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Crossed products by Hilbert pro-C∗-bimodules

by

Maria Joiţa (Bucharest) and Ioannis Zarakas (Athens)

Abstract. We define the crossed product of a pro-C∗-algebra A by a Hilbert A-A
pro-C∗-bimodule and we show that it can be realized as an inverse limit of crossed products
of C∗-algebras by Hilbert C∗-bimodules. We also prove that under some conditions the
crossed products of two Hilbert pro-C∗-bimodules over strongly Morita equivalent pro-
C∗-algebras are strongly Morita equivalent.

1. Introduction. The crossed product construction, in its various forms
and generalizations, has proved to be one of the most important ideas
in operator algebras, both for internal structure theory and for applica-
tions. Crossed products go back on the one hand to statistical mechanics,
where they were called “covariance algebras”, and on the other hand to the
group measure space constructions of Murray and von Neumann (see [W]).
A crossed product C∗-algebra is a C∗-algebra A together with a locally com-
pact group G of automorphisms of A. When A = C, the crossed product
C∗-algebra is the well known group C∗-algebra. There is a vast literature on
crossed products of C∗-algebras (see e.g. [W]), but the corresponding theory
in the context of non-normed topological algebras has still a long way to go.

Crossed products of pro-C∗-algebras under inverse limit actions of locally
compact groups were considered first by Phillips [P2] and secondly by Joiţa
whose main results are included in the monograph [J2]. If X is a direct limit
of a sequence {Kn}n of compact spaces, then C(X), the vector space of all
continuous complex-valued functions on X, is a unital commutative pro-
C∗-algebra with the topology given by the family of C∗-seminorms {pn}n,
pn(f) = sup{|f(x)|; x ∈ Kn}. A homeomorphism h : X → X such that
h(Kn) = Kn for all n induces a pro-C∗-isomorphism α : C(X) → C(X),
α(f) = f ◦h, such that pn(α(f)) = pn(f) for all f ∈ C(X) and for all n. An
automorphism α of a pro-C∗-algebra A[τΓ ] such that pλ(α(a)) = pλ(a) for
all a ∈ A[τΓ ] and pλ ∈ Γ induces an inverse limit action of the integers Z

2010 Mathematics Subject Classification: Primary 46L05, 46L08; Secondary 46L55, 46H25.
Key words and phrases: pro-C∗-algebra, Hilbert pro-C∗-bimodule, crossed product, Morita
equivalence.

DOI: 10.4064/sm215-2-4 [139] c© Instytut Matematyczny PAN, 2013
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on A, and an action β, called the dual action, of the circle T on the crossed
product A×α Z of A by α, the fixed point algebra of β being A[τΓ ].

Given an action of T on a pro-C∗-algebra A[τΓ ], it is natural to ask when
A[τΓ ] is isomorphic to the crossed product of a pro-C∗-algebra by an auto-
morphism. To answer this question in the case of C∗-algebras, B. Abadie,
S. Eilers and R. Exel [AEE] introduced the notion of crossed products by
Hilbert C∗-bimodules, thus generalizing the notion of C∗-crossed products
by automorphisms.

In this paper we extend the construction of a crossed product by Hilbert
C∗-bimodules to the context of pro-C∗-algebras. In Section 3, we introduce
the notion of a covariant representation of a Hilbert pro-C∗-bimodule X over
a pro-C∗-algebra A[τΓ ] on a pro-C∗-algebra B[τΓ ′ ], and define the crossed
product of A[τΓ ] by X as the universal object with respect to the covariant
representations of X. We show that the crossed product of A[τΓ ] by X
is isomorphic to a pro-C∗-algebra whose topology is given by a family of
C∗-seminorms having the same index set as the family of C∗-seminorms
that give the topology of A[τΓ ]. Also we show that the crossed product of
a pro-C∗-algebra A[τΓ ] by an automorphism can be regarded as the crossed
product of A[τΓ ] by a Hilbert pro-C∗-bimodule.

In Section 4, we show that an inverse limit action α of T on a pro-C∗-
algebra A[τΓ ] is semi-saturated (that is, A[τΓ ] is generated by the fixed point
algebra A0 of α and the first spectral subspace A1) if and only if A[τΓ ] is
isomorphic to the crossed product of A0 by A1.

In Section 5, we show that if X and Y are pro-C∗-bimodules over the pro-
C∗-algebras A[τΓ ], B[τΓ ′ ] respectively and if A and B are strongly Morita
equivalent and the Hilbert pro-C∗-bimodules X ⊗A E and E ⊗B Y are iso-
morphic, where E is an imprimitivity Hilbert A-B pro-C∗-bimodule, then
the pro-C∗-algebras A ×X Z and B ×Y Z are strongly Morita equivalent.
This is a generalization of [AEE, Theorem 4.2].

2. Preliminaries. Throughout this paper all vector spaces are consid-
ered over the field C of complex numbers and all topological spaces are
assumed to be Hausdorff.

A pro-C∗-algebra A[τΓ ] is a complete topological ∗-algebra for which
there exists an upward directed family Γ of C∗-seminorms {pλ}λ∈Λ defining
the topology τΓ . Other terms that have been used for a pro-C∗-algebra are:
locally C∗-algebra (A. Inoue), b∗-algebra (C. Apostol) and LMC∗-algebra
(G. Lassner, K. Schmüdgen).

For a pro-C∗-algebra A[τΓ ], and every λ ∈ Λ, the quotient normed ∗-
algebra Aλ = A/Nλ, where Nλ = {a ∈ A; pλ(a) = 0}, is already complete,
hence a C∗-algebra in the norm ‖a+Nλ‖Aλ = pλ(a), a ∈ A (C. Apostol). The
canonical map from A to Aλ is denoted by πAλ . For λ, µ ∈ Λ with λ ≥ µ, there
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is a canonical surjective C∗-morphism πAλµ : Aλ → Aµ such that πAλµ(a+Nλ)
= a+Nµ for all a ∈ A. The Arens–Michael decomposition gives us a repre-
sentation of A[τΓ ] as an inverse limit of C∗-algebras: A[τΓ ] = lim←λA/Nλ,
up to a topological ∗-isomorphism. A pro-C∗-morphism is a continuous ∗-
morphism Φ from a pro-C∗-algebra A[τΓ ] to another pro-C∗-algebra B[τΓ ′ ].
We refer the reader to [F] for further information about pro-C∗-algebras.

