to get

(4.24) Ek,p(f ;B1) ≤ C
�

R

dν(s)

(t|s|)d−1
�

‖z‖=t|s|

‖µz(f)‖Lp(Bλ20 )
dz.

Multiply (4.24) by t2d−2 and integrate in t over [1/λ0, 1] to obtain

1

2d− 1

(
1− 1

λd0

)
Ek,p(f ;Br)≤C

�

R

dν(s)

|s|d−1
1�

1/λ0

td−1 dt
�

‖z‖=t|s|

‖µz(f)‖Lp(Bλ20 )
dz.

Replace t by u = t|s| and set

m := min{|s|; s ∈ supp ν}, M := max{|s|; s ∈ supp ν}.
Then m ≤ |s| ≤M and therefore

Ek,p(f ;B1) ≤ C
var|ν|
md

M�

m/λ0

ud−1 du
�

‖z‖=u

‖µz(f)‖Lp(Bλ20 )
dz

≤ C
λ20�

0

ud−1du
�

‖z‖=u

‖µz(f)‖Lp(Bλ20 )
dz

= C
�

B
λ20

‖µz(f)‖Lp(Bλ20 )
dz <

C

|Bλ|

�

Bλ

‖µz(f)‖Lp(Bλ̃) dz.

This gives the required inequality (4.1) with λ̃ := λ20, λ := λ̃ + |I(µ)| and
C = C(µ, k, d). Theorem 3.2 is proved.
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4.2. Proof of Theorem 3.3. First, one will estimate the left-hand site
of (3.4) as

(4.25)
{ �

Rd
Ek,p(f ;Br(x))p dx

}1/p
≤ C

{ �

‖h‖≤r

‖µh(f)‖p
Lp(Rd)

dh
}1/p

.

This will be derived from inequality (3.3) that asserts that

(4.26) Ek,p(f ;Br(x)) ≤ C
{

1

|Br̂|

�

‖h‖≤r̂

‖µh(f)‖pLp((Bλr(x))h) dh
}1/p

;

here r̂ is the largest r such that (Bλr(x))h 6= ∅ if ‖h‖ ≤ r. Due to the
definition (2.12) of Gh, r̂ = λr/|I(µ)|, i.e., r̂ ≈ λr with constants depending
only on inessential parameters.

Hence, r̂ in (4.26) can be replaced by r. Moreover, (Bλr(x))h can be
replaced by Bλr for f ∈ Lp(Rd). Therefore, the left-hand side in (4.25) is
bounded by

C

{
1

|Bλr|

�

Rd
dx

�

‖h‖≤λr

‖µh(f)‖pLp(Bλr(x)) dh
}1/p

.

Now write the double integral as�

Rd
dx

�

‖h‖≤λr

dh
�

Bλr(x)

|µh(f ; y)|p dy =
�

‖h‖≤λr

dh
�

Bλr

dy
�

Rd
|µh(f ; y + x)|p dx

= |Bλr|
�

‖h‖≤λ

dh
�

Rd
|µh(f ; z)|p dz.

Hence, the left-hand side of (4.25) is bounded by a constant times

M(λr) :=
{ �

Bλr

‖µh(f)‖p
Lp(Rd)

dh
}1/p

.

To complete this part of the proof it remains to show that

(4.27) M(λr) ≤ CM(r)

with C = C(λ, µ, k, d). This will done later; for now, note that the reverse
inequality can be proved in the same vein.

In fact, µ annihilates Pk−1(Rd) and therefore{
1

|Br̂|

�

Br̂

‖µh(f)‖pLp(Br(x)h) dh
}1/p

≤ var|µ|Ek,p(f ;Br(x)).

Integrate the p-power of this inequality in x to obtain as above

(4.28) M(r) ≤ C
{ �

Rd
Ek,p(f ;Br(x))p dx

}1/p
=: CE(r).
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Together with the previously proven result this gives

(4.29) C1M(r) ≤ E(r) ≤ C2M(λr).

This shows that to prove (4.27) it suffices to establish an analogous
fact for E(r) with some λ > 1, say, λ = 3/2. In the following, it will
be convenient to replace in (4.29) the ball Br(x) by the cube Qr(x) :=
{y ∈ Rd; max1≤i≤d |yi − xi| ≤ r}. Clearly, this modification of E(r) denoted

by Ẽ(r) satisfies

(
√
d)−d/pE(r) ≤ Ẽ(r) ≤ (

√
d)d/pE(

√
d r).

