
STUDIA MATHEMATICA 214 (3) (2013)

Fourier transform of Schwartz functions
on the Heisenberg group

by

Francesca Astengo (Genova), Bianca Di Blasio (Milano),
and Fulvio Ricci (Pisa)

Abstract. Let H1 be the 3-dimensional Heisenberg group. We prove that a modi-
fied version of the spherical transform is an isomorphism between the space Sm(H1) of
Schwartz functions of type m and the space S(Σm) consisting of restrictions of Schwartz
functions on R2 to a subset Σm of the Heisenberg fan with |m| of the half-lines removed.
This result is then applied to study the case of general Schwartz functions on H1.

1. Introduction. One of the most important properties of the Fourier
transform F in Rn is that F(S(Rn)) = S(Rn), and F is an isomorphism.
The relative closeness between the Heisenberg group Hn and Rn in many
aspects of harmonic analysis raises the question whether a similar property
holds in the Heisenberg group setting. A characterization of the image of the
Schwartz space S(Hn) under the group Fourier transform FHn was given by
D. Geller [6] in terms of “asymptotic series”.

Taking n = 1 for simplicity, the Fourier transform FH1f of an integrable
function f can be viewed as a scalar-valued function of several variables.
The main variable, denoted by λ ∈ R, defines a character on the center.
Two further variables then come out, varying in R if λ = 0 and in N if
λ 6= 0; the latter will be denoted as (j, k). Most of the work concerns the
description of FH1f on the set where λ 6= 0, since the case λ = 0 follows by
combining density with our previous result in [1] (see Remark 4.6).

The deep study developed by Geller [6] showed that the “Schwartzness”
of the image FH1(S(H1)) relies on a set of rapid decay estimates holding
when appropriate differential-difference operators are applied to FH1f .

This type of analysis emphasizes a preliminary decomposition of the
function f into m-types, i.e. f =

∑
m∈Z fm, where fm(eiθz, t) = eimθf(z, t)

for every eiθ ∈ T, z ∈ C, t ∈ R.
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Functions which are radial in the variable z, i.e., with m = 0, play a
special rôle, and their Fourier transform is supported (for λ 6= 0) on the set
of triples (λ, j, k) with j = k. Functions of type 0 form a commutative alge-
bra, and their Fourier transforms coincide with their spherical transforms,
according to the general theory of Gelfand pairs.

The work of C. Benson, J. Jenkins and G. Ratcliff [3] on the character-
ization of spherical transforms of K-invariant Schwartz functions on Hn for
general Gelfand pairs (K nHn,K) is a considerable refinement of Geller’s
results in the presence of different kinds of invariance.

More recently [2], we have obtained a description of spherical transforms
of K-invariant Schwartz functions, of a completely different nature than that
of Benson, Jenkins and Ratcliff, and more reminiscent of the original result
on Rn. Restricting again ourselves to type-0 functions on H1, the variables
(λ, j) are parameters describing an intrinsic object,

Σ∗ = {(ξ, λ) ∈ R2 : λ 6= 0, ξ = |λ|(2j + 1), j ∈ N},
whose closure Σ is called the Heisenberg fan. The set Σ is, at the same time,
the Gelfand spectrum of the algebra of type-0 L1-functions, and the joint L2-
spectrum of the sublaplacian L and the symmetrized central derivative i−1T .

The main theorem of [1] says that, regarding spherical transforms as
functions defined on the Heisenberg fan Σ, the image under the spherical
transform of type-0 Schwartz functions is the space of Schwartz functions
on Σ (meant as restrictions of Schwartz functions on R2).

In this paper we give an extension of this result to general Schwartz
functions on H1.

We first consider Schwartz functions of type m (Section 3) and show that
a modified version G̃m of the spherical transform is an isomorphism between
Sm(H1) and S(Σm), where Σm is obtained from Σ by removing |m| of the
half-lines in Σ∗.

In Section 4 we associate to a general function f ∈ S(H1) the sequence
{G̃mfm}m∈Z, where fm is the m-type component of f .

This leads to introducing the space S of sequences G = {Gm}m∈Z with
Gm ∈ S(Σm). We introduce a Fréchet space structure on S which makes it
isomorphic to S(H1). The family of norms on S that gives this isomorphism
does not look as a natural combination of quotient norms of the various
components, but it brings together features that are already present in [3]
and [1].

It would be natural to ask if the various entries Gm of an element G of S
admit Schwartz extensions G#

m to R2 such that ψm(reiθ, t) = eimθG#
m(r2, t)

are the m-types of a single Schwartz function ψ on C × R. In this case,
a single Schwartz function would subsume all information about the Fourier
transform of a given Schwartz function on H1.
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The result in Theorem 4.3 below goes in this direction.
Even though we have restricted ourselves to H1, we do not expect major

difficulties in extending these results to Hn, with the m-types (m ∈ Zn)
defined in terms of the action of the torus Tn and the Heisenberg fan replaced
by the Heisenberg brush in Rn+1.

2. Preliminaries

2.1. Notation and basic facts. We regard the Heisenberg group H1

as C× R with the product

(z, t)(z′, t′) =
(
z + z′, t+ t′ − 1

2 Im(zz′)
)
.

The left-invariant vector fields

X = ∂x −
y

2
∂t, Y = ∂y +

x

2
∂t,

Z = 1
2(X − iY ), Z̄ = 1

2(X + iY )

satisfy the commutation rules [X,Y ] = ∂t = T and [Z, Z̄] = iT/2. The
vector field T is central.

The sublaplacian L, defined as L = −(X2+Y 2) = −2(ZZ̄+Z̄Z), satisfies
the commutation rules

[L, Z] = 2iTZ, [L, Z̄] = −2iT Z̄.

The basics of Fourier analysis on H1 are developed, e.g., in [9]. The
relevant aspects needed below can be condensed in the inversion formula
and in the Plancherel formula,

(2.1)

f(z, t) =
1

4π2

∞�

−∞

∑
j,k∈N

f̂(λ, j, k)Φλj,k(z, t)|λ| dλ,

‖f‖22 =
1

4π2

�

R

∑
j,k∈N

|f̂(λ, j, k)|2|λ| dλ,

where

f̂(λ, j, k) =
�
f(z, t)Φλj,k(z, t) dz dt

and the matrix-valued functions Φλ(z, t) = (Φλj,k(z, t))j,k are defined for
λ 6= 0 and represent the infinite-dimensional irreducible representations of
H1 in a convenient orthonormal frame in the representation space (the Her-
mite functions in the Schrödinger model, the monomials in the Bargmann–
Fock model).