Let Λ be an upward directed index set and Hλ, λ ∈ Λ, a family of
Hilbert spaces such that Hµ ⊆ Hλ and 〈·, ·〉µ = 〈·, ·〉λ|Hµ for all λ, µ ∈ Λ
with λ ≥ µ. Then {Hλ; iλµ; λ, µ ∈ Λ with λ ≥ µ}, where iλµ is the natural
embedding of Hµ in Hλ, is a direct system of Hilbert spaces. H = limλ→Hλ
endowed with the inductive limit topology is called a locally Hilbert space.
Let L(H) = {T : H → H; T |Hλ ∈ L(Hλ)}. If T ∈ L(H), then the map
T ∗ : H → H such that T ∗|Hλ = (T |Hλ)∗ ∈ L (Hλ) for all λ ∈ Λ is an element
in L(H), called the adjoint of T . In this way, L(H) is a pro-C∗-algebra with
respect to the topology given by the family of C∗-seminorms {pλ,L(H)}λ∈Λ,
where pλ,L(H)(T ) = ‖T |Hλ‖ = sup{‖T |Hλ(ξ)‖; ξ ∈ Hλ, ‖ξ‖ ≤ 1} [F].

Here we recall some basic facts from [J1] and [Z] regarding Hilbert pro-
C∗-modules and Hilbert pro-C∗-bimodules respectively.

Let A[τΓ ] be a pro-C∗-algebra and X a linear space that is also a right
A-module. Let 〈·, ·〉A be a right A-valued inner product on X, C-linear in the
second variable and conjugate linear in the first variable, with the following
properties:

(1) 〈x, x〉A ≥ 0 and 〈x, x〉A = 0 if and only if x = 0,
(2) (〈x, y〉A)∗ = 〈y, x〉A,
(3) 〈x, ya〉A = 〈x, y〉Aa.

Then X is called a right Hilbert pro-C∗-module over A (or just a Hilbert
A-module) if endowed with the family of seminorms {pAλ }λ∈Λ, with pAλ (x) =

pλ(〈x, x〉A)1/2, x ∈ X, is a complete locally convex space. A Hilbert
A-module is full if the pro-C∗-subalgebra of A[τΓ ] generated by {〈x, y〉A;
x, y ∈ X} coincides with A[τΓ ].

A left Hilbert pro-C∗-module X over a pro-C∗-algebra A[τΓ ] is defined
in the same way, where for instance (3) becomes now A〈ax, y〉 = a(A〈x, y〉)
for all x, y ∈ X and a ∈ A and completeness is required with respect to the
family of seminorms {Apλ}λ∈Λ, where Apλ(x) = pλ(A〈x, x〉)1/2, x ∈ X.

In case X is a left Hilbert pro-C∗-module over A[τΓ ] and a right Hilbert
pro-C∗-module over B[τΓ ′ ] (τΓ ′ is given by the family of C∗-seminorms
{qλ}λ∈Λ) such that the following relations hold:

• A〈x, y〉z = x〈y, z〉B for all x, y, z ∈ X,
• qBλ (ax) ≤ pλ(a)qBλ (x) and Apλ(xb) ≤ qλ(b)Apλ(x) for all x ∈ X, a ∈ A,
b ∈ B and for all λ ∈ Λ,

we say that X is a Hilbert A-B pro-C∗-bimodule.
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A Hilbert A-B pro-C∗-bimodule X is full if it is full as a right and as a
left Hilbert pro-C∗-module.

Two Hilbert A-B pro-C∗-bimodules X and Y are isomorphic if there is a
topological isomorphism Φ : X → Y such that 〈Φ(x1), Φ(x2)〉B = 〈x1, x2〉B
and A〈Φ(x1), Φ(x2)〉 = A〈x1, x2〉 for all x1, x2 ∈ X.

Let Λ be an upward directed set and {Aλ;Bλ;Xλ;πλµ;χλµ;σλµ; λ, µ ∈ Λ,
λ ≥ µ} an inverse system of Hilbert C∗-bimodules, that is:

• {Aλ;πλµ; λ, µ ∈ Λ, λ ≥ µ} and {Bλ;χλµ; λ, µ ∈ Λ, λ ≥ µ} are inverse
systems of C∗-algebras;
• {Xλ;σλµ; λ, µ ∈ Λ, λ ≥ µ} is an inverse system of Banach spaces;
• for each λ ∈ Λ, Xλ is a Hilbert Aλ-Bλ C

∗-bimodule;
• we have 〈σλµ(x), σλµ(y)〉Bµ = χλµ(〈x, y〉Bλ) and Aµ〈σλµ(x), σλµ(y)〉 =
πλµ(Aλ〈x, y〉) for all x, y ∈ Xλ and for all λ, µ ∈ Λ with λ ≥ µ;
• σλµ(x)χλµ(b) = σλµ(xb), πλµ(a)σλµ(x) = σλµ(ax) for all x ∈ Xλ,
a ∈ Aλ, b ∈ Bλ and for all λ, µ ∈ Λ such that λ ≥ µ.

Let A = lim←λAλ, B = lim←λBλ and X = lim←λXλ. Then X has a
structure of a Hilbert A-B pro-C∗-bimodule with

〈(xλ)λ∈Λ, (yλ)λ∈Λ〉B = (〈xλ, yλ〉Bλ)λ∈Λ,

A〈(xλ)λ∈Λ, (yλ)λ∈Λ〉 = (Aλ〈xλ, yλ〉)λ∈Λ.