Hence, it suffices to prove that

(4.30) Ẽ((3/2)r) ≤ C(k)Ẽ(r).

For this, we need the following.
A pair S1, S2 of measurable subsets in Rd is ε-linked, 0 < ε < 1, if

|S1 ∩ S2| ≥ ε|S1 ∪ S2|.
For such Sj and some constant C = C(k, d, ε) > 0 we have (see [4, Theo-
rem 2])

(4.31) Ek,p(f ;S1 ∪ S2) ≤ C
∑
j=1,2

Ek,p(f ;Sj).

Now cover Q(3/2)r(x) by its subcubes Qj = Qr(x+ xj), 1 ≤ j ≤ 2d, such

that Qj has one common vertex with Q(3/2)r(x). Then for every j,∣∣∣Qj ∩ ( ⋃
j′ 6=j

Qj
′
)∣∣∣ ≥ 1

2d

∣∣∣ 2d∑
j=1

Qj
∣∣∣.

Hence, applying (4.31) 2d times and then passing to the normalized local
approximation Ek,p one gets

Ek,p(f ;Q(3/2)r(x)) ≤ C
2d∑
j=1

Ek,p(f ;Qr(x+ xj)).

Finally, take the Lp(Rd)-norm of both sides to get (4.30).
Theorem 3.3 is proved.

4.3. Proof of Theorem 3.5. The result will be derived from Theorem
3.1 and the following fact [7, §2, Theorem 5].

Theorem A. A function f ∈ Lp(Rd) belongs to the Taylor class tkp(x)
for almost all points x of a set S of positive measure if and only if for almost
all x ∈ S,

(4.32) lim sup
r→0

Ek,p(f ;Br(x))

rk
<∞.
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Since the proof in [7, pp. 183–184] is distorted in translation, it will be
repeated at the end of this subsection.

Now let

(4.33) µp(f ;Br(x)) = O(rk)

for almost all x ∈ S, as assumed in Theorem 3.5. Due to Theorem 3.1 this
implies (4.32) for every density point x ∈ S. Since the set of density points of
S is of measure |S| by the Lebesgue theorem, (4.27) holds almost everywhere
on S. Hence, f ∈ tkp(x) for almost all x ∈ S.

Conversely, if f ∈ tkp(x) for x ∈ S, then

Ek,p(f ;Br(x)) ≤ C(x)rk

for small r > 0. As µp(f ;Br(x)) ≤ (varµ)Ek,p(f ;Br(x)), condition (4.33) holds
for such x.

The proof of Theorem 3.5 is complete.

Proof of Theorem A (2). We put

ϕ(x) := sup
n∈N
{2nkEk,p(f ;B2−n(x))}, x ∈ S.

Being the supremum of a sequence of measurable functions, ϕ is measurable,
and moreover it is finite almost everywhere on S by (4.32). Therefore, given
ε > 0 there is a subset Uε ⊂ S such that |S \Uε| < ε and γ := supx∈Uε ϕ(x)
<∞. Consequently, for r = 2−n, n = 0, 1, 2, . . . ,

(4.34) sup
x∈Uε

Ek,p(f ;Br(x)) ≤ γrk.

Increasing γ one can assume that (4.34) holds for 0 < r ≤ 1.
Using (4.34) one verifies that f ∈ tkp(x) for almost all x ∈ Vε ⊂ Uε where

Vε is such that |Uε\Vε| < ε. Since ε is arbitrary, it then follows that f ∈ tkp(x)
for almost all x ∈ S.

By the extension theorem of §4 in [5] (see (55) there) and Theorem 7
of the same section we deduce from (4.34) that on some subset Vε ⊂ Uε
such that |Uε \ Vε| < ε the function f coincides with the trace of a function
F ∈ Ck(Rd).

Now we interrupt the derivation to explain the results just referred to.

Comments. The cited extension theorem asserts (see [5] and [9] for a
more general result):

If (4.34) holds on a d-regular subset V ⊂ Rd, then f can be extended
to a function from Ck−1,1(Rd) or what is the same, from the Sobolev space
W k
∞(Rd).

