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Explicit representation of compact linear operators
in Banach spaces via polar sets

by

David E. Edmunds (Brighton) and Jan Lang (Columbus, OH)

Abstract. We consider a compact linear map T acting between Banach spaces both
of which are uniformly convex and uniformly smooth; it is supposed that T has trivial
kernel and range dense in the target space. It is shown that if the Gelfand numbers of
T decay sufficiently quickly, then the action of T is given by a series with calculable
coefficients. This provides a Banach space version of the well-known Hilbert space result
of E. Schmidt.

1. Introduction. Apart from its intrinsic interest and wide applica-
bility, the famous Schmidt decomposition of compact linear maps acting
between Hilbert spaces may also be given credit for stimulating work on
those compact linear maps from one Banach spaces to another, such as nu-
clear maps, that may also be represented in series form. Of course, it is not
to be expected that an exact analogue of Schmidt’s theorem will be generally
true outside a Hilbert space setting. Our main result is that such a series
representation with coefficients that are recursively calculable is possible for
maps the Gelfand numbers of which decrease sufficiently rapidly.

More precisely, let X and Y be real Banach spaces, both of which are
uniformly convex and uniformly smooth, and let T : X → Y be linear and
compact, with trivial kernel and range dense in Y . We show that if the
Gelfand numbers cn(T ) of T decay sufficiently quickly as n→∞, then the
action of T is given by a series:

(1.1) Tx =
∑
n

αYn (x)yn (x ∈ X),

where αYn ∈ X∗ and yn ∈ Y, for each n. The terms in this series originate in
the construction of a decreasing sequence of linear subspaces Xn of X with
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finite codimension and trivial intersection; the norm λn of the restriction
of T to Xn is attained at xn and yn = Txn/λn; the coefficients αYn (x) are
recursively calculable by using projections and polar sets.

Banach space versions of the Schmidt result are also given in the recent
papers [3]–[5], and in particular it has been shown that, under an additional
assumption, there are representations of the form

x =
∑
n

ξXn (x)xn, Tx =
∑
n

λnξ
X
n (x)yn, yn = Txn/‖Txn‖ (x ∈ X).

The additional assumption is that for each x ∈ X, the elements SX,Tn x :=∑n−1
j=1 ξ

X
j (x)xj should have uniformly bounded norms:

sup
n
‖SX,Tn x‖X <∞.

This condition is automatically satisfied for every compact map T if X is a
Hilbert space, no matter what Y is (within the class of spaces studied), and
also in certain other special cases, but it remains unclear exactly how wide
is the class of spaces and operators for which it holds. Here we cast some
light on this question by showing that the Y -analogue of this assumption
holds if the Gelfand number cn(T ) of T is bounded above by 2−n+1(2n−1)−1

for all n ∈ N, and that consequently we have the series representation of T
given in (1.1). Under these conditions on the Gelfand numbers the map T
is nuclear, so that the existence of a series representation is guaranteed.

The main point of our work is to establish the particular decomposition
given by (1.1), in which the coefficients are recursively calculable by proce-
dures analogous to those used in the Hilbert space case. Note also that the
requirements of uniform convexity and uniform smoothness imposed on X
and Y are met by such commonly used spaces as Lp (1 < p < ∞) and the
associated Sobolev spaces.

A crucial part of the proof is the study of the projections P Yn : Y → Yn :=
T (Xn) (n ∈ N) that take each y ∈ Y to the nearest point in Yn. In general
these are nonlinear, but we show that because of the special properties of
the Yn they have certain linearity properties that we are able to exploit to
obtain the result.

2. Preliminaries. Throughout the paper we shall suppose that X
and Y are real, reflexive, infinite-dimensional Banach spaces with norms
‖ · ‖X , ‖ · ‖Y and duals X∗, Y ∗ that are strictly convex; the closed unit ball
in X is denoted by BX and the family of all bounded linear maps from X
to Y by B(X,Y ) (B(X) if X = Y ); T will be a compact linear map from
X to Y. We denote the value of x∗ ∈ X∗ at x ∈ X by 〈x, x∗〉X , and given
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any closed linear subspaces M,N of X,X∗ respectively, their polar sets are

M0 = {x∗ ∈ X∗ : 〈x, x∗〉X = 0 for all x ∈M},
0N = {x ∈ X : 〈x, x∗〉X = 0 for all x∗ ∈ N}.

