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New limit theorems related to free multiplicative convolution

by

Noriyoshi Sakuma (Kariya) and Hiroaki Yoshida (Tokyo)

Abstract. Let �, �, and ] be the free additive, free multiplicative, and boolean
additive convolutions, respectively. For a probability measure µ on [0,∞) with finite second
moment, we find a scaling limit of (µ�N )�N as N goes to infinity. The R-transform of its
limit distribution can be represented by Lambert’sW -function. From this, we deduce that
the limiting distribution is freely infinitely divisible, like the lognormal distribution in the
classical case. We also show a similar limit theorem by replacing free additive convolution
with boolean convolution.

1. Introduction. In probability theory, limit theorems and infinite di-
visibility are considered in various situations. The classical references are
the books by Gnedenko and Kolmogorov [11] and Petrov [17]. One of the
most famous limit theorems is the Central Limit Theorem (for short CLT)
that gives the scaling limit of the sum of independent, identically distributed
(i.i.d.) random variables. Suppose that a random variable Z has the standard
normal distribution. Let {Xk}∞k=1 be a sequence of i.i.d. random variables
with finite second moment. Then the scaling

(1.1)
X1 + · · ·+XN −NE[X1]√

NV[X1]

converges to Z in distribution as N goes to infinity.
When we consider the product of i.i.d. random variables, we also have

a CLT type limit theorem. The simplest case is as follows: For a sequence
{Xk}∞k=1 of i.i.d. random variables with finite second moment, we consider
the scaling

(1.2)
N∏
k=1

exp

(
Xk − E[Xk]√
NV[Xk]

)
.

By the CLT, this scaling converges to eZ in distribution as N goes to infinity.
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The distribution of eZ is called the lognormal distribution. It was proved by
Thorin [20] that the lognormal distribution is infinitely divisible. The product
limit theorems are also interesting in view of their applications in statistics.
For details, see [18] and the book by Galambos and Simonelli [10].

In free probability theory, some limit theorems are also known. The most
famous limit theorem is the free CLT, which was found by Voiculescu. If
{Xk}k∈N is a sequence of freely independent identically distributed (for short
freely i.i.d.) random variables with finite second moment, then the normal-
ized sum (1.1) converges in distribution to the standard Wigner’s semi-circle
law as N goes to infinity. In addition, we know the Poisson limit theorem, the
stable limit theorem and so on; for details, see [12], [6], [4]. Recently new limit
theorems with respect to free convolutions [7], [23], [21] have been studied.

In this paper, we shall prove a limit theorem involving not only free addi-
tive but also free multiplicative convolutions. We introduce a new normalized
sum of products of freely independent random variables. For a double se-
quence {{X(j)

i }i∈N}j∈N of freely i.i.d. random variables having a distribution
µ on [0,∞) with finite second moment, we consider a new normalization YN ,

(1.3) YN =
N∑
j=1

√
X

(j)
N · · ·

√
X

(j)
2 X

(j)
1

√
X

(j)
2 · · ·

√
X

(j)
N

mN
1 N

,

where m1 is the mean of the distribution µ. We shall see that its limit
distribution depends only on the first and second moments. In its proof, we
shall investigate a Taylor type expansion of the S-transform. In addition, a
formula by Belinschi and Nica [2] suggests that the distribution of (1.3) is
equal to that of

ỸN =

√∑N
i=1X

(N)
i · · ·

√∑N
i=1X

(1)
i

√∑N
i=1X

(1)
i . . .

√∑N
i=1X

(N)
i

mN
1 N

N
,

which corresponds to the scaling (1.2). In this sense, we may call it the
free lognormal distribution. Compared to the free additive CLT case, it is
not exactly the same scaling. The difference may occur because of non-
commutativity of random variables. Furthermore a similar limit theorem
can be found under boolean independence.

In order to investigate properties of this limit distribution, we show that
it is freely infinitely divisible, just as in the classical case the lognormal
distribution is infinitely divisible. In the proof, the properties of Lambert’s
W -function play an important role and we obtain the corresponding Lévy
measure.