The functions Φλj,k have the following properties:

(i) Φ−λj,k (z, t) = Φλj,k(z̄,−t);
(ii) for λ > 0, Φλj,k(z, t) = Φ1

j,k(
√
λ z, λt);
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(iii) with L
(m)
k denoting the Laguerre polynomial of orderm and degree k

(cf. [9]),

Φ1
j,k(z, t) =

{
eite−|z|

2/4z̄j−kL
(j−k)
k (|z|2/2), j ≥ k,

eite−|z|
2/4(−z)k−jL(k−j)

j (|z|2/2), j < k;

(iv) LΦλj,k = |λ|(2k + 1)Φλj,k and TΦλj,k = iλΦλj,k;
(v)

ZΦλj,k =

{
−
√
kλ/2Φλj,k−1, λ > 0,√

(k + 1)|λ|/2Φλj,k+1, λ < 0,

Z̄Φλj,k =

{√
(k + 1)λ/2Φλj,k+1, λ > 0,

−
√
k|λ|/2Φλj,k−1, λ < 0.

For f ∈ S(H1), the following identities follow from (iv) and (v):

(2.2) L̂f(λ, j, k) = |λ|(2k + 1)f̂(λ, j, k), T̂ f(λ, j, k) = −iλf̂(λ, j, k),

and, for every positive integer r,

(2.3)

Ẑrf(λ, j, k) =



0, λ > 0, k ≤ r − 1,√
r−1∏
`=0

1
2λ(k − `) f̂(λ, j, k − r), λ > 0, k ≥ r,

(−1)r

√
r∏
`=1

1
2 |λ|(k + `) f̂(λ, j, k + r), λ < 0, k ≥ 0,

(2.4)

̂̄Zrf(λ, j, k) =


(−1)r

√
r∏
`=1

1
2λ(k + `) f̂(λ, j, k + r), λ > 0, k ≥ 0,

0, λ < 0, k ≤ r − 1,√
r−1∏
`=0

1
2 |λ|(k − `) f̂(λ, j, k − r), λ < 0, k ≥ r.

2.2. Schwartz spaces. On the Schwartz space S(Rn) (for us Rn will
be either R2 or C×R, the latter meant also as the underlying space of H1)
we consider the following family of norms, parametrized by a nonnegative
integer p:

(2.5) ‖f‖(p,Rn) = max
N+α≤p

sup
x∈Rn

(1 + |x|)N |∂αf(x)|.

Lemma 2.1. Let A(z, t) = |z|2/4 + it. Then the family of norms on
S(H1),
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(2.6) ‖f‖(p,H1) = max
2a+2b≤p

‖LbAaf‖2, p ∈ N,

is equivalent to the family {‖f‖(p,C×R)}p∈N .

Proof. It is well-known that on Rn the family (2.5) can be replaced by
the equivalent family

(2.7) ‖f‖[p] = max
|α|+|β|≤p

‖xα∂βf‖2, p ∈ N.

It is known as well that, on a nilpotent group, the partial derivatives in (2.7)
can be replaced by products of left-invariant vector fields in some basis of
the Lie algebra [5]. This reduces matters to showing the equivalence of the
family (2.6) with

(2.8) ‖f‖[p],H1
= max

2k+2`+m+n+2q≤p

∥∥|z|2k|t|`ZmZ̄nT qf∥∥
2
, p ∈ N.

On the other hand, by the L2-boundedness of the Riesz transforms as-
sociated with L, the family (2.6) is equivalent to

(2.9) ‖f‖∗(p,H1) = max
2a+m+n+2q≤p

‖ZmZ̄nT qAaf‖2, p ∈ N.

We show that, for each p ∈ N, the pth norm in (2.8) is equivalent to the
pth norm in (2.9).

Using the identities

(2.10)
[Z,A] = z̄/2, [Z̄,A] = 0, [T,A] = i,

[Z, z̄] = [T, z̄] = 0, [Z̄, z̄] = 1,

it is easy to verify that the pth norm (2.9) is controlled by the pth norm
(2.8).

To show the converse, we proceed by induction. The cases p = 0, 1, 2 are
obvious. Assume that, for p ≥ 2 even, the pth norm (2.8) is controlled by
the pth norm (2.9). Consider one of the quantities

∥∥|z|2k|t|`ZmZ̄nT qf∥∥
2

on
the right-hand side of (2.8) with 2k + 2`+m+ n+ 2q = p+ 1.

If m+n+ 2q = 0, i.e., there are no derivatives, it is sufficient to observe
that |z|2k|t|` ≤ CpAk+`. Suppose therefore that m+ n+ 2q > 0.

Assume first that q > 0. Applying the inductive hypothesis to Tf , we
obtain (1)∥∥|z|2k|t|`ZmZ̄nT qf∥∥

2
≤ C max

2a′+m′+n′+2q′≤p
‖Zm′Z̄n′T q′Aa′Tf‖2.

It is then sufficient to apply the identity [Aa′ , T ] = −ia′Aa′−1, which follows
from (2.10).

(1) We shall use C to denote a positive constant which may vary from line to line.
When it is relevant, dependence of such constants upon parameters of interest will be
indicated through the use of subscripts.
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If q = 0 and n > 0, we apply the inductive hypothesis to Z̄f and (2.10)
to obtain∥∥|z|2k|t|`ZmZ̄nf∥∥

2
≤ C max

2a′+m′+n′+2q′≤p
‖Zm′Z̄n′+1T q

′Aa′f‖2 ≤ ‖f‖∗(p+1,H1).

In the last case, q = n = 0 and m > 0, we apply the inductive hypothesis
to Zf . By (2.10), we have∥∥|z|2k|t|`Zmf∥∥

2
≤ C max

2a′+m′+n′+2q′≤p
‖Zm′Z̄n′T q′Aa′Zf‖2

≤ C max
2a′+m′+n′+2q′≤p

(
‖Zm′Z̄n′T q′ZAa′f‖2 + a′‖Zm′Z̄n′T q′ z̄Aa′−1f‖2

)
≤ C‖f‖∗(p+1,H1) + C max

2a′+m′+n′+2q′≤p
‖Zm′Z̄n′T q′ z̄Aa′−1f‖2.

By (2.10), for g ∈ S(H1),

Zm
′
Z̄n
′
T q
′
z̄g = z̄Zm

′
Z̄n
′
T q
′
g + n′Zm

′
Z̄n
′−1T q

′
g.

Therefore, if a′ ≥ 1, we can again use the inductive hypothesis with g =
Aa′−1f .