(2) For the convenience of the reader, the results referred to within [7] are explained
in more detail.
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A measurable subset V ⊂ Rd is said to be (Ahlfors) d-regular if for some
constant γ > 0 and every ball Br(x) with x ∈ V and 0 < r ≤ 1,

(4.35) |V ∩Br(x)| ≥ γ|Br(x)|.

The Vε from the derivation of Theorem A is in fact a d-regular subset
of Uε. Its existence follows from the Lebesgue density point theorem as-
serting, in particular, that for almost all x ∈ Uε, (4.35) holds with some
γ = γ(x) > 0.

Theorem 7 of [7, §7] asserts that if f ∈ W k
∞(B1), then for every ε > 0

there exists a function fε ∈ Ck(B1) such that

|{x ∈ B1; f(x) 6= fε(x)}| < ε.

As without loss of generality the set S can be assumed to be a subset of B1,
these two theorems imply the stated result.

Now we put g := f −F and verify that this function belongs to tkp(x) for
almost all x ∈ Vε. In fact, by Theorem 1 of [7] (see Comments below) the
Taylor polynomial mx ∈ Pk−1(Rd) of f at x ∈ Uε exists and satisfies

‖f −mx‖Lp(Br(x)) = O(rk+d/p) if 0 < r ≤ 1.

But for x ∈ Vε this polynomial is also the Taylor polynomial at x for the
extension F . Hence,

(4.36) ‖g‖Lp(Br(x)) = O(rk+d/p) for all x ∈ Vε and 0 < r ≤ 1.

Due to the Calderón–Zygmund result [10, Theorem 10], (4.36) implies that
for almost every x ∈ Vε,

‖g‖Lp(Br(x)) = o(rk+d/p) as r → 0.

Then for the Taylor polynomial of F at x of degree k, denoted by m̃x, one
gets

‖f − m̃x‖Lp(Br(x)) ≤ ‖g‖Lp(Br(x)) + ‖F − m̃x‖Lp(Br(x)) = o(rk+d/p) as r → 0.

This means that f belongs to tkp(x) for almost all x ∈ Vε, as required in
Theorem 3.5.

Comments. The cited Theorem 1 asserts, in particular, that if (4.34)
holds, then f belongs to T kp (x) for almost all x ∈ Uε. This implies the

existence of the Taylor polynomial mx ∈ Pk−1(Rd) for f at almost all x ∈ Uε.

As the converse to the result just obtained is evident, Theorem A is
proved.

4.4. Proof of Theorem 3.6. The result will follow from [7, §1, The-
orems 3 and 4], giving the following description of Taylor classes via local
polynomial approximation.
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Theorem B. (a) Let 0 < λ < k be noninteger or λ = k. Then f ∈ T kp (x)
if and only if

(4.37) Ek,p(f ;Qr(x)) = O(rλ) as r → 0.

(b) Let 0 < λ < k be noninteger. Then f ∈ tλp(x) if and only if

(4.38) Ek,p(f ;Qr(x)) = o(rλ) as r → 0.

(c) If λ = k, then f ∈ tkp(x) if and only if there exists a family of
polynomials

(4.39) Mr,x(y) =
∑
|α|≤k

Cα(r, x)(y − x)α, y ∈ Rd, 0 < r ≤ 1,

such that

(4.40)

{
1

|Br|

�

Br(x)

|f(y)−Mr,x(y)|p dy
}1/p

= o(rk) as r → 0

and moreover the limits limr→0D
αMr,x (= limr→0Cα(r, x)) exist for all

|α| = k.

To derive assertion (a) of Theorem 3.6 we use first Theorem 3.1 for
f ∈ Lloc

p (Rd) satisfying the assumption

(4.41) lim sup
r→0

r−λµp(f ;Br(x)) <∞ a.e. on S.

This gives, for those f ,

lim sup
r→0

r−λEk,p(f ;Br(x)) <∞ a.e. on S.

Then assertion (a) of Theorem B implies that f ∈ T λp (x) a.e. on S. Assertion
(b) of Theorem 3.6 can be proved in the same vein using statement (b) of
Theorem B and the analog of (4.41) with o(1) as r → 0 on the right-hand
side.