Let X be a Hilbert A-B pro-C∗-bimodule. Then, for each λ∈Λ, Apλ(x) =
qBλ (x) for all x ∈ X, and the normed space Xλ=X/NB

λ , where NB
λ ={x ∈ X;

qBλ (x) = 0}, is complete in the norm ‖x+NB
λ ‖Xλ = qBλ (x), x ∈ X. Moreover,

Xλ has a canonical structure of a Hilbert Aλ-Bλ C
∗-bimodule with 〈x+NB

λ ,
y + NB

λ 〉Bλ = 〈x, y〉B + ker qλ and Aλ〈x + NB
λ , y + NB

λ 〉 = A〈x, y〉 + ker pλ
for all x, y ∈ X. The canonical surjection from X to Xλ is denoted by σXλ .

For λ, µ ∈ Λ with λ ≥ µ, there is a canonical surjective linear map σXλµ :

Xλ → Xµ such that σXλµ(x+NB
λ ) = x+NB

µ for all x ∈ X. Then {Aλ;Bλ;Xλ;

πAλµ;σXλµ;πBλµ; λ, µ ∈ Λ, λ ≥ µ} is an inverse system of Hilbert C∗-bimodules
in the above sense and the Hilbert A-B pro-C∗-bimodules X and lim←λXλ

are isomorphic.

Let X and Y be Hilbert pro-C∗-modules over B. A morphism T : X → Y
of right modules is adjointable if there is another morphism of modules
T ∗ : Y → X such that 〈Tx1, x2〉B = 〈x1, T ∗x2〉B for all x1, x2 ∈ X. The vec-
tor space LB(X,Y ) of all adjointable module morphisms from X to Y has
a structure of locally convex space under the topology given by the family
of seminorms {qλ,LB(X,Y )}λ∈Λ, where qλ,LB(X,Y )(T ) = sup{qBλ (Tx); x ∈ X,

qBλ (x) ≤ 1}. For x ∈ X and y ∈ Y , the map θy,x : X → Y given by θy,x(z) =
y〈x, z〉B is an adjointable module morphism and the closed subspace of
LB(X,Y ) generated by {θy,x; x ∈ X and y ∈ Y } is denoted by KB(X,Y );
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its elements are usually called compact operators. For Y = X, LB(X) =
LB(X,X) is a pro-C∗-algebra with (LB(X))λ = LBλ(Xλ) for each λ ∈ Λ,
and KB(X) = KB(X,X) is a closed two-sided ∗-ideal of LB(X) with
(KB(X))λ = KBλ(Xλ) for each λ ∈ Λ.

The dual of the Hilbert B-module X, X∗ = KB(X,B) has a natural
structure of a Hilbert pro-C∗-module over KB(X). If X is a full Hilbert A-B
pro-C∗-bimodule, then the pro-C∗-algebras A and KB(X) are isomorphic,
and so X∗ can be regarded as a Hilbert pro-C∗-module over A. Moreover
X∗ is a Hilbert B-A pro-C∗-bimodule.

Let E be an A-B Hilbert pro-C∗-bimodule. The direct sum E ⊕ B of
the Hilbert B-modules E and B has a natural structure of a right Hilbert
B-module. Moreover, for each λ ∈ Λ, the right Hilbert Bλ-module (E⊕B)λ
can be identified with Eλ ⊕Bλ. Then the pro-C∗-algebras KB(E ⊕B) and
lim←λKBλ(Eλ ⊕ Bλ) can be identified. For each λ ∈ Λ, the C∗-algebra
KBλ(Eλ ⊕ Bλ) can be identified with the C∗-algebra of all matrices of the
form [

aλ ξλ

η̃λ bλ

]
, aλ ∈ Aλ, bλ ∈ Bλ, ξλ ∈ Eλ, η̃λ ∈ (Eλ)∗,

and then KB(E ⊕ B) can be realized by the pro-C∗-algebra of all matrices
of the form [

a ξ

η̃ b

]
, a ∈ A, b ∈ B, ξ ∈ E, η̃ ∈ E∗.

This pro-C∗-algebra is denoted by L(E) and called the linking algebra of E.
Moreover, L(E) = lim←λ L(Eλ).

3. Crossed products by Hilbert pro-C∗-bimodules. Let A[τΓ ] be
a pro-C∗-algebra with Γ = {pλ; λ ∈ Λ} a defining family of C∗-seminorms,
X a Hilbert A-A pro-C∗-bimodule, and B[τΓ ′ ] a pro-C∗-algebra with Γ ′ =
{qi; i ∈ I} a defining family of C∗-seminorms.

Definition 3.1. A covariant representation of a Hilbert A-A pro-C∗-
bimodule X on a pro-C∗-algebra B is a pair (ϕX , ϕA) consisting of a pro-
C∗-morphism ϕA : A → B and a map ϕX : X → B which satisfies the
following relations:

(1) ϕX(xa) = ϕX(x)ϕA(a) for all x ∈ X and a ∈ A;
(2) ϕX(ax) = ϕA(a)ϕX(x) for all x ∈ X and a ∈ A;
(3) ϕX(x)∗ϕX(y) = ϕA(〈x, y〉A) for all x, y ∈ X;
(4) ϕX(x)ϕX(y)∗ = ϕA(A〈x, y〉) for all x, y ∈ X.

The covariant representation (ϕX , ϕA) is nondegenerate if ϕA is nonde-
generate, that is, [ϕA(A)B] = B, [ϕX(X)B] = B and [ϕX(X)∗B] = B.
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If ϕA is nondegenerate and X is full, then (ϕX , ϕA) is nondegenerate.
Indeed,

B = [ϕA(A)B] = [ϕA(A〈X,X〉)B] = [ϕX(X)ϕX(X)∗B] ⊆ [ϕX(X)B] ⊆ B

and so [ϕX(X)B] = B. Similarly also [ϕX(X)∗B] = B.

If (ϕX , ϕA) is a covariant representation of a Hilbert A-A pro-C∗-bi-
module X on a pro-C∗-algebra B, then ϕX is continuous, since for each
i ∈ I, there is λ(i) ∈ Λ such that

qi(ϕX(x))2 = qi(ϕX(x)∗ϕX(x)) = qi(ϕA(〈x, x〉A)) ≤ pλ(i)(〈x, x〉A)

= pAλ(i)(x)2

for all x ∈ X.