Remark 2.2. It is easy to verify that, when p is even, the norms (2.6)
and (2.9) are equivalent. Moreover using the commutation rules of the vector
fields Z and Z̄, it is easy to show that for every nonnegative integer p,

Cp‖f‖[p],H1
≤ ‖f̄‖[p],H1

≤ C ′p‖f‖[p],H1
∀f ∈ S(H1).

Therefore, arguing as in the proof of Lemma 2.1 we deduce that for every
nonnegative integer p there exist positive constants Cp and C ′p such that

(2.11) Cp max
2a+2b≤p

‖LbAaf‖2 ≤ max
2a+2b≤p

‖LbĀaf‖2 ≤ C ′p max
2a+2b≤p

‖LbAaf‖2.

2.3. Functions of type m. We say that a function f of z ∈ C (or of
(z, t) ∈ C× R) is of type m ∈ Z if f(eiθz) = eimθf(z).

We need the following version of Hadamard’s division lemma. For its
proof we refer to [4, Lemma 5.3].

Lemma 2.3. Let s be a positive integer and u be a function in S(R2)
such that ∂αξ u(0, λ) = 0 for every α = 0, . . . , s−1 and for every real λ. Then

there exists a function v in S(R2) such that

u(ξ, λ) = ξsv(ξ, λ) ∀(ξ, λ) ∈ R2.

Proposition 2.4. For F in S(C× R) and m in Z, denote by

(2.12) ΘmF (ζ, λ) =
1

2π

2π�

0

F (eiθζ, λ)e−imθ dθ
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the m-type component of F . Then ΘmF is in S(C× R) and the following
properties hold:

(1) ‖ΘmF‖(p,C×R) ≤ C`(1 + |m|)−` ‖F‖(p+2`,C×R) for any nonnegative
integers p and `, so that the series

∑
mΘmF converges to F in

S(C× R);
(2) for every integer m there exists a function Fm in S(R2) such that

ΘmF (ζ, λ) =

{
ζm Fm(|ζ|2, λ), m ≥ 0,

ζ̄ |m| Fm(|ζ|2, λ), m < 0.

Proof. It is easy to check that when m 6= 0,

ΘmF (ζ, λ) =
(−im)−`

2π

2π�

0

d`

dθ`
F (eiθζ, λ)e−imθdθ ∀(ζ, λ) ∈ C× R,

from which the estimate in (1) follows easily.

As for (2), suppose that m > 0 and denote by um the function ΘmF
restricted to R2, i.e.

um(ξ, λ) = ΘmF (ξ, λ) =
1

2π

2π�

0

F (eiθξ, λ)e−imθ dθ ∀(ξ, λ) ∈ R2.

It is easy to verify that ∂αξ um(0, λ) = 0 for every α = 0, . . . ,m−1 and every

real λ. Thus by Lemma 2.3 there exists vm in S(R2) such that

ΘmF (ξ, λ) = um(ξ, λ) = ξmvm(ξ, λ) ∀(ξ, λ) ∈ R2.

On the other hand, for real ξ,

ΘmF (eiθξ, λ) = eimθum(ξ, λ) = eimθξmvm(ξ, λ).

In particular if θ = π we obtain

vm(−ξ, λ) = vm(ξ, λ) ∀(ξ, λ) ∈ R2.

By the Whitney–Schwarz Theorem (see [2, Theorem 6.1] for the case of
Schwartz functions) there exists a function Fm in S(R2) such that

vm(ξ, λ) = Fm(ξ2, λ).

Therefore if ζ = ξeiθ, then |ζ|2 = ξ2 and

ΘmF (ζ, λ) = ΘmF (eiθξ, λ) = eimθξmvm(ξ, λ) = ζmFm(|ζ|2, λ)

as required.

Lemma 2.5. Let F be in S(C× R) and let {Fm}m∈Z be the sequence of
functions in S(R+ × R) such that

F (ζ, λ) =
∑
m

ΘmF (ζ, λ) =
∑
m≥0

ζmFm(|ζ|2, λ) +
∑
m<0

ζ̄−mFm(|ζ|2, λ).
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Then for all nonnegative integers α, β,N ,

sup
(ξ,λ)∈R+×R

ξ|m|/2(1 + |λ|+ ξ)N |∂βλ∂
α
ξ Fm(ξ, λ)| ≤ Cp‖ΘmF‖(p,C×R) ∀m ∈ Z

with p = 2α+ β + 2N .

Proof. Obviously

ξ|m|/2 (1 + |λ|+ ξ)N |Fm(ξ, λ)| = (1 + |λ|+ |ζ|2)N |ΘmF (ζ, λ)|
≤ CN‖ΘmF‖(2N,C×R).

Note that {
∂α
ζ̄
ΘmF (ζ, λ) = ζm+α ∂αξ Fm(|ζ|2, λ), m ≥ 0,

∂αζ ΘmF (ζ, λ) = ζ̄ |m|+α ∂αξ Fm(|ζ|2, λ), m < 0,

and denote

∂α
′

=

{
∂α
ζ̄
, m ≥ 0,

∂αζ , m < 0.

Thus

|ζ||m||∂αξ Fm(|ζ|2, λ)| = |ζ|−α|∂α′ΘmF (ζ, λ)|.

When |ζ| > 1 there is a trivial estimate

|ζ|m|∂αξ Fm(|ζ|2, λ)| = |ζ−α∂α′ΘmF (ζ, λ)| ≤ |∂α′ΘmF (ζ, λ)|,

while when |ζ| ≤ 1 we can use Taylor’s expansion to conclude that

|ζ||m| |∂αξ Fm(|ζ|2, λ)| = |ζ|−α|∂α′ΘmF (ζ, λ)|

≤ Cα sup
|ζ|≤1

γ+γ′≤2α

|∂γζ ∂
γ′

ζ̄
ΘmF (ζ, λ)|.

Putting together these two estimates we obtain

ξ|m|/2(1 + |λ|+ ξ)N |∂βλ∂
α
ξ Fm(ξ, λ)|

≤ Cα sup
|ζ|≤1, λ∈R
γ+γ′≤2α

(2 + |λ|)N |∂βλ∂
γ
ζ ∂

γ′

ζ̄
ΘmF (ζ, λ)|

+ sup
|ζ|≥1
λ∈R

(1 + |λ|+ |ζ|2)N |∂βλ∂
α′ΘmF (ζ, λ)|

≤ Cp‖ΘmF‖(p,C×R).