Let now f ∈ Lloc
p (Rd) satisfy the assumption of Theorem 3.6(c), i.e., for

almost all x ∈ S there exists a family {mx}x∈S of homogeneous polynomials
of degree k such that

(4.42)

{
1

|Br|

�

Br(x)

|µh(f ; y)−mx(y)|p dy
}1/p

= o(rk) as r → 0.

Set Pα(x) := xα, x ∈ Rd. As µ is orthogonal to Pk−1(Rd) and c(µ) :=	
R t

k dµ(t) 6= 0, one gets

µh(Pα;x) =
�

R

(x+ th)α dµ(t) = c(µ)hα.
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Hence, for

mx(y) :=
1

c(µ)

∑
|α|=k

Cα(x)yα, y ∈ Rd,

we have

µh(mx) =
∑
|α|=k

Cα(x)hα = mx(h).

This and (4.42) imply that for almost all x ∈ S,{
1

|Br|

�

Br(x)

|µh(f ;x)−mx(h))|p dh
}

= o(rk) as r → 0.

By Theorem 3.2 this, in turn, gives

(4.43) Ek,p(f −mx;Br(x)) = o(rk) as r → 0

for almost all x ∈ S.

Let Pr,x be a polynomial of degree k − 1 such that{
1

|Br|

�

Br(x)

|(f(y)−mx(y))− Pr,x(y)|p dy
}1/p

= Ek,p(f −mx;B1(x)).

Set Mr,x := Pr,x + mx; then by (4.42) and (4.43) the family {Mr,x}x∈S
satisfies {

1

|Br|

�

Br(x)

|f(y)−Mr,x(y)|p dy
}1/p

= o(rk) as r → 0,

and moreover

lim
r→0

DαMr,x = Dαmx = Cα(x)
α!

c(µ)
, |α| = k,

for almost all x ∈ S.
Hence, the assertion of Theorem B(c) holds for f at almost all points

of S and therefore f ∈ tkp(x) at those points. The proof of Theorem 3.6 is
complete.

4.5. Proof of Corollary 3.1. If f has the symmetric (k, p)-differential
at x, then by definition there exists a (Taylor) polynomial, say, Tx(y) :=∑
|α|≤k Cα(x)(y − x)α, y ∈ Rd, such that

(4.44)

{
1

|Br|

�

Br(x)

|f̂x(y)− Tx(y)|p dy
}1/p

= o(rk) as r → 0;

here f̂x(y) := 1
2(f(x+ y)− (−1)kf(x− y)) for y ∈ Rd.
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Let µ := 1
2(∆k

1−(−1)k∆k
−1). i.e., µh(f ;x) = 1

2(∆k
hf(x)−(−1)k∆k

−hf(x)).

Since µh(f ;x) = ∆k
h(f̂x; y)|y=0 and

mx(h) := ∆k
h(Tx(y))|y=0 = k!

∑
|α|=k

Cα(x)hα,

one gets{
1

|Br|

�

Br(x)

|µh(f ;x)−mx(h)|p dh
}1/p

=

{
1

|Br|

�

Br(x)

|∆k
h((f̂x; y)− Tx(y))|y=0|p dh

}1/p

.

Due to (4.44) and the assumption of the corollary, the right-hand side is
o(rk) as r → 0 for almost all s ∈ S.

Hence, f satisfies the condition of Theorem 3.6(a) and therefore f ∈ tkp(x)
for almost every x ∈ S.

4.6. Proof of Theorem 3.4. One should compare the behavior at
points of S with 0 < |S| ≤ ∞ of two µ-characteristics of f ∈ Lloc

p (Rd),
1 ≤ p ≤ ∞, namely

(4.45a) µ̃p(f ;Br(x)) :=

{
1

|Br|

�

Br

‖µh(f, ·)‖pLp(Br(x)h) dh
}1/p

and

(4.45b) µp(f ;Br(x)) :=
{ �

Br

|µh(f ;x)|p dh
}1/p

;

see (2.15) and (2.14), respectively. Recall that µ now belongs to the class
M of discrete measures on R satisfying only the conditions

(4.46) 0 ∈ suppµ and 1 < card(µ) <∞.
Since Theorem 3.4 is invariant with respect to dilation h 7→ λh, λ > 0,

assume without loss of generality that |I(µ)| > 1.
We will also use an intermediate difference characteristic of f given by

(4.47) µp(f ;S;x; r, r′) :=

{
1

|Br| |Br′ |

�

Sr(x)

dy
�

Br′

|µh(f ; y)|p dh
}1/p

where Sr(x) := S ∩ Br(x). We will omit S in (4.47) if S = Rd, and x if
x = 0.