Relation (3) implies that ϕX is linear. Also, (3) implies (1). Indeed,

qi(ϕX(xa)− ϕX(x)ϕA(a))2

= qi
(
(ϕX(xa)∗ − ϕA(a∗)ϕX(x)∗)(ϕX(xa)− ϕX(x)ϕA(a))

)
= qi

(
ϕA(〈xa, xa〉A)− ϕA(〈xa, x〉A)ϕA(a)− ϕA(a∗)ϕA(〈x, xa〉A)

+ ϕA(a∗)ϕA(〈x, x〉A)ϕA(a)
)

= 0

for all x ∈ X, a ∈ A and qi ∈ Γ ′. Similarly, (4) implies (2).

Proposition 3.2. For every Hilbert A-A pro-C∗-bimodule X, there
exists a covariant representation of X.

Proof. For each λ ∈ Λ, there is a covariant representation (ϕXλ , ϕAλ)
of (Xλ, Aλ) on L(Hλ), the C∗-algebra of all bounded linear operators on a
Hilbert space Hλ (see [AEE, Proposition 2.3]). Let Hλ =

⊕
µ≤λHµ for each

λ ∈ Λ. Then H = limλ→Hλ is a locally Hilbert space. For each a ∈ A, the
family (ϕλA(a))λ, where ϕλA(a) is the bounded linear operator on Hλ given
by

ϕλA(a)
(⊕
µ≤λ

ξµ

)
=
⊕
µ≤λ

ϕAµ(a+Nµ)ξµ,

is an inductive system of bounded linear operators, and the map a 7→
ϕA(a) = limλ→ ϕ

λ
A(a) from A to L(H) is a pro-C∗-morphism (see [F, Theo-

rem 8.5] or [I]).

Let x ∈ X. For each λ ∈ Λ, the linear map ϕλX(x) : Hλ → Hλ defined by

ϕλX(x)
(⊕
µ≤λ

ξµ

)
=
⊕
µ≤λ

ϕXµ(x+NA
µ )ξµ
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is a bounded linear operator, since∥∥∥ϕλX(x)
(⊕
µ≤λ

ξµ

)∥∥∥2 =
∑
µ≤λ
‖ϕXµ(x+NA

µ )ξµ‖2 ≤
∑
µ≤λ

pAµ (x)2‖ξµ‖2

≤ pAλ (x)2
∑
µ≤λ
‖ξµ‖2 = pAλ (x)2

∥∥∥⊕
µ≤λ

ξµ

∥∥∥2
for all ξµ ∈ Hµ, µ, λ ∈ Λ, µ ≤ λ. It is easy to check that (ϕλX(x))λ is an
inductive system of bounded linear operators, and so ϕX(x) = limλ→ ϕ

λ
X(x)

is an element in L(H). In this way, we obtain a map ϕX from X to L(H).
Moreover,

ϕX(x)∗ϕX(y)
(⊕
µ≤λ

ξµ

)
= ϕλX(x)∗ϕλX(y)

(⊕
µ≤λ

ξµ

)
=
⊕
µ≤λ

ϕXµ(x+NA
µ )∗ϕXµ(y +NA

µ )ξµ

=
⊕
µ≤λ

ϕAµ(〈x, y〉A +Nµ)ξµ

= ϕλA(〈x, y〉A)
(⊕
µ≤λ

ξµ

)
= ϕA(〈x, y〉A)

(⊕
µ≤λ

ξµ

)
and

ϕX(x)ϕX(y)∗
(⊕
µ≤λ

ξµ

)
= ϕλX(x)ϕλX(y)∗

(⊕
µ≤λ

ξµ

)
=
⊕
µ≤λ

ϕXµ(x+ ANµ)ϕXµ(y + ANµ)∗ξµ

=
⊕
µ≤λ

ϕAµ(A〈x, y〉+Nµ)ξµ

= ϕλA(A〈x, y〉)
(⊕
µ≤λ

ξµ

)
= ϕA(A〈x, y〉)

(⊕
µ≤λ

ξµ

)
for all x, y ∈ X, ξµ ∈ Hµ, µ, λ ∈ Λ, µ ≤ λ. Therefore, (ϕX , ϕA) is a covariant
representation of (X,A) on L(H).

Definition 3.3. Let X be a Hilbert A-A pro-C∗-bimodule. The crossed
product of A by X is a pro-C∗-algebra, denoted by A ×X Z, together with
a covariant representation (iX , iA) of (X,A) on A ×X Z with the property
that for any covariant representation (ϕX , ϕA) of (X,A) on a pro-C∗-algebra
B[τΓ ′ ], there is a unique pro-C∗-morphism Φ : A×XZ→B such that Φ◦iX =
ϕX and Φ ◦ iA = ϕA.
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Proposition 3.4.

(1) The crossed product of A by X is unique up to an isomorphism of
pro-C∗-algebras.

(2) The pro-C∗-subalgebra of A ×X Z generated by the range of iX and
the range of iA coincides with A×X Z.

(3) If X is full, then (iX , iA) is nondegenerate.

Proof. (1) Suppose that there is another pro-C∗-algebra B [τΓ ′ ] and a
covariant representation (jX , jA) of (X,A) on B with the property that for
any covariant representation (ϕX , ϕA) of (X,A) on a pro-C∗-algebra C[τΓ ′′ ],
there is a unique pro-C∗-morphism Ψ : B → C such that Ψ ◦ jX = ϕX and
Ψ◦jA = ϕA. Then from the universal property of the crossed product A×XZ,
there is a unique pro-C∗-morphism Φ : A×X Z→ B such that Φ ◦ iA = jA
and Φ ◦ iX = jX .

On the other hand, from the universal property of B, there is a unique
pro-C∗-morphism Ψ : B → A×X Z such that Ψ ◦ jX = iX and Ψ ◦ jA = iA.
Then, since Ψ ◦ Φ ◦ iX = iX and Ψ ◦ Φ ◦ iA = iA, from the uniqueness
condition of the universal property of A ×X Z, we have Ψ ◦ Φ = idA×XZ.
Similarly, since Φ ◦ Ψ ◦ jX = jX and Φ ◦ Ψ ◦ jA = jA, from the uniqueness
condition of the universal property of B, we have Φ ◦Ψ = idB. Therefore, Φ
is a pro-C∗-isomorphism.