The space X∗ is strictly convex if and only if ‖ · ‖X is Gâteaux differen-

tiable on X \ {0}; the Gâteaux derivative J̃X(x) := grad ‖x‖X of ‖x‖X at
x ∈ X \ {0} is the unique element of X∗ such that

‖J̃X(x)‖X∗ = 1 and 〈x, J̃X(x)〉X = ‖x‖X .
A gauge function is a map µ : [0,∞)→ [0,∞) that is continuous, strictly in-
creasing and such that µ(0) = 0 and limt→∞ µ(t) =∞; the map JX : X→X∗

defined by

JX(x) = µ(‖x‖X)J̃X(x) (x ∈ X \ {0}), JX(0) = 0,

is called a duality map on X with gauge function µ. For all x ∈ X,
〈x, JX(x)〉X = ‖JX‖X∗‖x‖X , ‖JX‖X∗ = µ(‖x‖X).

From now on we suppose that X and Y are equipped with duality maps
corresponding to gauge functions µX , µY respectively, normalised so that
µX(1) = µY (1) = 1. Let M be a closed linear subspace of X. Then if X is
strictly convex, so are M and X \M ; if X∗ is strictly convex, so are (X \M)∗

and M0. A semi-inner product is defined on X by

(x, h)X = ‖x‖X〈h, J̃Xx〉X (x 6= 0), (0, h)X = 0.

Proofs of these assertions and further details of Banach space geometry may
be found in [2], [10], [11] and [12].

Next we summarise some of the results of [3], [4] and [5], beginning with
the elementary fact that, under the conditions on X,Y and T, there exists
x1 ∈ X, with ‖x1‖X = 1, such that ‖T‖ = ‖Tx1‖Y , and that x1 satisfies the
equation

T ∗J̃Y Tx1 = νJ̃Xx1, ν = ‖T‖,
or equivalently,

T ∗JY Tx1 = ν1JXx1, ν1 = ‖T‖µY (‖T‖).
Set X1 = X, M1 = sp{JXx1} (where sp denotes the linear span), X2 = 0M1,
N1 = sp{JY Tx1}, Y2 = 0N1 and λ1 = ‖T‖. Since X2 and Y2 are closed
subspaces of reflexive spaces they are reflexive. Since X∗2 = (0M1)

∗ is iso-
metrically isomorphic to X∗1/M1 it follows that X∗2 is strictly convex; the
same argument applies to Y ∗2 . Because

〈Tx, JY Tx1〉Y = ν1〈x, JXx1〉X for all x ∈ X,
we see that T maps X2 to Y2. The restriction T2 of T to X2 is thus a compact
linear map from X2 to Y2, and if it is not the zero operator we can repeat
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the above argument: there exists x2 ∈ X2 \ {0} such that

〈T2x, JY2T2x2〉Y = ν2〈x, JX2x2〉X for all x ∈ X2,

where ν2 = λ2µY (λ2), λ2 = ‖Tx2‖Y = ‖T2‖. Evidently λ2 ≤ λ1 and ν2 ≤ ν1.
In this way we obtain elements x1, . . . , xn of X, all with unit norm, subspaces
M1, . . . ,Mn of X∗ and N1, . . . , Nn of Y ∗, where

Mk = sp{JXx1, . . . , JXxk}, Nk = sp{JY Tx1, . . . , JY Txk}, k= 1, . . . , n,

and decreasing families X1, . . . , Xn and Y1, . . . , Yn of subspaces of X and Y
respectively given by

Xk = 0Mk−1, Yk = 0Nk−1, k = 2, . . . , n.

For each k ∈ {1, . . . , n}, T maps Xk into Yk, xk ∈ Xk and, with Tk := T �Xk
,

λk(T ) = λk = ‖Tk‖, νk = λkµ(λk), we have

(2.1) 〈Tkx, JYkTkxk〉Yk = νk〈x, JXk
xk〉Xk

for all x ∈ Xk,

and so

T ∗k JYkTkxk = νkJXk
xk.

In fact, (2.1) is equivalent to

〈Tx, JY Txk〉Y = νk〈x, JXxk〉X for all x ∈ Xk.

Since Txk ∈ Yk = 0Nk−1, we have

〈Txk, JY Txl〉Y = 0 if l < k.