Lemma 4.7. There is a positive constant C = C(d, p) such that

(4.48) µp(f ;S;x; r, r′) ≤ C sup
y∈Sr(x)

µp(f ;S; y; r′, r′) for 0 < r′ ≤ r.
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Proof. It suffices to consider the case of x = 0; therefore x will be omitted
from the corresponding notations. Let {xi} be a maximal r′-separated set
in Br′ . Since the distances between the points xi are r′ or more, the open
balls Br′/2(x

i) are pairwise disjoint. Moreover, every such ball is contained
in Br+r′/2 ⊂ B(3/2)r and therefore

N := card {Br′/2(xi)}i ≤
|B(3/2)r|
|Br′ |

=

(
3

2

)d |Br|
|Br′ |

.

Finally, due to maximality of the r′-separated set, the doubled balls Br′(x
i)

cover Br. Therefore

[µp(f ;S; r, r′)]p

=
1

|Br| |Br′ |

�

Sr

dy
�

Br′

|µh(f ; y)|p dh ≤ 1

|Br| |Br′ |

N∑
i=1

�

Sr′ (x
i)

dy
�

Br′

|µh(f ; y)|p dh

≤ |Br
′ |

|Br|

N∑
i=1

[µp(f ;S;xi; r′, r′)]p ≤
(

3

2

)d
sup
y∈Sr

[µp(f ;S; y; r′, r′)]p.

This proves the inequality (4.48).

Lemma 4.8. Let µ, ν ∈ M and let x be a density point of S. There are
positive constants r0 = r0(x) and C = C(µ, ν), C ′ = C ′(p, d, µ, ν) such that

(4.49) νp(f, x; r, r′) ≤ C ′{νp(f ;S;x;Cr, r′) + µp(f ;S;x;Cr, r)}

for 0 < r′ ≤ r ≤ r0.

Note that the left-hand side, in contrast to the right-hand one, is inde-
pendent of S.

Proof. Once again assume that x = 0 and omit x from notation. Let
suppµ := {t1, . . . , tm}, and supp ν := {s1, . . . , sm}, m, n > 1. For the com-
position of the difference operators νh and µg, h, g ∈ Rd, one then gets the
evident identity

(4.50) νh(f ; y) =
1

µ({tm})
(µgνh − νhµ̃g)(f ; y − tmg)

with µ̃ := µ− µ({tm})δtm . This will be used later in the proof.

Define the following subsets of Br:

Fi := Fi(y, h, r) =
(
t−1m (y + sih)− t−1m S

)
∩Br, 1 ≤ i ≤ n,

Hi := Hi(y, h, r) =
(
(tm − ti)−1y − (tm − ti)−1S

)
∩Br, 1 ≤ i ≤ m− 1.

We claim that the measure of each of Fi, Hi is equivalent as r → 0 to the
measure of Br uniformly in y, h ∈ Br.
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In fact, since x = 0 is a density point for S, for Sc := Rd \ S and some
function ϕ(r)→ 0 as r → 0 one has

|Sc ∩Br| = ϕ(r)|Br|.
Each Fi and each Hi is of the form D = (αy+βh+ kS)∩Br. As Dc ∩Br =
(αy+βh+kSc)∩Br, for y, h ∈ Br one has Dc∩Br−(αy+βh) ⊂ (kSc)∩Blr
where l := |α|+ |β|+ 1.

Therefore, |Dc ∩Br| ≤ |k|dϕ(lr)|Blr| = (|k|l)dϕ(lr)|Br|. Since the right-
hand side tends to 0 as r → 0 uniformly in y, h, the claim follows.

Consider further the set

J = J(y, h, r) :=
( n⋂
i=0

Fi

)
∩
(m−1⋂
i=0

Hi

)
.