(2) Let ι be the inclusion of the pro-C∗-subalgebra pro-C∗(iX(X), iA(A))
of A×XZ generated by iX(X) and iA(A). Then (i0X , i

0
A), with i0X(x) = iX(x)

for all x ∈ X and i0A(a) = iA(a) for all a ∈ A, is a covariant representation of
(X,A) on pro-C∗(iX(X), iA(A)). We show that pro-C∗(iX(X), iA(A)) with
the covariant representation (i0X , i

0
A) is a universal object for the covariant

representations of (X,A). Indeed, if (ϕX , ϕA) is a covariant representation
of (X,A) on a pro-C∗-algebra B, then there is a unique pro-C∗-morphism
Φ : A ×X Z → B such that Φ ◦ iX = ϕX and Φ ◦ iA = ϕA. Let Ψ = Φ ◦ ι.
Clearly, Ψ : pro-C∗(iX(X), iA(A))→ B is a pro-C∗-morphism, Ψ ◦ i0X = ϕX
and Ψ ◦ i0A = ϕA. If Ψ̃ : pro-C∗(iX(X), iA(A)) → B is another pro-C∗-

morphism such that Ψ̃ ◦ i0X = ϕX and Ψ̃ ◦ i0A = ϕA, then (Ψ − Ψ̃) ◦ i0X = 0

and (Ψ − Ψ̃) ◦ i0A = 0, whence we deduce that Ψ = Ψ̃ , and by (1), the
pro-C∗-algebras A×X Z and pro-C∗(iX(X), iA(A)) are isomorphic.

(3) Let {ei}i be an approximate unit for A. Then for each x ∈ X,
iA(ei)iX(x) = iX(eix) and iA(ei)iX(x)∗ = iX(xei)

∗ for all i ∈ I, and
since the nets {eix}i and {xei}i converge to x, the nets {iA(ei)iX(x)}i and
{iA(ei)iX(x)∗}i converge to iX(x) respectively iX(x)∗. Therefore,

[
iA(A)

A×X Z
]

= A×X Z and since X is full, (iX , iA) is nondegenerate.

Let Λ be an upward directed index set and {Aλ;Xλ;πλµ;σλµ; λ, µ ∈ Λ,
λ ≥ µ} an inverse system of Hilbert C∗-bimodules, A = lim←λAλ and
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X = lim←λXλ. For λ, µ ∈ Λ with λ ≥ µ, (iXµ ◦σλµ, iAµ ◦πλµ) is a covariant
representation of (Xλ, Aλ) on Aµ ×Xµ Z. Indeed, we have

(iXµ ◦ σλµ)(x)∗(iXµ ◦ σλµ)(y) = iXµ(σλµ(x))∗iXµ(σλµ(y))

= iAµ(〈σλµ(x), σλµ(y)〉Aµ) = iAµ(πλµ(〈x, y〉Aλ)) = iAµ ◦ πλµ(〈x, y〉Aλ)

and

(iXµ ◦ σλµ)(x)(iXµ ◦ σλµ)(y)∗ = iXµ(σλµ(x))iXµ(σλµ(y))∗

= iAµ(Aµ〈σλµ(x), σλµ(y)〉) = iAµ(πλµ(Aλ〈x, y〉)) = iAµ ◦ πλµ(Aλ〈x, y〉)
for all x, y ∈ Xλ. Then, by [AEE, Definition 2.4], there is a unique C∗-
morphism χλµ : Aλ ×Xλ Z→Aµ ×Xµ Z such that χλµ ◦ iXλ = iXµ ◦ σλµ and
χλµ ◦ iAλ = iAµ ◦πλµ. Moreover, if the maps πλµ and σλµ are surjective, then
χλµ is surjective.

Let λ, µ, η ∈ Λ with λ ≥ µ ≥ η. We have

(χµη ◦ χλµ) ◦ iXλ = χµη ◦ (χλµ ◦ iXλ) = (χµη ◦ iXµ) ◦ σλµ = iXη ◦ σµη ◦ σλµ
= iXη ◦ σλη

and

(χµη ◦ χλµ) ◦ iAλ = χµη ◦ (χλµ ◦ iAλ) = (χµη ◦ iAµ) ◦ πλµ = iAη ◦ πµη ◦ πλµ
= iAη ◦ πλη.

Then, by [AEE, Definition 2.4], χµη ◦ χλµ = χλη. Therefore, {Aλ ×Xλ Z;
χλµ; λ, µ ∈ Λ with λ ≥ µ} is an inverse system of C∗-algebras.

Proposition 3.5. Let {Aλ;Xλ;πλµ;σλµ; λ, µ ∈ Λ, λ ≥ µ} be an inverse
system of Hilbert C∗-bimodules such that the canonical projections πλ : A→
Aλ and σλ : X → Xλ, λ ∈ Λ are all surjective, where A = lim←λAλ
and X = lim←λXλ. Then there is a covariant representation (iX , iA) of
(X,A) on lim←λAλ ×Xλ Z with the property that for any covariant repre-
sentation (ϕX , ϕA) of (X,A) on a pro-C∗-algebra B[τΓ ′ ], there is a unique
pro-C∗-morphism Φ from lim←λAλ ×Xλ Z to B such that Φ ◦ iX = ϕX and
Φ ◦ iA = ϕA. Moreover, pλ,lim←λ Aλ×XλZ(iA(a)) = pλ(a) for all a ∈ A and

pλ,lim←λ Aλ×XλZ(iX(x)) = pAλ (x) for all x ∈ X.