This paper is organized as follows. In Section 2, we shall gather the
tools from free and boolean probability. Especially, we recall the R-, S-, and
Σ-transforms and infinite divisibility in free probability theory. In Section 3,
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we shall give Taylor type expansions for S- and Σ-transforms and prove our
limit theorems. Finally, in Section 4, we shall discuss the limit distributions,
focusing on infinite divisibility and moments.

2. Preliminaries. Let R+ be the half-line [0,∞) and C+ be the upper
half-plane {z = x + iy ∈ C; y > 0}. We write P and P+ for the sets of
all Borel probability measures on R and on R+, respectively. We denote
by �, �, and ] the free additive, free multiplicative, and boolean additive
convolutions, respectively; for details on convolutions, see [19], [22], and [15].
Hereafter, δ0 stands for the Dirac probability measure concentrated at 0.

2.1. Analytic tools for free and boolean convolutions. Here, we
shall gather the analytic tools from free and boolean probability and mention
some relevant facts.

We denote the Cauchy transform of a probability measure µ on R by

Gµ(z) =
�

R

1

z − x
µ(dx), z ∈ C+,

and

Ψρ(z) =
�

R

xz

1− xz
ρ(dx), z ∈ C \ R,

denotes the moment generating function of ρ on R+. Then Speicher’s R-
transform and Voiculescu’s R-transform of µ are defined as follows: for any
given α > 0, one can find β > 0 so that

Rµ(z) = zRµ(z) = zG−1µ (z)− 1, 1/z ∈ Γα,β,

where G−1µ (z) is the right inverse of Gµ(z) with respect to composition and
Γα,β = {z = x + iy ∈ C+; y > β, |y| > αx}. Note that we will use both R-
and R-transforms for convenience. The S- and Σ-transforms of ρ are defined
by

Sρ(z) =
(z + 1)Ψ−1ρ (z)

z
, z ∈ Ψρ(iC+),

and

Σρ(z) = Sρ

(
z

1− z

)
,

z

1− z
∈ Ψρ(iC+),

respectively, where Ψ−1ρ (z) is the right inverse of Ψρ(z) with respect to com-
position. Now, we summarize the relations between the transforms and con-
volutions; for proofs see [6] and [2].
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Proposition 2.1. For µ1, µ2 ∈ P and ρ1, ρ2 ∈ P+ which are not δ0,
there exist α, β > 0 such that

Rµ1�µ2(z) = Rµ1(z) +Rµ2(z), 1/z ∈ Γα,β,
Sρ1�ρ2(z) = Sρ1(z)Sρ2(z), z ∈ Ψρ1(iC+) ∩ Ψρ2(iC+),

Sρ�t1
(z) =

1

t
Sρ1

(
z

t

)
,

Σρ1�ρ2(z) = Σρ1(z)Σρ2(z), z/(1− z) ∈ Ψρ1(iC+) ∩ Ψρ2(iC+),

Σρ]t1
(z) =

1

t
Σρ1

(
z

t

)
.

For c > 0, the dilation operator Dc on P is defined by

Dc(µ)(B) = µ

(
1

c
B

)
for any Borel set B in R+, where (1/c)B = {(1/c)x; x ∈ B}. If a random
variable X has a distribution µ, then cX is distributed as Dc(µ). In [2], the
authors showed that

SDc(µ)(z) =
1

c
Sµ(z) and ΣDc(µ)(z) =

1

c
Σµ(z).

2.2. Infinite divisibility for free additive convolution. A probabil-
ity measure µ is freely infinitely divisible (or �-infinitely divisible) if for any
n ∈ N there exists µn ∈ P such that

µ = µn � · · ·� µn︸ ︷︷ ︸
n times

.

We denote the class of all �-infinitely divisible distributions by I�.

Remark 2.2. We can define another infinite divisibility by replacing
� by � or ]. But for boolean convolution, all probability measures are
]-infinitely divisible. So we shall not discuss ]-divisibility any longer.