In the remaining part of this section we describe some properties of
m-type functions on the Heisenberg group. Note that the function Φλj,k is of
type k − j if λ > 0, and of type j − k if λ < 0. Therefore a function f in
S(H1) is of type m if and only if f̂(λ, j, k) = 0 for j − k 6= m sgnλ.
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For f ∈ S(H1) and m ∈ Z, let Θmf be the m-type component of f
defined as in (2.12). Then Θmf belongs to S(H1) and

Θmf(z, t) =
1

4π2

∞�

−∞

∑
j−k=m sgnλ

f̂(λ, j, k)Φλj,k(z, t)|λ| dλ.

Lemma 2.6. Let f be in S(H1). Then for all nonnegative integers p and `,
‖Θmf‖(p,H1) ≤ Cp,` (1 + |m|)−` ‖f‖(p+4`,H1), so that the series

∑
mΘmf

converges to f in S(H1).

Proof. Since d
dθ = izZ − iz̄Z̄ − |z|

2

2 T , we have

‖Θmf‖(p,H1) ≤ C`(1 + |m|)−` sup
2a+2b≤p

2π�

0

∥∥∥∥LbAa d`dθ` f(eiθ·, ·)
∥∥∥∥

2

dθ

≤ Cp,`(1 + |m|)−`‖f‖(p+4`,H1).

The Gelfand spectrum of the algebra of type-0 integrable functions may
be identified with the Heisenberg fan Σ = Σ∗ = Σ∗ ∪ (R+ × {0}), where
R+ = [0,∞) and

Σ∗ = {(ξ, λ) ∈ R2 : λ 6= 0, ξ = |λ|(2j + 1), j ∈ N}.

Let f be an integrable function on H1. For every integer m we define the
following functions on Σ∗:

(2.13) Gmf(|λ|(2j + 1), λ)

=


(−i)|m|∏|m|

k=1

√
2|λ|(j+k)

f̂(λ, j, j + |m|), mλ ≤ 0, j ∈ N,

i|m|∏|m|
k=1

√
2|λ|(j+k)

f̂(λ, j + |m|, j), mλ > 0, j ∈ N.

Note that G0f is the Gelfand transform of Θ0f relative to the Gelfand pair
(H1, U(1)). Moreover GmΘmf = Gmf and Gm is injective on the space of
m-type Schwartz functions on H1. Indeed,

‖Θmf‖22 =
1

4π2

∑
j∈N

( |m|∏
k=1

(j + k)
) �

R

|GmΘmf(|λ|(2j + 1), λ)|2(2|λ|)|m||λ| dλ.

If g is a type-0 function in S(H1), then for every (ξ, λ) in Σ∗,

(2.14) G0g(ξ + 2(λm)+, λ) =

{
Gm[(2iZ̄)mg](ξ, λ), m ≥ 0,

Gm[(2iZ)|m|g](ξ, λ), m < 0,

where x+ denotes the positive part of the real number x.

The purpose of the next proposition is to give an analogue of Proposi-
tion 2.4(2) in the case of the Heisenberg group.
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Proposition 2.7. Let f be a Schwartz function on H1. For every integer
m, there exists a type-0 function gm in S(H1) such that

Θmf =

{
(2iZ̄)mgm, m ≥ 0,

(2iZ)|m|gm, m < 0.

We will prove this proposition working on the Fourier transform side and
we shall use the following result.

Lemma 2.8. Let m be a positive integer and suppose that H in S(R2)
vanishes on the half-lines λ > 0 7→ (λ(2j + 1), λ) for all j = 0, . . . ,m − 1.
Then there exists H̃ in S(R2) such that H̃|Σ∗ = H|Σ∗ and H̃ vanishes on
the full lines λ ∈ R 7→ (λ(2j + 1), λ) for all j = 0, . . . ,m− 1.

Proof. Let ψ be a nonnegative smooth function on the real line such that
ψ(0) = 1 and whose support is contained in (−1/2, 1/2). Define

H̃(ξ, λ) =

H(ξ, λ)−
m−1∑
k=0

ψ(ξ/λ− (2k + 1))H(λ(2k + 1), λ), λ 6= 0,

H(ξ, 0), λ = 0.

It is easy to show that H̃ satisfies the required conditions.

Proof of Proposition 2.7. We will focus on the case where m ≥ 0. The

case of m < 0 follows easily from the previous one, since Θmf = Θ−mf̄ and
Zf = Z̄f̄ .

So suppose that m ≥ 0 and let hm = (2iZ)m(Θmf). Then hm is a type-0
Schwartz function on H1 and by [1] its Gelfand transform G0hm can be
extended to a function Hm in S(R2). Note that by (2.3),

Hm(|λ|(2j + 1), λ) = ĥm(λ, j, j)

=


(−i)m

√
m∏
`=1

(2|λ|(j + `)) f̂(λ, j, j +m), λ < 0, j ≥ 0,

im

√
m∏
`=1

(2λ(j − `+ 1)) f̂(λ, j, j −m), λ > 0, j ≥ m,

and Hm vanishes on the half-lines λ > 0 7→ (|λ|(2j + 1), λ) when j =
0, . . . ,m− 1.

By Lemma 2.8 we may suppose that Hm vanishes on the full lines, i.e.,

Hm(ξ, λ) = 0 whenever ξ = λ(2j + 1), λ ∈ R, j = 0, . . . ,m− 1.

Then we apply Lemma 2.3 m times, once for each line of the form ξ =
λ(2k + 1), k = 0, . . . ,m− 1, with the corresponding change of variables. In
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this way we obtain a function Gm in S(R2) such that

Hm(ξ, λ) =
(m−1∏
k=0

(ξ − (2k + 1)λ)
)
Gm(ξ, λ).

Let gm be the type-0 function such that G0gm = Gm|Σ . Then by [7, 10, 1]

the function gm is in S(H1). We now check that (2iZ̄)mgm = Θmf . Indeed,
they are both functions of type m and by (2.14), when λ > 0,

Gm[(2iZ̄)mgm](|λ|(2j + 1), λ)

= G0gm(|λ|(2j + 1) + 2(mλ)+, λ) = Gm(|λ|(2j + 2m+ 1), λ)

= Hm(λ(2(j +m) + 1), λ)

m−1∏
k=0

1

2λ(j +m− k)

=
im∏m

k=1

√
2λ(j + k)

f̂(λ, j +m, j) = GmΘmf(|λ|(2j + 1), λ).

A similar computation shows that when λ < 0,

Gm[(2iZ̄)mgm](|λ|(2j + 1), λ) = Gm[Θmf ](|λ|(2j + 1), λ).