Proof. From χλµ ◦ iXλ = iXµ ◦σλµ for all λ, µ ∈ Λ with λ ≥ µ, we deduce
that {iXλ}λ∈Λ is an inverse system of linear maps, and from χλµ ◦ iAλ =
iAµ ◦ πλµ for all λ, µ ∈ Λ with λ ≥ µ, we deduce that {iAλ}λ∈Λ is an inverse
system of C∗-morphisms. Let iX = lim←λ iXλ and iA = lim←λ iAλ . Then iA
is a pro-C∗-morphism from A to lim←λAλ×Xλ Z, and (iX , iA) is a covariant
representation of (X,A) on lim←λAλ ×Xλ Z, since

iX((xλ)λ∈Λ)∗iX((yλ)λ∈Λ) = (iXλ(xλ)∗iXλ(yλ))λ∈Λ = (iAλ(〈xλ, yλ〉Aλ))λ∈Λ

= iA((〈xλ, yλ〉Aλ)λ∈Λ) = iA(〈(xλ)λ∈Λ, (yλ)λ∈Λ〉A)



148 M. Joiţa and I. Zarakas

and

iX((xλ)λ∈Λ)iX((yλ)λ∈Λ)∗ = (iXλ(xλ)iXλ(yλ)∗)λ∈Λ = (iAλ(Aλ〈xλ, yλ〉))λ∈Λ
= iA((Aλ〈xλ, yλ〉)λ∈Λ) = iA(A〈(xλ)λ∈Λ, (yλ)λ∈Λ〉)

for all (xλ)λ∈Λ, (yλ)λ∈Λ ∈ X.

Let λ ∈ Λ. Then, by [AEE, Corollary 2.10],

pλ,lim←λ Aλ×XλZ(iA((aλ)λ∈Λ)) = ‖iAλ(aλ)‖Aλ×XλZ = ‖aλ‖Aλ = pλ((aλ)λ∈Λ)

for all (aλ)λ∈Λ ∈ A, and

pλ,lim←λ Aλ×XλZ(iX((xλ)λ∈Λ)) = ‖iXλ(xλ)‖Aλ×XλZ = ‖xλ‖Xλ = pAλ ((xλ)λ∈Λ)

for all x ∈ X.

We note that lim←λAλ ×Xλ Z is generated by iX(X) and iA(A). This
comes as a consequence of [M, Chapter III, Theorem 3.1]. Indeed, we have

pro-C∗(iA(A), iX(X)) = lim
←λ

χλ(pro-C∗(iA(A), iX(X)))

= lim
←λ

C∗(χλ(iA(A)), χλ(iX(X)))

= lim
←λ

C∗(iAλ(πλ(A)), iXλ(σλ(X)))

= lim
←λ

C∗(iAλ(Aλ), iXλ(Xλ)) = lim
←λ

Aλ ×Xλ Z

where χλ, λ ∈ Λ, are the canonical projections from lim←λAλ ×Xλ Z to
Aλ ×Xλ Z.

Let (ϕX , ϕA) be a covariant representation of (X,A) on a pro-C∗-algebra
B[τΓ ′ ] with Γ ′ = {qi; i ∈ I} a defining family of C∗-seminorms. For i ∈ I,
there is λ(i) ∈ Λ such that qi(ϕA(a)) ≤ pλ(i)(a) for all a ∈ A and qi(ϕX(x)) ≤
pAλ(i)(x) for all x ∈ X. Then there are a C∗-morphism ϕAλ(i) : Aλ(i) → Bi

such that ϕAλ(i) ◦ πλ(i) = πBi ◦ ϕA, and a continuous linear map ϕXλ(i) :

Xλ(i) → Bi such that ϕXλ(i) ◦ σλ(i) = πBi ◦ ϕX . It is easy to check that
(ϕXλ(i) , ϕAλ(i)) is a covariant representation of (Xλ(i), Aλ(i)) on Bi. By [AEE,
Definition 2.4], there is a unique C∗-morphism φλ(i) : Aλ(i)×Xλ(i)Z→Bi such
that φλ(i)◦ iXλ(i) = ϕXλ(i) and φλ(i)◦ iAλ(i) = ϕAλ(i) . Let Φi = φλ(i) ◦ χλ(i).
Clearly, Φi is a continuous ∗-morphism from lim←λAλ ×Xλ Z to Bi, and
from

(πBij ◦ Φi)(iX((xµ)µ∈Λ)) = (πBij ◦ φλ(i) ◦ χλ(i))((iXµ(xµ))µ∈Λ)

= (πBij ◦ φλ(i))(iXλ(i)(xλ(i))) = πBij (ϕXλ(i)(xλ(i)))

= πBij (π
B
i (ϕX((xµ)µ∈Λ))) = πBj (ϕX((xµ)µ∈Λ))

= ϕXλ(j)(σλ(j)((xµ)µ∈Λ)) = φλ(j)(iXλ(j) ◦ σλ(j)((xµ)µ∈Λ))

= φλ(j) ◦ χλ(j)(iX((xµ)µ∈Λ)) = Φj(iX((xµ)µ∈Λ))
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for all (xµ)µ∈Λ ∈ X and

(πBij ◦ Φi)(iA((aµ)µ∈Λ)) = (πBij ◦ φλ(i) ◦ χλ(i))((iAµ(aµ))µ∈Λ)

= (πBij ◦ φλ(i))(iAλ(i)(aλ(i))) = πBij (ϕAλ(i)(aλ(i)))

= πBij (π
B
i (ϕA((aµ)µ∈Λ))) = πBj (ϕA((aµ)µ∈Λ)) = Φj(iA((aµ)µ∈Λ))

for all (aµ)µ∈Λ ∈ A, and taking into account the first part of the proof,
we deduce that πBij ◦ Φi = Φj for all i, j ∈ I with i ≥ j. Then there is a

continuous ∗-morphism Φ : lim←λAλ ×Xλ Z→ B such that πBi ◦ Φ = Φi for
all i ∈ I. Moreover, Φ ◦ iX = ϕX , since

πBi ((Φ ◦ iX)((xµ)µ∈Λ)) = Φi(iX((xµ)µ∈Λ)) = πBi (ϕX((xµ)µ∈Λ))

for all (xµ)µ∈Λ ∈ X and for all i ∈ I. Also Φ ◦ iA = ϕA, since

πBi ((Φ ◦ iA)((aµ)µ∈Λ)) = Φi(iA((aµ)µ∈Λ)) = πBi (ϕA((aµ)µ∈Λ))

for all (aµ)µ∈Λ ∈ A and i ∈ I. The morphism Φ with these properties is
unique, since iA(A) and iX(X) generate lim←λAλ ×Xλ Z.