The process stops with λn, xn and Xn+1 if and only if the restriction of T
to Xn+1 is the zero operator while Tn 6= 0. With respect to the semi-inner
product on X the xn have the semi-orthogonality property

(xr, xs)X = δr,s if r ≤ s,

and correspondingly the yn := Txn/‖Txn‖Y = Txn/λn satisfy

(yr, ys)Y = δr,s if r ≤ s,

where δr,s is the Kronecker delta.

The iterative process just described can be expressed in terms of the
notion of orthogonality given by James [9], using the notation of [6] and [7].
We say that an element x ∈ X is j-orthogonal (or orthogonal in the sense
of James) to y ∈ X, and write x ⊥j y, if

‖x‖X ≤ ‖x+ ty‖X for all t ∈ R.

If x is j-orthogonal to every element of a subset W of X, it is said to be
j-orthogonal to W, written x ⊥j W. A subset W1 of X is j-orthogonal to
W2 ⊂ X (written W1 ⊥j W2) if x ⊥j y for all x ∈W1 and all y ∈W2.
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In general, j-orthogonality is not symmetric, that is, x ⊥j y need not
imply y ⊥j x; indeed, symmetry would imply that X is a Hilbert space.
The connection between j-orthogonality and the semi-inner product defined
earlier is given by the following result of [9]: if x, h ∈ X, then x ⊥j h if and
only if

(x, h)X := ‖x‖X〈h, J̃Xx〉X = 0.

It now follows immediately that

xr ⊥j xs and yr ⊥j ys if r < s,

and
xr ⊥j Xr and yr ⊥j Yr for all r.

A decomposition of X in terms of James orthogonality was given by
Alber [1], who introduced the following terminology: given closed subsets
M1,M2 of X, the space X is said to be the James orthogonal direct sum of
M1 and M2, and we write X = M1 ]M2, if

(1) for each x ∈ X there is a unique decomposition x = m1 +m2, where
m1 ∈M1, m2 ∈M2;

(2) M2 ⊥j M1;
(3) M1 ∩M2 = {0}.

Alber established the following

Theorem 1. Let X be uniformly convex and uniformly smooth, and
let M be a closed linear subspace of X; let JX be a duality map that is
normalised in the sense that it has gauge function µ with µ(t) = t for all
t ≥ 0. Then

X = M ] J−1X M0 and X∗ = M0 ] JXM.

Returning to the properties of T we note that when the rank of T is
infinite,

{λn} is an infinite sequence that converges to 0;

moreover,

X∞ :=
⋂
n∈N

Xn = ker(T ).

For these results see [5].
Next, we define

ZXn = sp{x1, . . . , xn}, ZYn = sp{y1, . . . , yn} (n ∈ N),

and introduce the family of maps

SX,Tk : X → ZXk−1 (k ≥ 2)

determined by the condition that x − SX,Tk x ∈ Xk for all x ∈ X. When

the meaning is clear we shall simply write SXk instead of SX,Tk . It turns out
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(see [3]) that SXk is uniquely given by

SXk x =
k−1∑
j=1

ξXj (x)xj ,

where

(2.2) ξXj (x) =
〈
x−

j−1∑
i=1

ξXi (x)xi, JXxj

〉
X

for j ≥ 2, ξX1 (x) = 〈x, JXx1〉X .

Let us note that ξXj (·) is a linear functional; this guarantees the linearity

of SXk . Maps SYk : Y → ZYk−1 are defined in an analogous fashion:

SYk y =

k−1∑
j=1

ξYj (y)yj ,

where the ξYj (y) are given by expressions corresponding to (2.2). From the

uniqueness it follows that (SXk )2 = SXk and hence ((SXk )∗)2 = (SXk )∗, so
that SXk and (SXk )∗ are linear projections of X onto ZXk−1 and X∗ onto
Mk−1 respectively.

Lemma 2. The spaces X and X∗ have the direct sum decompositions

(2.3) X = Xk ⊕ ZXk−1, X∗ = Mk−1 ⊕ (ZXk−1)
0 for each k ≥ 2.

The operators SXk , (SXk )∗ are respectively linear projections of X onto ZXk−1
and X∗ onto Mk−1. For all k ∈ N,

Xk = Xk+1 ] sp{xk}.

Corresponding statements hold for Y.

Proof. We give the proofs for X only, and for simplicity omit the super-
script X. The decomposition for X folllows from I = (I −Sk) +Sk, where I
is the identity map of X to itself, since I−Sk maps X into Xk by definition,
and Sk has range Zk−1. It is unique in view of the construction of the Xk.