The next proposition characterizes the �-infinitely divisible laws [22,
Theorem 3.7.2].

Proposition 2.3. The following are equivalent:

(1) µ ∈ I�.
(2) Rµ has an analytic extension defined on C− with values in C− ∪ R.
(3) There exist unique bµ ∈ R and finite measure νµ such that

Rµ(z) = bµ +
�

R

z

1− tz
νµ(dt), z ∈ C−.

The above expression is called the �-Lévy–Khintchine representation, or
simply the Lévy–Khintchine representation.
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Example 2.4. The typical examples of �-infinitely divisible distribution
are Wigner’s semi-circle law, Dirac’s delta distribution, and the free Poisson
distribution πt with parameter t ≥ 0 and density

πt(dx) = max(0, (1− t))δ0(dx)(2.1)

+
1

2πx

√
4t− (x− 1− t)2 1[(1−√t)2,(1+√t)2](x) dx.

The Lévy measure νµ and bµ for the semi-circle law are δ0 and 0, and the
free Poisson law πt has bµ = t and νµ = tδ1. We write π for π1.

The following functional equation of the R- and S-transforms can be
found in, for instance, [15] or [16, Lemma 2]:

Proposition 2.5. Assume that µ ∈ P+. For some sufficiently small
ε > 0, we have a region Dε which includes {−it; 0 < t < ε} such that

(2.2) z = Rµ(zSµ(z)) for z ∈ Dε.

3. New limit theorems. In this section, we prove a new limit theorem
related to both free additive and multiplicative convolutions. We also discuss
a similar result with � replaced by ]. It was proved in [14] by Młotkowski
that for the free Poisson law π, we have

Dn((π
�(n−1))]n)

n→∞−−−→ ν0 in distribution,

where the pth moment of ν0 is pp/p!. We find that a theorem of this type
holds more generally if we replace π by any probability distribution with
finite second moment.

3.1. Expansion of the S-transform and Σ-transform. We prove
expansions for the S-transform and Σ-transform under the second moment
condition. For the R-transform, a Taylor type expansion was proved by
Benaych-Georges [3]. For each region A in C, we write z z∈A−−→ 0 whenever
z → 0 with z ∈ A.

Lemma 3.1 (see [1]). Let ρ ∈ P+ have the moment of order p, that is,
for k = 0, 1, . . . , p,

mk(ρ) :=
�

R+

xk ρ(dx) <∞.

Then its moment generating function Ψρ(z) has a Taylor expansion

Ψρ(z) =

p−1∑
k=1

mk(ρ)z
k +O(zp), z

z∈iC+

−−−−→ 0.

Lemma 3.2. Let ρ ∈ P+ have the moment of order p ≥ 2 and ρ 6= δ0.
Then:

(1) Ψρ(z) is univalent in iC+.
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(2) The inverse function Ψ−1ρ : Ψρ(iC+) → iC+ of Ψρ admits a Taylor
type expansion of order 2,

Ψ−1ρ (z) =
1

m1(ρ)
z − m2(ρ)

(m1(ρ))3
z2 + o(z2), z

z∈Dρ−−−→ 0.

(3) Dρ := Ψρ(iC+) is a region contained in the disc with diameter(
ρ({0})− 1, 0

)
. In addition, Ψρ(iC+) ∩ R =

(
ρ({0})− 1, 0

)
,

lim
t↑0

Ψ−1ρ (t) = 0 and lim
t↓ρ({0})−1

Ψ−1ρ (t) =∞.

Proof. (1) and (3) are proved in Bercovici and Voiculescu [6, Proposition
6.2].

(2) Step 1. We shall first prove that

Ψ−1ρ (z) =
1

m1(ρ)
z + o(z), z

z∈Dρ−−−→ 0.

Take any continuous path {z(t)}t∈(0,1] inDρ such that limt↓0 z(t) = 0. By (1),
we can choose a unique continuous path {ω(t)}t∈(0,1] with limt↓0 ω(t) = 0
and Ψρ(ω(t)) = z(t). Then

lim
t↓0

Ψ−1ρ (z(t))

z(t)
= lim

t↓0

ω(t)

Ψρ(ω(t))
= lim

t↓0

1

Ψρ(ω(t))/ω(t)
=

1

m1
.