Corollary 3.6. Let {Aλ;Xλ;πλµ;σλµ; λ, µ ∈ Λ, λ ≥ µ} be an inverse
system of Hilbert C∗-bimodules such that the canonical projections πλ :
A → Aλ and σλ : X → Xλ, λ ∈ Λ are all surjective, where A = lim←λAλ
and X = lim←λXλ. Then:

(1) A×X Z is isomorphic to lim←λAλ ×Xλ Z.
(2) A and X are embedded in A×X Z.
Lemma 3.7. Let A[τΓ ] and B[τΓ ′ ] be two pro-C∗-algebras. If ϕ : A→ B

is a pro-C∗-isomorphism, then we may suppose that Γ and Γ ′ have the
same index set. Moreover, ϕ = lim←λ ϕλ, where ϕλ : Aλ → Bλ, λ ∈ Λ, are
C∗-isomorphisms.

Proof. We show that the family {pλ ◦ ϕ−1; λ ∈ Λ} of continuous C∗-
seminorms on B gives the topology on B. Indeed, for each pλ ∈ Γ , there is
qi(λ) ∈ Γ ′ such that

(pλ ◦ ϕ−1)(b) = pλ(ϕ−1(b)) ≤ qi(λ)(b)
for all b ∈ B. Also for each qi ∈ Γ ′, there is pλ(i) ∈ Γ such that

qi(b) = qi(ϕ(ϕ−1(b))) ≤ pλ(i)(ϕ−1(b)) = (pλ(i) ◦ ϕ−1)(b)
for all b ∈ B. Moreover, for each λ ∈ Λ, there is a C∗-isomorphism ϕλ :
Aλ → Bλ, where Aλ = A/ker pλ and Bλ = B/ker(pλ ◦ ϕ−1), such that
ϕλ ◦ πAλ = πBλ ◦ ϕ and ϕ = lim←λ ϕλ.

Proposition 3.8. Let A[τΓ ] be a pro-C∗-algebra and X a Hilbert A-A
pro-C∗-bimodule. Then there is a family of C∗-seminorms which gives the
topology on A×XZ having the same index set as the family of C∗-seminorms
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which gives the topology on A, and moreover, for each λ ∈ Λ, the C∗-algebras
(A×X Z)λ and Aλ ×Xλ Z are isomorphic.

Proof. We have seen that {Aλ;Xλ;πAλµ;σXλµ; λ, µ ∈ Λ, λ ≥ µ} is an
inverse system of Hilbert C∗-bimodules such that the canonical projections
πAλ : A→ Aλ and σXλ : X → Xλ, λ ∈ Λ, are all surjective. By Corollary 3.6,
the pro-C∗-algebras A×X Z and lim←λAλ ×Xλ Z are isomorphic and so by
Lemma 3.7, there is a family of C∗-seminorms which gives the topology on
A×XZ and has the same index set as the family of C∗-seminorms which gives
the topology on A. Since the canonical surjections χλ : lim←λAλ ×Xλ Z→
Aλ ×Xλ Z, λ ∈ Λ, are surjective, for each λ ∈ Λ the C∗-algebras (A×X Z)λ
and Aλ ×Xλ Z are isomorphic.

Example 3.9. Let A[τΓ ] be a pro-C∗-algebra and α an automorphism of
A[τΓ ] such that pλ(α(a)) = pλ(a) for all a ∈ A, λ ∈ Λ′, where Λ′ is a cofinal
subset of Λ. Then the pro-C∗-algebras A×Xα Z and A×α Z are isomorphic.

Indeed, if α is an automorphism of A[τΓ ] as above, then (A,α,Z) is a
pro-C∗-dynamical system with the action of Z on A given by n 7→ αn.

Let Xα = {ξx; x ∈ A}. Then Xα is a Hilbert A-A pro-C∗-bimodule. The
bimodule structure is defined as ξxa = ξxa, respectively aξx = ξα−1(a)x, and
the inner products are defined as 〈ξx, ξy〉A = x∗y, respectively A〈ξx, ξy〉 =
α(xy∗).

As in the case of C∗-algebras, if (u, ϕ) is a nondegenerate covariant
representation of (A,α,Z) on a pro-C∗-algebra B, then (ϕXα , ϕA), where
ϕA = ϕ and ϕXα(ξx) = u1ϕ(x), is a nondegenerate covariant representation
of (Xα, A) on B.

Conversely, if (ϕXα , ϕA) is a nondegenerate covariant representation of
(Xα, A) on a pro-C∗-algebra B, then the map u : B → B defined by
u(ϕA(a)b) = ϕXα(ξa)b is a unitary operator, and (u, ϕ), where ϕ = ϕA
and n 7→ un = un with u0 = idB, is a nondegenerate covariant representa-
tion of (A,α,Z) on B. Using these facts and the universal property of the
crossed product of pro-C∗-algebras [J3, Theorem 2.4], we deduce that the
pro-C∗-algebras A×Xα Z and A×α Z are isomorphic.

4. An application. Let α be an action of T on a pro-C∗-algebra A, let
A0 = {a ∈ A; αz(a) = a for all z ∈ T} be the fixed point algebra of α, and let
A1 = {a ∈ A; αz(a) = za for all z ∈ T} be the first spectral subspace of α.
Clearly, A1 has a natural structure of an A0-A0 Hilbert pro-C∗-bimodule. We
will show that an inverse limit action α of the unit circle on a pro-C∗-algebra
A is semi-saturated if and only if A is isomorphic to the crossed product of
A0 by A1.

Remark 4.1. Let α be an inverse limit action of T on a pro-C∗-
algebra A, that is, αz = lim←λ α

λ
z for each z ∈ T, where αλ, λ ∈ Λ,
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are actions of T on Aλ. Then {(Aλ)0; π
A
λµ|(Aλ)0 ; λ ≥ µ; λ, µ ∈ Λ} is an

inverse system of C∗-algebras and {(Aλ)1; π
A
λµ|(Aλ)1 ; λ ≥ µ;λ, µ ∈ Λ}

is an inverse system of Hilbert (Aλ)0-(Aλ)0 C∗-bimodules. It is easy
to check that A0 = lim←λ(Aλ)0 and A1 = lim←λ(Aλ)1. Furthermore,
{C∗((Aλ)0, (Aλ)1); π

A
λµ|C∗((Aλ)0,(Aλ)1)} is an inverse system of C∗-algebras

and the pro-C∗-algebras lim←λC
∗((Aλ)0, (Aλ)1) and pro-C∗(A0, A1) are iso-

morphic.