It follows from the claim above that for some r0 > 0 and all 0 < r ≤ r0,
1
2 |Br| ≤ |J | ≤ |Br|.

Due to the definition of J , for some C = C(ν, µ) > 0, and every y ∈ Br and
z ∈ J ,

(4.51) y−tmz+sih ∈ SCr, i ≤ n, and y−(tm−ti)z ∈ SCr, i ≤ m−1.

Now we return to the proof of the lemma, first for 1 ≤ p <∞.

Applying the Hölder inequality to (4.50) one gets

|νh(f ; y)|p ≤ (C1)
p
{ n∑
i=1

|µt(f ; y − tmz + sih)|p(4.52)

+

m−1∑
i=1

|νh(f ; (y − tm − ti)z)|p
}

with some C1 = C1(µ, ν). Integration in z over J gives

1

2
|Br| |νh(f ; y)|p ≤ (C1)

p
( ∑
s∈supp ν

�

J

|µz(f ; y − tmz + sh)|p dz

+
∑

t∈supp µ̃

�

J

|νh(f ; y − (tm − t)z)|p dz
)
.

The change of variables u = y − tmz + sih (with Jacobian 1) gives, for
0 < r′ ≤ r ≤ r0,
�

Br′

dh
( �

Br

dy
�

J

|µz((f ; y − tmz + sh)|p dz
)

≤
�

Br′

dh
( �

SCr

du
�

Br

|µz(f ;u)|p dz
)

= |Br′ |{|BCr| |Br|[µp(f ;S;Cr, r)]p}.
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Similarly,

�

Br′

dh
( �

Br

dy
�

J

|νh((f ; y − (t− sh)z)|p dz
)

≤
�

Br′

dh
( �

SCr

du
�

Br

|νh(f ;u)|p dz
)

= |Br|{|Br′ | |BCr|[νp(f ;S;Cr, r′)]p}.

Therefore, for 0 < r′ ≤ r ≤ r0 and p <∞ one has the required inequality

νp(f ; r, r′) ≤ C ′{νp(f ;S;Cr, r′) + µp(f ;S;Cr, r)}

with C ′ = [2(m+ n− 1)]1/pC1C
d/p.

Now let p =∞. If y ∈ Br, h ∈ Br′ and 0 < r′ ≤ r ≤ r0, then for z ∈ Fi
the point y − tmz + sih is in SCr (see (4.51)); therefore,

|µz(f ; y − tmz + sih)| ≤ µ∞(f ;S;Cr, r).

Similarly, if t ∈ Hi then y − (tm − ti) ∈ SCr and so

|νh(f ; y − (tm − si)z)| ≤ ν∞(f ;S;Cr, r′).

Inequality (4.52) for p = 1, together with the two just proved, gives, for
z ∈ J ,

ν∞(f ; r, r′) ≤ C ′{ν∞(f ;S;Cr, r′) + µ∞(f ;S;Cr, r)}.

The proof of Lemma 4.8 is complete.

Now we return to the proof of Theorem 3.4. Since ω is a majorant, one
gets, for some C = C(ω) > 1,

(4.53)

lim sup
k∈N
k→∞

µp(f ;B2−k(x))

ω(2−k)
≤ lim sup

r→∞

µp(f ;Br(x))

ω(r)
≤ C lim sup

k∈N
k→∞

µp(f ;B2−k(x))

ω(2−k)
.

Hence, in the proof one can replace the upper limit for r → 0 by that for
k →∞ (k ∈ N).

Now set

S0 :=

{
x ∈ S; lim

k→∞

µp(f ;B2−k(x))

ω(2−k)
= 0

}
,

S1 :=

{
x ∈ S; 0 < lim sup

k→∞

µp(f ;B2−k(x))

ω(2−k)
<∞

}
.

By the assumption of the theorem, S = S0 ∪ S1.

These two subsets can be represented as follows. First given m,n ∈ N,
define
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S0
m,n :=

{
x ∈ S; sup

k≥n

µp(f ;B2−k(x))

ω(2−k)
<

1

m

}
,

S1
m,n :=

{
x ∈ S; 2m ≤ lim sup

k→∞

µp(f ;B2−k(x))

ω(2−k)
and

sup
k≥n

µp(f ;B2−k(x))

ω(2−k)
< 2m+1

}
.