As the path z(t) is arbitrary, it follows that

Ψ−1ρ (z) =
1

m1(ρ)
z + o(z), z

z∈Dρ−−−→ 0.

Step 2. Using Step 1, we shall give a Taylor type expansion of order 2
as z

z∈Dρ−−−→ 0. Indeed,

Ψ−1ρ (Ψρ(z))− 1
m1(ρ)

Ψρ(z)

Ψρ(z)2
=
z − 1

m1(ρ)
(m1(ρ)z +m2(ρ)z

2 +O(z3))

(m1(ρ)z +m2(ρ)z2 +O(z3))2

=

(m2(ρ)
m1(ρ)

z2 +O(z3)
)

(m1(ρ))2z2 +O(z3)
→ m2(ρ)

(m1(ρ))3
as z

z∈Dρ−−−→ 0.

As a result,

Ψ−1ρ (z) =
1

m1(ρ)
z +

m2(ρ)

(m1(ρ))3
z2 + o(z2), z

z∈Dρ−−−→ 0.

3.2. Limit theorems. Here we shall state the main theorem.

Theorem 3.3. Assume that ρ ∈ P+ has the second moment and put
γ = Var(ρ)/(m1(ρ))

2.

(1) There exist s0 > 0 and s1 < 0 such that the S-transform of ρ is

Sρ(z) = s0 + s1z + o(z), z
z∈Dρ−−−→ 0,
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and there exists a probability measure yγ ∈ P+ such that

Dsn0 /n
((ρ�n)�n)→ yγ in distribution.

In addition, the S-transform of the limit distribution yγ is

Syγ (z) = exp(−γz).

(2) There exist σ0 > 0 and σ1 < 0 such that the Σ-transform of ρ is

Σρ(z) = σ0 + σ1z + o(z), z
z∈Dρ−−−→ 0,

and there exists a probability measure sγ ∈ P+ such that

Dsn0 /n
((ρ�n−1)]n)→ sγ in distribution.

In addition, the Σ-transform of the limit distribution sγ is

Σsγ (z) = exp(−γz).

Proof. Using Lemma 3.2, we have

Sρ(z) =
z + 1

z
Ψ−1ρ (z) =

1

m1(ρ)
− Var(ρ)

(m1(ρ))3
z + o(z), z

z∈Dρ−−−→ 0.

Let s0 = 1/m1(ρ) and s1 = −Var(ρ)/(m1(ρ))
3. By Proposition 2.1, we obtain

SDsn0 /n((ρ
�n)�n)(z) =

n

sn0
S(ρ�n)�n(z) =

1

sn0
Sρ�n

(
z

n

)
=

1

sn0

(
Sρ

(
z

n

))n
=

1

sn0

(
s0 + s1

z

n
+ o

(
1

n

))n
=

(
1 +

s1z

s0n
+ o

(
1

n

))n
→ exp

(
s1
s0
z

)
= exp(−γz) as n→∞.

From [5, Lemma 7.1] and [6, Theorem 6.13(ii)], there exists a free multiplica-
tive infinitely divisible measure yγ such that Syγ (z) = exp(−γz). The proof
for (2) is the same as for the free additive case.

We can exchange the order of free multiplicative and freely additive (or
boolean additive) convolutions. The difference is in the scaling speed.

Corollary 3.4. Under the same setting as in Theorem 3.3, we have

Dsn0 /n
n((ρ�n)�n)→ yγ , Dsn0 /n

n((ρ]n−1)�n)→ sγ ,

as n→∞.