3. The Fourier transform of m-type Schwartz functions. In this
section we characterize the Fourier transform of the space Sm(H1) of m-type
Schwartz functions on the Heisenberg group.

For m in Z, denote by Σm the subset of Σ∗ defined by

Σm = Σ∗ \ {(ξ, λ) ∈ R2 : mλ > 0, ξ = |λ|(2j + 1), j = 0, 1, . . . , |m| − 1}

and note that Σ0 = Σ∗.

Let S(Σm) be the space of restrictions to Σm of Schwartz functions
on R2. On S(Σm) we consider the quotient topology of S(R2)/{f : f|Σm

= 0}
defined by the family {‖ · ‖(p,Σm)}p∈N of norms given by

(3.1) ‖G‖(p,Σm) = inf{‖G̃‖(p,R2) : G̃ ∈ S(R2) and G̃|Σm
= G}.

Let G̃m be the map defined on Sm(H1) by

G̃mf(ξ, λ) = Gmf(ξ − 2(λm)+, λ) ∀(ξ, λ) ∈ Σm.

Theorem 3.1. The map G̃m is a topological isomorphism between
Sm(H1) and S(Σm).

Proof. For m = 0 the result is in [1]. Let m > 0 and let Tm be the linear
operator from S(R2) to Sm(H1) defined by

TmG = (2iZ̄)mg

where g is the function in S0(H1) such that G0g = G|Σ∗ .
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We shall verify that Tm is a surjective, continuous linear operator with
kerTm = {G : G|Σm

= 0}. Therefore we can apply the open mapping

theorem to the operator T̃m : S(Σm) → Sm(H1) and obtain the conclusion
since T̃−1

m = G̃m.

Tm is surjective: indeed, given f in Sm(H1), by Proposition 2.7, there
exists g in S0(H1) such that f = (2iZ̄)mg and, by [1], there exists G in
S(R2) such that G0g = G|Σ∗ .

Tm is continuous: indeed, by [10] for every nonnegative integer p there
exists pm such that

‖TmG‖(p,H1) = ‖(2iZ̄)mg‖(p,H1) ≤ Cm,p‖g‖(p+m,H1) ≤ C ′m,p‖G‖(pm,R2).

The fact that kerTm = {G : G|Σm
= 0} follows easily from the observa-

tion that Z̄mg = 0 if and only if G0g|Σm
= 0.

We now introduce a second family of norms on S(Σm) which will even-
tually turn out to be equivalent to the family of the quotient norms (3.1).

Denote by M± the operators acting on a smooth function Ψ on R2 by
the rule

M±Ψ(ξ, λ) = ∂λΨ(ξ, λ)∓ ∂ξΨ(ξ, λ)

− λ± ξ
2λ2

(Ψ(ξ ± 2λ, λ)− Ψ(ξ, λ)∓ 2λ∂ξΨ(ξ, λ))

=
1

λ
(λ∂λ + ξ∂ξ)Ψ(ξ, λ)− λ± ξ

2λ2
(Ψ(ξ ± 2λ, λ)− Ψ(ξ, λ)).

Since λ∂λ + ξ∂ξ is the derivative in the radial direction, the operators M±
can also be applied to functions which are only defined on the Heisenberg
fan. In this case, these operators coincide with the operators M± of [3].

The operators M± have the following relevant property. If f is a type-0
Schwartz function on H1 then [3, 6, 8]

(3.2) G0(Af) = M+(G0f) and G0(Āf) = −M−(G0f),

where A(z, t) = |z|2/4 + it.

For G in S(Σm) define

(3.3) ‖G‖[p,Σm]

= sup
2a+2b≤p
(ξ,λ)∈Σm

√
m−1∏
r=0

(ξ − 2(λm)+ + |λ|(2r + 1)) (ξ − 2mλ)b|Ma
sgnmG(ξ, λ)|.

The dependence on sgnm of these norms is justified by Proposition 2.7,
formula (3.2), and the fact that we shall need to use the identities [Z, Ā] = 0
and [Z̄,A] = 0.
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By (2.2) and (3.2), for every f in Sm(H1) we have

(3.4) ‖G̃mf‖[p,Σm]

=



sup
2a+2b≤p
(ξ,λ)∈Σ∗

√
m−1∏
r=0

(ξ + |λ|(2r + 1)) |Gm(LbAaf)(ξ, λ)|, m ≥ 0,

sup
2a+2b≤p
(ξ,λ)∈Σ∗

√
|m|−1∏
r=0

(ξ + |λ|(2r + 1)) |Gm(LbĀaf)(ξ, λ)|, m < 0.

Note that here the supremum is taken over Σ∗, while in (3.3) it is taken
over Σm, simply because

(ξ, λ) ∈ Σ∗ ⇔ (ξ + 2(mλ)+, λ) ∈ Σm.
Lemma 3.2. Let m be in Z. For every nonnegative integer p there exist

positive constants Cp and C ′p independent of m such that

Cp‖G̃mf‖[p,Σm] ≤ ‖f‖(p+2,H1) ≤ C ′p‖G̃mf‖[p+4,Σm] ∀f ∈ Sm(H1).

Proof. Let f be in Sm(H1), m > 0 and a, b nonnegative integers. By
(2.13) we have∣∣∣(m−1∏

r=0

(ξ + |λ|(2r + 1))
)1/2
Gm(LbAaf)(ξ, λ)

∣∣∣ ≤ ‖LbAaf‖1
≤ ‖(1 +A)−1‖2‖(1 +A)LbAaf‖2.

Since by (2.10) we have [A,L] = 1 + 2z̄Z̄, the first inequality follows from
(3.4) and the equivalence between the families of norms (2.8) and (2.6).

On the other hand, by (2.1), (2.2) and (3.4), we have

‖LbAaf‖2 =
1

2π

{∞�
0

∞∑
j=0

∣∣∣∣ [(1 + L2)LbAaf ]̂(λ, j +m, j)

1 + (|λ|(2j + 1))2

∣∣∣∣2λ dλ
+

0�

−∞

∞∑
j=0

∣∣∣∣ [(1 + L2)LbAaf ]̂(λ, j, j +m)

1 + (|λ|(2j + 2m+ 1))2

∣∣∣∣2|λ| dλ}1/2

≤ C sup
(ξ,λ)∈Σ∗

∣∣∣(m−1∏
r=0

(ξ + |λ|(2r + 1))
)1/2
Gm((1 + L2)LbAaf)(ξ, λ)

∣∣∣,
where

C =
1

π

{∞�
0

∞∑
j=0

1

(1 + λ2(2j + 1)2)2
λ dλ

}1/2

.