From the definition of the Sk and (2.2) we have

Skx = Sk−1x+ 〈x− Sk−1x, JXxk−1〉Xxk−1
and so, on setting Ej = 〈·, JXxj〉Xxj ,

Sk = Sk−1 + Ek−1(I − Sk−1),

which gives

I − Sk = (I − Ek−1) · · · (I − E1), k ≥ 2.

For x ∈ X and x∗ ∈ X∗,

〈Ek−1x, x∗〉X = 〈x, 〈xk, x∗〉XJXxk〉X .
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Thus the map Ek−1 : X → X has adjoint E∗k−1 : X∗ → X∗ given by
E∗k−1 = 〈xk, ·〉XJXxk; and

I∗ − S∗k = (I∗ − E∗1) · · · (I∗ − E∗k−1), k ≥ 2.

It follows by induction that S∗k and I∗ − S∗k have ranges Mk−1and Z0
k−1

respectively, and hence X∗ = Mk−1 ⊕ (Zk−1)
0.

From the decomposition of X we see that Skx = 0 if x ∈ Xk. Since
Sk+1x = Skx+ ξk(x)xk, it follows that for all x ∈ Xk, Sk+1x = ξk(x)xk, and
as (I −Sk+1)x ∈ Xk+1 ⊂ Xk, we have Xk = Xk+1⊕ sp{xk}, from which the
final part of the lemma follows.

Now let PXn be the projection of X onto Xn (n ∈ N ∪ {∞}), by which
we mean that PXn : X → Xn takes x ∈ X to the point in Xn nearest to x.
Projections P Yn : Y → Yn are defined analogously. In [3] and [4] it is shown
that for all x ∈ X,

x = lim
n→∞

(SXn x− PXn SXn x) + PX∞x, PX∞x = lim
n→∞

PXn x

in the sense of weak convergence (strong if X is uniformly convex) and

Tx = lim
n→∞

( n−1∑
i=1

λiξ
X
i (x)yi − TPXn SXn x

)
in the sense of strong convergence, even if X is not uniformly convex. More
can be said if the additional assumption of uniform boundedness of the
SXn is made: it then turns out (see [4, Corrigendum]) that if T has trivial
kernel and (SXn )n∈N is bounded, then (xn)n∈N is a basis of X and accordingly
there is a Schmidt-type representation of T. If the assumption that (SXn )n∈N
is bounded is omitted, this result no longer holds. Readers interested in
decomposition of Banach spaces should look at [1, Section 3], [3] or [6] for
more details.

3. The main results. Here we retain the notation of the last section
and strengthen the assumptions (concerning X, Y and T ) by requiring that
both X and Y should be uniformly convex and uniformly smooth, and that
the compact map T should have trivial kernel and range dense in Y . We
begin with a lemma connecting PX2 and SX2 .

Lemma 3. For all x ∈ X,

x− PX2 x = SX2 x.

Proof. Let x ∈ X. Since PX2 x is the nearest element in X2 to x, it follows
that for all β ∈ R and all z ∈ X2,

‖x− PX2 x‖X ≤ ‖x− PX2 x+ βz‖X ,
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which means that x−PX2 x ⊥j X2. By Theorem 1, applied with M = X2, we
see that X = X2 ] sp{x1}, and in view of the uniqueness of decomposition
we have x− PX2 x = αx1 for some α ∈ R. The uniqueness of SX2 x now gives
the result.

Repetition of this argument, with X,X2 replaced by X2, X3 and use of
Theorem 1 to give X2 = X3 ] sp{x2}, shows that for all x ∈ X,

PX2 x− SX3 PX2 x = PX3 P
X
2 x ∈ X3.

Hence

x− SX2 x− SX3 PX2 x = PX3 P
X
2 x.

Since

SX2 x+ SX3 P
X
2 x = SX2 x+ SX3 (x− SX2 x) = SX3 x,

it follows that

x− SX3 x = PX3 P
X
2 x.

An obvious extension of this argument leads to

Lemma 4. Let n ∈ N \ {1}, x ∈ X and y ∈ Y. Then

x− SXn x = PXn P
X
n−1 · · ·PX2 x and y − SYn y = P Yn P

Y
n−1 · · ·P Y2 y.