Proof. As in the proof of Theorem 3.3, this can be proved by using Propo-
sition 2.1 and Lemma 3.2.
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4. Lambert W -function and infinite divisibility of the limit dis-
tribution

4.1. On the limit distribution of the free case. When we calculate
the R-transform or the moment generating function, Lambert’s W -function,
which satisfies the functional equation

z =W (z) exp(W (z)),

plays an important role. This function has been studied for a long period and
several nice properties of it as a real and complex function are known. For
more details on the Lambert W -function, see, for instance, [8]. Let W0(z) be
the principal branch of the Lambert W -function.

By Proposition 2.5 and the S-transform of yγ , we have

Ryγ (ze
−γz) = z, 1/z ∈ Γα,β.

This functional equation suggests that the R-transform is given by using
Lambert’s W -function.

Theorem 4.1.

(1) The R- and R-transforms of the probability measure yγ are

Ryγ (z) =
−W0(−γz)

γz
, Ryγ (z) = −

1

γ
W0(−γz).

(2) yγ is both �-infinitely divisible and �-infinitely divisible.
(3) The free cumulant sequence of yγ is {(γn)n−1/n!}n∈N.
(4) The Lévy measure νyγ of yγ is

νyγ (ds) =
1

γπ
sf−1(γ/s)1[0,γe](s) ds,

where f(u) = u cscu exp(−u cotu). For γ = 1, the shape of the den-
sity of νy1 is shown in the graph below.

0.5 1.0 1.5 2.0 2.5

0.1

0.2

0.3

0.4

0.5

(5) We have
y�tγ = Dt(y

�1/t
γ ), y�tγ = Dt(y

�1/t
γ ).



Free multiplicative convolution 259

In the proof of this theorem we apply the following prposition (for in-
stance, see [8, Section 4] and [13, Theorem 3.1]):

Proposition 4.2.

(1) The principal branch of W0(z) has an analytic extension on the set
C \ (−∞,−1/e] and it maps C− into C− ∪ R.

(2) For any z ∈ C+, we have the integral representation

W0(z)

z
=

1

π

π�

0

(1− u cotu)2 + u2

z + u cscu exp(−u cotu)
du.

Proof of Theorem 4.1. (1) The �-infinite divisibility is trivial from the
form of the S-transform and the facts in [5]. By Proposition 2.5,

Ryγ (ze
−γz) = z.

Then the R-transform is given by using Lambert’s W -function as follows:

Ryγ (z) = −
1

γ
W0(−γz),

and hence

Ryγ (z) =
W0(−γz)
−γz

.

(2) By Propositions 2.3 and 4.2(1), Ryγ has an analytic extension defined
on C− with values in C− ∪ R, which means that yγ is �-infinitely divisible.

(3) The Taylor type expansion of −W0(−z) at the origin is obtained from
equation (3.1) of [8, p. 339].

(4) We put g(u) = (1− u cot(u))2 + u2. Noting that

(4.1) g(u) =
uf ′(u)

f(u)
,

we obtain

Ryγ (z) =
1

π

π�

0

g(u)

−γz + f(u)
du

=
1

π

π�

0

g(u)/f(u)

1− γz/f(u)
du =

1

γπ

γe�

0

f−1(γ/s)

1− sz
ds,

where we have changed the variables as s = γ/f(u). Hence

Ryγ (z) =
1

γπ

γe�

0

(
sz

1− sz
+ 1

)
f−1(γ/s) ds

=
1

γ
+

1

γπ

γe�

0

z

1− sz
sf−1(γ/s) ds.
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Therefore we obtain the Lévy measure

νyγ ( ds) =
sf−1(γ/s)

γπ
ds.

(5) This is a direct consequence of Proposition 2.1.

Remark 4.3. Here we consider the limit distribution with parameter
γ = 1; for example, this is the case if ρ is the free Poisson distribution with
parameter 1. We write y instead of y1. There exists a probability measure ρ
such that

(4.2) Rρ(z) =
Ry(z)− 1

z
.

Indeed, if we consider the shifted free cumulant sequence {kn(ρ)}n∈N =
{(n + 1)n/(n + 1)!}n∈N, which is the sequence of coefficients of the Taylor
expansion of Rρ at 0, then it becomes the moment sequence of a proba-
bility measure. This means that the measure ρ is a free compound Pois-
son distribution with compound measure σ, whose moments are mn(σ) =
(n+ 1)n/(n+ 1)!. From (4.2), we have

(4.3) zRy(zMρ(z)) = zMρ(z).