For the case m ≤ 0 we can apply the same arguments using inequality (2.11).
The conclusion follows.
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Corollary 3.3. The families {‖ · ‖[p,Σm]}p≥0 and {‖ · ‖(p,Σm)}p≥0 of
norms are equivalent on S(Σm).

4. The Fourier transform of Schwartz functions on H1

Definition 4.1. We define S to be the space of sequences G={Gm}m∈Z
of functions in S(Σm) such that for any nonnegative integers ` and p,

‖G‖`,p,S = sup
m∈Z

(1 + |m|)`‖Gm‖[p,Σm] <∞.

Denote by G the linear operator from S(H1) to S defined by

G : f =
∑
m∈Z

Θmf 7→ Gf = {G̃m(Θmf)}m∈Z.

Our characterization of the Fourier transform of Schwartz functions on
H1 is the following.

Theorem 4.2. The map G is a topological isomorphism between S(H1)
and S. Moreover for every f in Sm(H1) and p ≥ 0 we have

‖Gf‖`,p,S ≤ Cp,`‖f‖(p+4`+2,H1) ∀` ≥ 0,

‖f‖(p,H1) ≤ Cp‖Gf‖`,p+2,S ∀` ≥ 2.

Proof. By Lemmata 3.2 and 2.6,

‖Gf‖`,p,S = sup
m∈Z

(1 + |m|)`‖G̃m(Θmf)‖[p,Σm]

≤ Cp sup
m∈Z

(1 + |m|)`‖Θmf‖(p+2,H1)

≤ Cp,`‖f‖(p+4`+2,H1).

Vice versa, let G = {Gm}m∈Z be in S. By Theorem 3.1 and Lemma 3.2, for
every integer m there exists fm in S(H1) such that G̃mfm = Gm and

‖fm‖(p,H1) ≤ Cp‖G̃mfm‖[p+2,Σm].

Therefore for every nonnegative integer p,∑
m

‖fm‖(p,H1) ≤ Cp
∑
m

‖Gm‖[p+2,Σm] ≤ Cp‖G‖`,p+2,S

∑
m

(1 +m)−`,

so that
∑

m fm converges in S(H1) to a function f such that Gf = G, and
the assertion follows.

As mentioned in the introduction, it would be interesting to relate the
m-type components of a single Schwartz function F on C × R to the m-
type components of a unique Schwartz function f on H1. This is the result
of the following theorem, where starting from F in S(C × R) we build a
corresponding f in S(H1). However, the nature of the specific norms given
in S does not allow the reverse correspondence.
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Theorem 4.3. Let F be in S(C× R). Then there exists f in S(H1) such
that for any integer m,

G̃mΘmf(ξ, λ) = Fm(ξ −mλ, λ) ∀(ξ, λ) ∈ Σm,

where Fm are the functions in S(R+ × R) defined as in Proposition 2.4.
Moreover for every nonnegative integer p there exists p′ in N such that

‖f‖(p,H1) ≤ Cp‖F‖(p′,C×R).

In order to prove Theorem 4.3, we shall use the following lemmata.

Lemma 4.4. For all integers j = 0, 1, 2, . . . and m = 1, 2, . . . ,

(j + 1) · · · (j +m)(
j − k + m+1

2

)m ≤ (k + 1)mk, k = 0, 1, . . . , j.

Proof. First let k = 0. Then controlling the geometric mean with the
arithmetic mean we obtain

m
√

(j + 1) · · · (j +m) ≤ 1

m

m∑
`=1

(j + `) = j +
m+ 1

2
.

When k = 1, . . . , j, we write

(j + 1) · · · (j +m)(
j − k + m+1

2

)m =
(j − k + 1) · · · (j − k +m)(

j − k + m+1
2

)m m∏
`=1

j + `

j − k + `
,

and we verify that
m∏
`=1

j + `

j − k + `
≤ (k + 1)mk.

Indeed, this estimate is trivial when m = 1, and when m ≥ 2,
m∏
`=1

j + `

j − k + `
=

m∏
`=1

(
1 +

k

j − k + `

)

≤
(

1 +
k

j − k + 1

) m∏
`=2

e
k

j−k+`

≤ (1 + k)e
∑m

`=2
k

j−k+`

≤ (1 + k)ek ln(j−k+m)−k ln(j−k+1)

= (1 + k)

(
1 +

m− 1

j − k + 1

)k
≤ (1 + k)mk.

For the statement of the following lemma we need to introduce some
notation. Let W denote the operator acting on a smooth function Ψ on R2

by
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WΨ(ξ, λ) =
1

2λ2

(
Ψ(ξ + 2λ, λ)− Ψ(ξ, λ)− 2λ∂ξΨ(ξ, λ)

)
= 2

1�

0

∂2
ξΨ(ξ + 2λt, λ)(1− t) dt.

For every j ≥ 0 let ηj and Vj be the function and the operator defined by

ηj(ξ, λ) = ξ + (2j + 1)λ, Vj = ∂λ − (2j + 1)∂ξ.

With this notation, M+ = V0− η0W . Note that the Vj ’s commute while, for
each j, the operator Vj does not commute with W .

Lemma 4.5. For every a ≥ 1,

(4.1) Ma
+ = V a

0 +
a∑
k=1

η0 · · · ηk−1Dk,a,

where Dk,a is a polynomial in V0, . . . , Vk,W of degree a such that in each
monomial the operator W appears k times.

Proof. Let Mj = Vj − ηjW and note that M0 = M+. The proof is based
on the identity

(4.2) Mj(ηjΨ) = ηjMj+1Ψ ∀j ≥ 0, Ψ ∈ C∞(R2),

which will be proved at the end. Note that by (4.2),

M+(η0 · · · ηk−1Ψ) = M0(η0 · · · ηk−1Ψ) = η0 · · · ηk−1MkΨ, Ψ ∈ C∞(R2).