Note that even though the projections PXk and P Yk are nonlinear, in
general, nevertheless the linearity of SXn and SYn means that the products
PXn P

X
n−1 · · ·PX2 and P Yn P

Y
n−1 · · ·P Y2 y are linear.

Lemma 5. Let n ∈ N and let Kn be the convex hull of x1, . . . , xn, where
the xi are defined in Section 2. Then

(2n − 1)−1 ≤ inf{‖x‖ : x ∈ Kn} ≤ 1.

The same holds with each xi replaced by yi.

Proof. Let x ∈ Kn. Then x =
∑n

i=1 αixi for some nonnegative αi such
that

∑n
i=1 αi = 1. Since

∑n
i=2 αixi ∈ X2 and α1x1 ⊥j X2,

α1 = ‖α1x1‖X ≤
∥∥∥α1x1 +

n∑
i=2

αixi

∥∥∥
X

= ‖x‖X .

As
∑n

i=3 αixi ∈ X3 and α2x2 ⊥j X3,

α2 − α1 = ‖α2x2‖X − ‖α1x1‖X ≤
∥∥∥α2x2 +

n∑
i=3

αixi

∥∥∥
X
− ‖α1x1‖X

≤
∥∥∥ n∑
i=1

αixi

∥∥∥
X

= ‖x‖X .
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In the same way it follows that for all l ∈ N,

αl+1 − αl ≤
∥∥∥ n∑
i=l

αixi

∥∥∥
X
.

Thus

α3 − α2 − α1 ≤
∥∥∥ n∑
i=2

αixi

∥∥∥
X
− ‖α1x1‖X ≤

∥∥∥ n∑
i=1

αixi

∥∥∥
X

= ‖x‖X ,

and

α4 − α3 − α2 − α1 ≤
∥∥∥ n∑
i=3

αixi

∥∥∥
X
− ‖α2x2‖X − ‖α1x1‖X

≤
∥∥∥ n∑
i=2

αixi

∥∥∥
X
− ‖α1x1‖X ≤

∥∥∥ n∑
i=1

αixi

∥∥∥
X

= ‖x‖X .

More generally we have, for each l ∈ N with l ≤ n,

αl −
l−1∑
i=1

αi ≤ ‖x‖X .

Thus

inf max(α1, α2 − α1, α3 − α2 − α1, . . . , αn − αn−1 − · · · − α1) ≤ inf
x∈Kn

‖x‖X ,

where the infimum on the left-hand side is taken over all αi ≥ 0 such that∑n
i=1 αi = 1. When n = 2 we have to find inf0≤t≤1 max(t, 1− 2t). Since

max(t, 1− 2t) =

{
1− 2t, 0 ≤ t ≤ 1/3,

t, 1/3 ≤ t ≤ 1,

we see that the infimum is attained when the two entries t and 1 − 2t are
equal, that is, when t = 1/3, as otherwise one of the two entries would be
greater than this value. For a general value of n, we need to find

inf∑n
i=1 αi=1, αi≥0

max(α1, α2 − α1, α3 − α2 − α1, . . . , αn − αn−1 − · · · − α1)

= inf max(α1, α2 − α1, . . . , 1− 2(α1 + · · ·+ αn−1)).

If the infimum is attained at αi − αi−1 − · · · − α1, we can decrease αi by a
sufficiently small ε > 0 while increasing each αj with j ∈ {i + 1, . . . , n} by
ε/(n−i): this leads to a decrease of αi−αi−1−· · ·−α1 by ε and an increase of
every term αj−αj−1−· · ·−α1 with j̇ > i. Considerations like this show that
as before the infimum is attained when the entries coincide: α1 = α2−α1, so
that α2 = 2α1, α3 = 2α2 = 22α1 and so on up to αn−1 = 2n−2α1. Moreover,

α1 = 1− 2α1(1 + 2 + · · ·+ 2n−2),

which gives
α1 = 1/(2n − 1)
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and establishes the claimed lower bound of the lemma. As the upper bound
is obvious, the proof is complete. The y-version follows in exactly the same
way.

We note that since the lower estimate in this lemma was obtained by
quite crude means, there is a distinct possibility of improvement in particular
spaces, such as Lp (1 < p <∞).

Next we show how an estimate involving the maps SYn can be obtained
when the λk decay sufficiently rapidly.

Lemma 6. Suppose that λk ≤ 2−k+1 for all k ∈ N. Then for all
y ∈ T (BX) and all n ∈ N,

‖y − SYn y‖Y ≤ 1.