By putting P (z) = zMρ(z) and using the Lagrange inversion formula, (4.3)
implies that

nth coefficient of {P (z)} = 1

n
× ((n− 1)st coefficient of Rρ(z)).

Hence we obtain the moments of ρ as

mn(ρ) = (2n+ 1)n−1/n!.

4.2. On the limit distribution in the boolean case. Let s := s1 de-
note a probability measure with moment sequence {nn/n!}n≥0, the positivity
of which is ensured by [14]. Then its moment generating function Ms(z) can
be given by

(1) Ms(z) =

∞∑
n=0

nn

n!
zn =

1

1− η(z)

where
η(z) = −W0(−z), z ∈ C \ [1/e,∞).

Remark 4.4. The following useful facts on the function η can be found
in [9, Sect. 2]: The map

θ 7→ sin θ

θ
exp(θ cot θ)
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is a bijection of (0, π) onto (0, e), and if we define η+, η− : [1/e,∞)→ C by

η±
(

θ

sin θ
exp(−θ cot θ)

)
= θ cot θ ± iθ, 0 ≤ θ < π,

then
η±(x) = lim

y↓0
η(x+ iy), x ∈ [1/e,∞).

From (1), the Cauchy transform of the measure s is

Gs(ζ) =
1

ζ

1

1− η(1/ζ)
for ζ ∈ C \ [0, e].

Now we apply the Stieltjes inversion formula to obtain the density func-
tion ϕs(t) of the measure s: For t ∈ [0, e],

ϕs(t) = −
1

π
lim
ε↓0

Im(Gs(t+ iε))

= − 1

π
lim
ε↓0

Im

(
1

t+ iε

1

1− η
(

1
t+iε

))
= − 1

π
lim
ε↓0

Im

(
t− iε
t2 + ε2

1

1− η
(
t−iε
t2+ε2

))
= − 1

π
Im

(
1

t

1

1− η−(1/t)

)
,

where the function η− is defined as in remark above. Here we change the
variables

1

t
=

θ

sin θ
exp(−θ cot θ);

then it follows that

ϕs(t) = −
1

π
Im

(
1

t

1

1− (θ cot θ − iθ)

)
=

1

π

1

t

θ

(1− θ cot θ)2 + θ2

=
1

π

(
θ

sin θ
exp(−θ cot θ)

)(
θ

(1− θ cot θ)2 + θ2

)
=

1

π

θ2 exp(−θ cot θ)
sin θ((1− θ cot θ)2 + θ2)

.

Thus we obtain the following proposition:

Proposition 4.5. The probability density function ϕs of the measure s
can be given in implicit (parametric) form as

ϕs

(
sin v

v
exp(v cot v)

)
=

1

π

v2 exp(−v cot v)
sin v((1− v cot v)2 + v2)

, 0 < v < π.
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Remark 4.6. (1) The shape of the density function of ϕs is as in the
graph below, in particular it is non-unimodal.

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

2.0

2.5

(2) The function (1− v cot v)2+ v2 also appears in the integral represen-
tation of W0(z)/z as mentioned in Proposition 4.2:

W0(z)

z
=

1

π

π�

0

(1− v cot v)2 + v2

z + v
sin v exp(−v cot v)

dv.

Thus using f(v) = v csc v exp(−v cot v) and (4.1) again, the parametric form
of the density function can be rewritten as

ϕs

(
1

f(v)

)
=

1

π

(f(v))2

f ′(v)
.

Concluding remark. Dykema and Haagerup [9] found the limit dis-
tribution of the DT-operator DT(1, δ0). Its moment sequence is mn =
nn/(n + 1)!. It is similar to the moment sequences of the distribution s
and of ρ in Remark 4.3. A natural question arises: how do we obtain these
distributions via random matrix models?
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