We shall prove (4.1) by induction on a. Formula (4.1) holds if a = 1,
since M+ = M0 = V0 + η0D1,1, with D1,1 = −W . Suppose that (4.1) holds
for a− 1 and let us verify it for a. We have

Ma
+ = M+

(
V a−1

0 +

a−1∑
k=1

η0 · · · ηk−1Dk,a−1

)
= (V0 − η0W )V a−1

0 +
a−1∑
k=1

M+(η0 · · · ηk−1Dk,a−1)

= V a
0 − η0WV a−1

0 +
a−1∑
k=1

η0 · · · ηk−1MkDk,a−1

= V a
0 − η0WV a−1

0 +

a−1∑
k=1

η0 · · · ηk−1VkDk,a−1 −
a−1∑
k=1

η0 · · · ηk−1ηkWDk,a−1
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= V a
0 −η0WV a−1

0 +
a−1∑
k=1

η0 · · · ηk−1VkDk,a−1 −
a∑
k=2

η0 · · · ηk−2ηk−1WDk−1,a−1

= V a
0 +

a∑
k=1

η0 · · · ηk−1Dk,a,

where D1,a = −WV a−1
0 + V1D1,a−1, Da,a = −WDa−1,a−1 and Dk,a =

VkDk,a−1 −WDk−1,a−1, k = 2, . . . , a− 1.
We now prove (4.2). We have

W (ηjΨ) = ηj+1WΨ + 2∂ξΨ ∀j ≥ 0.

Indeed,

W (ηjΨ)(ξ, λ)

=
1

2λ2

[
ηj(ξ + 2λ, λ)Ψ(ξ + 2λ, λ)− ηj(ξ, λ)Ψ(ξ, λ)− 2λ∂ξ(ηjΨ)(ξ, λ)

]
=

1

2λ2

[
(ξ + (2j + 3)λ)Ψ(ξ + 2λ, λ)− (ξ + (2j + 1)λ)Ψ(ξ, λ)

− 2λ(Ψ(ξ, λ) + (ξ + (2j + 1)λ)∂ξΨ(ξ, λ)
]

=
1

2λ2
(ξ + (2j + 3)λ)

[
Ψ(ξ + 2λ, λ)− Ψ(ξ, λ)− 2λ∂ξΨ(ξ, λ)

]
+

2λ(ξ + (2j + 3)λ− ξ − (2j + 1)λ)

2λ2
∂ξΨ(ξ, λ)

= ηj+1(ξ, λ)WΨ(ξ, λ) + 2∂ξΨ(ξ, λ).

Moreover, since Vjηj = 0,

Mj(ηjΨ) = Vj(ηjΨ)− ηjW (ηjΨ) = ηjVjΨ − ηjηj+1WΨ − ηj2∂ξΨ
= ηj [Vj − 2∂ξ]Ψ − ηjηj+1WΨ

= ηjVj+1Ψ − ηjηj+1WΨ = ηjMj+1Ψ.

This proves (4.2) and so the lemma is proved.

Proof of Theorem 4.3. Let F be in S(C×R) and, as in Proposition 2.4,
define a sequence {Fm} by

ΘmF (ζ, λ) =

{
ζmFm(|ζ|2, λ), m ≥ 0,

ζ̄ |m|Fm(|ζ|2, λ), m < 0.

We now introduce the change of variables

τm(ξ, λ) = (ξ −mλ, λ) ∀(ξ, λ) ∈ R2, m ∈ Z,
so that

τm(ξ + 2(mλ)+, λ) = (ξ + |mλ|, λ) ∀(ξ, λ) ∈ R2, m ∈ Z.
We want to apply Theorem 4.2 to the sequence {Gm = Fm ◦ τm}m∈Z,

i.e., we show that G = {Fm ◦ τm} is in the space S of sequences. Since Fm
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are Schwartz functions, we have to check the required rapid decay in m of
‖Fm ◦ τm‖[p,Σm] for any fixed p. When m ≥ 0,

‖Fm ◦ τm‖[p,Σm]

= sup
2a+2b≤p
(ξ,λ)∈Σm

(m−1∏
r=0

(ξ − 2mλ+ + |λ|(2r + 1))
)1/2

(ξ − 2mλ)b|Ma
+(Fm ◦ τm)(ξ, λ)|

= sup
2a+2b≤p
(ξ,λ)∈Σ∗

(m−1∏
r=0

(ξ + |λ|(2r + 1))
)1/2

(ξ + 2mλ−)b|Ma
+(Fm ◦ τm)(ξ + 2mλ+, λ)|.

By Lemma 4.5,

Ma
+(Fm ◦ τm)(ξ, λ)

= V a
0 (Fm ◦ τm)(ξ, λ) +

a∑
k=1

η0(ξ, λ) · · · ηk−1(ξ, λ)[Dk,a(Fm ◦ τm)](ξ, λ),

where ηj(ξ, λ) = ξ + (2j + 1)λ and Dk,` is a polynomial in V0, . . . , Vk,W of
degree ` such that in each monomial the operator W appears k times. We
treat the two terms above separately.

Since

Vj(Ψ ◦ τm) = (∂λ − (2j + 1)∂ξ)(Ψ ◦ τm) = [∂λΨ − (2j + 1 +m)∂ξΨ ] ◦ τm,
it is easy to see that

|V a
0 (Fm ◦ τm)| ≤ Ca(1 +m)a

∣∣∣ ∑
α+β=a

(∂βλ∂
α
ξ Fm) ◦ τm

∣∣∣.
Moreover, by Lemma 4.4,(m−1∏

r=0

(ξ + |λ|(2r + 1))
)1/2

≤ (ξ +m|λ|)m/2 ∀(ξ, λ) ∈ Σ∗,

therefore for every (ξ, λ) in Σ∗,(m−1∏
r=0

(ξ + |λ|(2r + 1))
)1/2

(ξ + 2mλ−)b|V a
0 (Fm ◦ τm)(ξ + 2mλ+, λ)|

≤ Ca (1 +m)a(ξ +m|λ|)m/2(ξ + 2mλ−)b
∑

α+β=a

|∂βλ∂
α
ξ Fm(ξ +m|λ|, λ)|

≤ Ca,b(1 +m)a(ξ +m|λ|)m/2+b
∑

α+β=a

|∂βλ∂
α
ξ Fm(ξ +m|λ|, λ)|

≤ Ca,b(1 +m)a
∑

α+β=a

sup
ξ≥|λ|(m+1)

ξm/2+b|∂βλ∂
α
ξ Fm(ξ, λ)|.

This takes care of the first term.
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For the second term, note that, since ∂ξ(Ψ ◦ τm) = (∂ξΨ) ◦ τm, we have

W (Ψ ◦ τm)(ξ, λ) = 2

1�

0

∂2
ξ (Ψ ◦ τm)(ξ + 2λt, λ)(1− t) dt = (WΨ) ◦ τm(ξ, λ),

so that

|[Dk,a(Fm ◦ τm)](ξ, λ)|

≤ Ca
∑

α+β+k=a

(1 +m)α
k�

0

|(∂βλ∂
2k+α
ξ Fm) ◦ τm(ξ + 2λt, λ)| dt.