Proof. Let y ∈ T (BX). By Lemma 4, y = SY2 (y) + P Y2 (y); moreover,

y0 := − SY2 (y) = −T (ξY1 (y)x1)/‖T‖ ∈ T (BX) since |ξY1 (y)| = |〈y, JY y1〉Y | ≤
‖y‖Y ≤ ‖T‖. Hence y1 := (y+y0)/2 ∈ T (BX). As y1 = 1

2P
Y
2 (y), we see that

1
2P

Y
2 (y) ∈ Y2 ∩ T (BX). Thus

(3.1) 1
2P

Y
2 T (BX) ⊂ Y2 ∩ T (BX).

We claim that
sup{‖y‖Y : y ∈ Y2 ∩ T (BX)} = λ2.

For if y ∈ Y2 ∩ T (BX), then y = Tx for some x ∈ BX , and in view of the
decomposition (2.3), x = u+ v for some u ∈ X2 and v ∈ ZX1 , v = αx1, say.
Thus y = Tu+ αTx1 = Tu+ αλ1y1, so that αλ1y1 = y − Tu ∈ Y2. By the
Y -form of (2.3) it follows that α = 0 and x ∈ X2, proving the claim. Thus
if λ2 ≤ 2−1, then

sup{‖y‖Y : y ∈ P Y2 T (BX)} ≤ 1.

Further use of Lemma 4 shows, by similar techniques, that
1
2P

Y
3 (T (BX) ∩ Y2) ⊂ T (BX) ∩ Y2 ∩ Y3,

which together with (3.1) gives
1
2P

Y
3

(
1
2P

Y
2 T (BX)

)
⊂ T (BX) ∩ Y3.

Hence the condition λ3 ≤ 2−2 implies that

sup{‖y‖Y : y ∈ P Y3 P Y2 T (BX)} ≤ 1.

More generally, the same procedure shows that for any n ∈ N \ {1}, if
λn ≤ 2−n+1, then

sup{‖y‖Y : y ∈ P Yn P Yn−1 · · ·P Y2 T (BX)} ≤ 1.

Together with Lemma 4 this finishes the proof.

From this it follows that the SYn , regarded as maps from the closure in Y
of T (X) to itself, have uniformly bounded norms. However, all this is based
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on the assumption that the λn decay quickly enough, and it would clearly
be desirable if the result were to hinge instead on the decay of more familiar
objects associated with T. The Gelfand numbers come immediately to mind
(see, for example, [14]): recall that the nth Gelfand number of T is

cn(T ) := inf{‖TJXM‖ : codimM < n} (n ∈ N),

where JXM is the natural embedding from the closed linear subspace M of
X into X. It is plain that

cn(T ) = inf
x∗1,...,x

∗
n−1∈X∗

{sup{‖Tx‖Y : ‖x‖X = 1, 〈x, x∗k〉 = 0 for k < n}}.

Companion to these numbers are the Gelfand widths c̃n(T ) defined by

c̃n(T ) = inf
Ln

sup
‖x‖X=1, Tx∈Ln

‖Tx‖Y ,

where the infimum is taken over all closed linear subspaces Ln of Y with
codimension at most n− 1; equivalently,

c̃n(T ) = inf
y∗1 ,...,y

∗
n−1∈Y ∗

{sup{‖Tx‖Y : ‖x‖X = 1, 〈Tx, y∗k〉 = 0 for k < n}}.

Clearly cn(T ) ≤ λn and cn(T ) ≤ c̃n(T ) for every n. However, to be able to
use Lemma 6 we need inequalities in the reverse direction, and to establish
these we proceed as follows.

Lemma 7. For every n ∈ N,
(2n − 1)−1λn ≤ c̃n(T ) ≤ λn.

Proof. Let n ∈ N. Then T (BX) contains the convex hull Hn of ±λny1, . . .
. . . ,±λnyn. Let ε > 0. We claim that

T (BX) ∩ ZYn + {y ∈ Y : ‖y‖Y ≤ c̃n(T ) + ε} ∩ ZYn .
For if Kn is a linear subspace of Y with codimension n − 1, then
dim(Kn ∩ ZYn ) ≥ 1, so that if the claim were false, the definition of c̃n(T )
would be contradicted and then ĉn(T ) ≤ λn. By Lemma 5 applied to the yi,

Hn ⊃ {y ∈ Y : ‖y‖Y ≤ λn(2n − 1)−1} ∩ ZYn ,
so that

T (BX) ∩ ZYn ⊃ {y ∈ Y : ‖y‖Y ≤ λn(2n − 1)−1} ∩ ZYn .
It follows that c̃n(T ) + ε > λn(2n − 1)−1.