Then it is a matter of definition that for some functions N 3 m 7→ n(m) ∈ N,

(4.54) S0 =
⋂
m∈N

⋃
n≥n(m)

S0
m,n and S1 =

⋃
m∈Z

⋂
n≥n(m)

S1
m,n.

Now we show that for density points x of S0,

(4.55) lim
r→0

µ̃p(f ;Br(x))

ω(r)
= lim

r→0

µp(f ;Br(x))

ω(r)
= 0,

i.e., the required inequality (3.6) is true for those x. To this end take y ∈ S0
m,n

and k ≥ n. By definition, µp(f ;B2−k(y)) < 1
mω(2−k). Raising this to the

power p, integrating in y over Br(x) ∩ S0
m,n with x ∈ S0

m,n and using (4.47)
one obtains

µp(f ;S0
m,n;x; 2−k, 2−k) ≤ 1

m
ω(2−k)|B2−k |−1/p.

Together with Lemma 4.7 this implies that for 0 < r′ ≤ r ≤ 2−n with
sufficiently large n,

µp(f ;S0
m,n;x; r, r′) ≤ C1

1

m
ω(r′)|Br′ |−1/p

where C1 is independent of r, r′ and f .

Now let x be a density point of S0
m,n. Lemma 4.8 applied to the case

ν = µ gives, for such x, r, r′,

µp(f, x; r, r′) ≤ C2{µp(f ;S0
m,n;x;Cr, r′) + µp(f : S0

m,n;x;Cr, r)}

≤ 2C1C2ω(r)
1

m
|Br′ |−1/p.

Recall that C1 and C2 depend only on µ, d, p. Hence, for almost all x ∈ S0
m,n,

(4.56) lim sup
r→0

µp(f, x; r, r)|Br|1/p

ω(r)
≤ 2C1C2

1

m
.

Moreover, since c := |I(µ)| ≥ 1,

(4.57) µ̃p(f ;Br(x)) ≤ cd/p|Br|1/pµp(f ;x; r, r),

In fact, by (4.45b), (4.47) and the equality (Br(x))h = ∅ for ‖h‖ > r/c,
one gets
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µ̃p(f ;Br(x)) =

{
1

|Br|

�

Br/c

‖µh(f ; ·)‖pLp((Br(x))h) dh
}1/p

≤
{

1

|Br|

�

Br/c

dh
�

Br(x)

|µh(f ; y)|p dy
}1/p

≤ cd/p
{

1

|Br|

�

Br

dh
�

Br(x)

|µh(f ; y)|p dy
}1/p

= cd/p|Br|1/pµp(f, x; r, r).

Combining inequalities (4.56), (4.57) and letting m → ∞ one then ob-
tains, for a.e. x ∈ S0,

lim
r→0

µ̃p(f ;Br(x))

ω(r)
= lim

r→0

µp(f ;Br(x))

ω(r)
= 0.

This proves (4.55).
Further one proves the required inequality (3.6) for almost all points

of S1. Let x, y ∈ S1
m,n and k ≥ n. By definition of this subset,

µp(f ;B2−k(y)) ≤ 2m+1ω(2−k) ≤ 2ω(2−k) lim sup
i→∞

µp(f ;B2−i(x))

ω(2−i)
.

Integrating the power p of this inequality in y over B2−k(x) ∩ S1
m,n we

get

µp(f ;S1
m,n;x; 2−k, 2−k) ≤ 2m+1ω(2−k)

≤ 2ω(2−k)|B2−k |−1/p · lim sup
i→∞

µp(f ;B2−i(x))

ω(2−i)
.

Now we use the argument for (4.55) to obtain, for a density point x of
S1
m.n and sufficiently small 0 < r′ ≤ r, the inequality

µp(f, x; r, r′) ≤ Cω(r)|Br′ |−1/p · lim sup
r→0

µp(f ;Br(x))

ω(r)

with C independent of f and r. Finally, using (4.57) we get

lim sup
r→0

µ̃p(f,Br(x))

ω(r)
≤ C lim sup

r→0

µp(f ;Br(x))

ω(r)

for almost all x ∈ S1
m,n, hence, for almost all x ∈ S1 as well (see (4.54)).

The proof of Theorem 3.4 is complete.
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