We treat the cases where λ > 0 and λ < 0 separately.

First, let λ > 0 and (ξ, λ) in Σ∗. By Lemma 4.4 we obtain(m−1∏
r=0

(ξ + |λ|(2r + 1))
)1/2

ξb|(η0 · · · ηk−1)Dk,a(Fm ◦ τm)|(ξ + 2mλ, λ)

≤ Ca(ξ +mλ)m/2ξb
∑

α+β+k=a

(1 +m)α(η0 · · · ηk−1)(ξ + 2mλ, λ)

·
k�

0

|∂βλ∂
2k+α
ξ Fm(ξ +mλ+ 2λt, λ)| dt

≤ Ca
∑

α+β+k=a

(1 +m)α(ξ +mλ)m/2+b(ξ + 2mλ+ 2λk)k

·
k�

0

|∂βλ∂
2k+α
ξ Fm(ξ +mλ+ 2λt, λ)| dt

≤ Ca
∑

α+β+k=a

(1 +m)α

·
k�

0

(ξ+mλ+ 2λt)m/2+b(1 + ξ+mλ+ 2λt+λ)k|∂βλ∂
2k+α
ξ Fm(ξ+mλ+2λt, λ)| dt

≤ Ca(1 +m)a
∑

α+β+k=a

sup
ξ≥λ(m+1)

λ>0

ξm/2+b(1 + ξ + λ)k|∂βλ∂
2k+α
ξ Fm(ξ, λ)|.

On the other hand, if λ < 0 then ηj(−λ(2j + 1), λ) = 0 and

(η0 · · · ηk−1)(−λ(2j + 1), λ) = 0 ∀j = 0, 1, . . . , k − 1.

So when λ < 0, it is enough to consider ξ = |λ|(2j + 1) with j ≥ k ≥ 1. In
this case, by Lemma 4.4 we have

m−1∏
r=0

(ξ + λ(2r + 1)) = (2|λ|)m (j +m)!

j!
≤ (k+1)(m+1)k (ξ+m|λ|−2k|λ|)m
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and(m−1∏
r=0

(ξ + |λ|(2r + 1))
)1/2

(ξ + 2m|λ|)b|(η0 · · · ηk−1)Dk,a(Fm ◦ τm)|(ξ, λ)

≤ Ca
∑

α+β+k=a

(k + 1)(1 +m)α+k/2(ξ +m|λ| − 2k|λ|)m/2(ξ + 2m|λ|)b

· (η0 · · · ηk−1)(ξ, λ)

k�

0

|∂βλ∂
2k+α
ξ Fm(ξ +m|λ|+ 2λt, λ)| dt

≤ Ca
∑

α+β+k=a

(1 +m)α+k/2(ξ +m|λ| − 2k|λ|)m/2(ξ + 2m|λ|)b

· (ξ − |λ|)k
k�

0

|∂βλ∂
2k+α
ξ Fm(ξ +m|λ|+ 2λt, λ)| dt

≤ Ca,b(1 +m)a
∑

α+β+k=a

k�

0

(ξ +m|λ|+ 2λt)m/2

· (ξ +m|λ|+ 2λt+ |λ|)b+k|∂βλ∂
2k+α
ξ Fm(ξ +m|λ|+ 2λt, λ)| dt

≤ Ca,b(1 +m)a
∑

α+β+k=a

sup
ξ≥|λ|(m+1)

λ<0

ξm/2(1 + ξ + |λ|)b+k|∂βλ∂
2k+α
ξ Fm(ξ, λ)|.

Putting together all these estimates, we conclude that when m ≥ 0,

‖Fm ◦ τm‖[p,Σm]

= sup
a+b≤p

(ξ,λ)∈Σ∗

(m−1∏
r=0

(ξ+|λ|(2r+1))
)1/2

(ξ+2(mλ)−)b|[Ma
+(Fm◦τm)](ξ+2(mλ)+, λ)|

≤ Cp(1 + |m|)p sup
α+β≤2p

ξ≥|λ|(|m|+1)
λ 6=0

ξ|m|/2(1 + ξ + |λ|)p|(∂βλ∂
α
ξ Fm)(ξ, λ)|.

The same estimate holds for m < 0. Indeed, one can check that if Ψ̌(ξ, λ) =
Ψ(ξ,−λ), then M+Ψ̌ = −[M−Ψ ]̌ . From this observation the estimate follows
easily.

So for every integer m, by Lemma 2.5 and Proposition 2.4,

‖Fm ◦ τm‖[p,Σm] ≤ Cp(1 + |m|)p sup
α+β≤2p

(ξ,λ)∈R+×R

ξ|m|/2(1 + ξ + |λ|)p|∂βλ∂
α
ξ Fm(ξ, λ)|

≤ Cp(1 + |m|)p‖ΘmF‖(6p,C×R)

≤ Cp,`(1 + |m|)−`‖F‖(8p+2`,C×R),
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for every nonnegative integer p. Thus, by Theorem 4.2 there exists a function
f in S(H1) such that

‖f‖(p,H1) ≤ Cp
∑
m∈Z
‖Fm ◦ τm‖[p+2,Σm] ≤ Cp‖F‖(8p+20,C×R).

Finally, f satisfies

G̃mΘmf(ξ, λ) = Fm ◦ τm(ξ, λ) = Fm(ξ −mλ, λ)

for every (ξ, λ) in Σ∗, as required.

Remark 4.6. In this paper we never focus our attention on the repre-
sentations of H1 which are trivial on the center, i.e. the characters ηζ(z, t) =

eiRe(zζ̄) which correspond to the horizontal half-line {(|ζ|2, 0) ∈ R2 : ζ ∈ C}
of the Heisenberg fan Σ. Indeed, given f in S(H1), we define Gmf only
on Σ∗, without discussing its possible extension to the whole Heisenberg
fan Σ. However, because of the equality (2.14), the smooth behavior of the
extension of Gmf to all Σ is guaranteed by the result in [1].

In particular, denoting

(ηf)(ζ) =
�

H1

f(z, t)eiRe(zζ̄) dz dt ∀f ∈ S(H1),

we have

(η(2iZ̄)mg)(ζ) = ζm(ηg)(ζ), (η(2iZ)|m|g)(ζ) = ζ̄ |m|(ηg)(ζ).

Therefore if F is in S(R × C) and f ∈ S(H1) is associated to F as in
Theorem 4.3, then

(ηf)(ζ) = F (ζ, 0) ∀ζ ∈ C.

This equality justifies our normalization by 2i of the differential operators
Z̄ and Z.
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