We remind the reader of our standing assumption in this section that
both X and Y are uniformly convex and uniformly smooth, and that the
compact map T should have trivial kernel and range dense in Y . For the
Gelfand numbers we need the following result established in [8]:

Theorem 8. For all n ∈ N,
cn(T ) = c̃n(T ).
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We emphasise that this result is not generally true for arbitrary compact
maps between arbitrary Banach spaces: the proof uses in a crucial way the
uniform convexity and smoothness of the spaces together with the assump-
tions that T (X) is dense in Y and the kernel of T is trivial.

From this and Lemma 6 we immediately have

Lemma 9. If cn(T ) ≤ 2−n+1(2n − 1)−1 for all n ∈ N, then ‖y − SYn y‖Y
≤ 1 for all y ∈ T (BX) and all n ∈ N.

As mentioned in the Introduction, the rapid decay imposed on the Gel-
fand numbers of T in Lemma 9 implies that T is nuclear. Indeed, since the
approximation numbers an(T ) of T satisfy an(T ) ≤ 2

√
n cn(T ) (see Pietsch

[14, Section 6.2.3.14]), it follows that (an(T ))n∈N ∈ l1; the nuclearity of T
now results from [15].

Proposition 10. The subspaces Yn defined by (2.2) have trivial inter-
section: ∞⋂

n=1

Yn = {0}.

Proof. First we show that

(3.2)
( ∞⋂
n=1

Yn

)
∩ T (X) = {0}.

To begin with, we claim that if x ∈ X and Tx ∈ Yn+1, then x ∈ Xn+1. For
by (2.3), x = xZ +xX , where xZ ∈ ZXn and xX ∈ Xn+1. Since T (ZXn ) ⊂ ZYn
and T (Xn+1) ⊂ Yn+1, we see that if x /∈ Xn+1, then xZ 6= 0 and y := Tx =
T (xZ) + T (xX), where T (xZ) 6= 0 as ker(T ) = {0}. Since T (xZ) ∈ ZYn and
T (xX) ∈ Yn+1, application of the decomposition of Y corresponding to (2.3)
shows that Tx /∈ Yn+1, and we have a contradiction.

Now suppose that there exists z ∈ (
⋂∞
n=1 Yn)∩T (X), z 6= 0. Then z = Tx

for some x 6= 0. Since the Xn are decreasing and have trivial intersection,
there exists N ∈ N such that for all n > N, x /∈ XN . But Tx = z ∈ Yn for
all n ∈ N, so that by our claim, x ∈ Xn for all n ∈ N. This contradiction
establishes (3.2).

To finish, simply note that

Y ∗ = {0}0 =
{( ∞⋂

n=1

Yn

)
∩ T (X)

}0
=
( ∞⋃
n=1

Y 0
n

)
∪ (T (X))0

=

∞⋃
n=1

Y 0
n =

( ∞⋂
n=1

Yn

)0
,

from which the result follows directly.
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We can now give the main result:

Theorem 11. If cn(T ) ≤ 2−n+1(2n − 1)−1 for all n ∈ N, then for all
x ∈ X,

Tx =
∑
n

αYn (x)yn,

where αYn (·) = ξYn (T ·) ∈ X∗.

Proof. Let y ∈ Y. Since SYn y − y ∈ Yn ⊂ Yk = 0Nk−1 if n > k, it follows
from the definition of a polar set that for all z ∈

⋃
k∈NNk,

〈SYn y − y, z〉Y → 0 as n→∞.
Since by Lemma 9, (SYn ) is bounded, this limit also holds for all z ∈⋃
k∈NNk = Y ∗; hence SYn y ⇀ y. Thus

y =

∞∑
j=1

ξYj (y)yj

in the sense of weak convergence in Y. The uniqueness of this weak represen-
tation follows from the semi-orthogonality property (yl, yk)Y = 0 if l < k,
and so (yn)n∈N is a weak basis of Y. By Banach’s weak basis theorem (see, for
example, Theorem 5.3 of [13]), it is a basis of Y and the proof is complete.
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