Definition 4.2. An action α of T on a pro-C∗-algebra A is semi-
saturated if the pro-C∗-subalgebra pro-C∗(A0, A1) of A generated by A0

and A1 coincides with A.

Lemma 4.3. Let αz = lim←λ α
λ
z be an inverse limit action of T on a

pro-C∗-algebra A. Then α is semi-saturated if and only if αλ, λ ∈ Λ, are
semi-saturated.

Proof. Suppose that α is semi-saturated. Then

A = pro-C∗(A0, A1)

[M, Chapter III, Theorem 3.1]

= lim
←λ

πAλ (pro-C∗(A0, A1)) = lim
←λ

C∗(πAλ (A0), π
A
λ (A1))

⊆ lim
←λ

C∗((Aλ)0, (Aλ)1) ⊆ lim
←λ

Aλ = A.

and so A = lim←λC
∗((Aλ)0, (Aλ)1) = lim←λC

∗(πAλ (A0), π
A
λ (A1)). From

this fact, and taking into account that the maps πAλ : A → Aλ, λ ∈ Λ, are
all surjective and C∗(πAλ (A0), π

A
λ (A1)) ⊆ C∗((Aλ)0, (Aλ)1) ⊆ Aλ, λ ∈ Λ, we

deduce that C∗(πAλ (A0), π
A
λ (A1)) = C∗((Aλ)0, (Aλ)1) = Aλ for all λ ∈ Λ,

and so αλ, λ ∈ Λ, are semi-saturated.
Conversely, suppose that αλ, λ ∈ Λ, are semi-saturated. Then we have

C∗((Aλ)0, (Aλ)1) = Aλ for all λ ∈ Λ, and by Remark 4.1, the pro-C∗-
algebras pro-C∗(A0, A1) and A are isomorphic.

Remark 4.4. Let αz = lim←λ α
λ
z , z ∈ T, be an inverse limit action of T

on a pro-C∗-algebra A. For each λ ∈ Λ, πAλ (A0) ⊆ (Aλ)0, π
A
λ (A1) ⊆ (Aλ)1

and αλz (C∗(πAλ (A0), π
A
λ (A1))) ⊆ C∗(πAλ (A0), π

A
λ (A1)) for all z ∈ T.

Therefore, for each λ ∈ Λ, z 7→ αλz |C∗(πAλ (A0),πAλ (A1))
is an action of T on

C∗(πAλ (A0), π
A
λ (A1)). Moreover, the fixed point algebra and the first spec-

tral subspace of αλ restricted to C∗(πAλ (A0), π
A
λ (A1)) are πAλ (A0), respec-

tively πAλ (A1), and so αλ|C∗(πAλ (A0),πAλ (A1))
is semi-saturated. Therefore, by

[AEE, Theorem 3.1], there is a C∗-morphism ψλ : πAλ (A0) ×πAλ (A1)
Z →

C∗(πAλ (A0), π
A
λ (A1)) such that ψλ ◦ iπAλ (A1)

= τλ1 and ψλ ◦ iπAλ (A0)
= τλ0 ,

where τλ1 and τλ0 are the inclusions of πAλ (A1), respectively πAλ (A0), in
C∗(πAλ (A0), π

A
λ (A1)). It is not difficult to check that (ψλ)λ is an inverse sys-
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tem of C∗-isomorphisms and then ψ = lim←λ ψλ is a pro-C∗-isomorphism
from lim←λ π

A
λ (A0)×πAλ (A1)

Z onto lim←λC
∗(πAλ (A0), π

A
λ (A1)), such that

ψ ◦ iA1 = lim
←λ

ψλ ◦ iπAλ (A1)
= lim
←λ

τλ1 = τ1,

ψ ◦ iA0 = lim
←λ

ψλ ◦ iπAλ (A0)
= lim
←λ

τλ1 = τ0,

where τ1 and τ0 are the inclusions of A1, respectively A0, in pro-C∗(A0, A1).

The following theorem is a generalization of [AEE, Theorem 3.1].

Theorem 4.5. Let α be an inverse limit action of T on a pro-C∗-al-
gebra A. Then α is semi-saturated if and only if there is a pro-C∗-iso-
morphism ϕ : A0 ×A1 Z → A such that ϕ ◦ iA0 = τA0 and ϕ ◦ iA1 = τA1,
where τA0 and τA1 are the inclusions of A0, respectively A1, in A.

Proof. Since {πAλ (A1);π
A
λ (A0);π

A
λµ|A1 ;πAλµ|A0} is an inverse system of

Hilbert C∗-bimodules such that the canonical projections are all surjective,
A0 = lim←λ π

A
λ (A0) and A1 = lim←λ π

A
λ (A1), by Proposition 3.5, A0×A1Z =

lim←λ π
A
λ (A0)×πAλ (A1)

Z, iA1 = lim←λ iπAλ (A1)
and iA0 = lim←λ iπAλ (A0)

.

Suppose that α is semi-saturated. Then A = lim←λC
∗(πAλ (A0), π

A
λ (A1))

(see the proof of Lemma 4.3), and so the pro-C∗-isomorphism ψ constructed
in Remark 4.4 satisfies the required conditions.

Conversely, suppose that there is a pro-C∗-isomorphism

ϕ : lim
←λ

πAλ (A0)×πAλ (A1)
Z→ A

such that ϕ ◦ iA0 = τA0 and ϕ ◦ iA1 = τA1 . Then

ϕ ◦ ψ−1 : lim
←λ

C∗(πAλ (A0), π
A
λ (A1))→ A

is a pro-C∗-isomorphism such that ϕ ◦ ψ−1 ◦ τ0 = τA0 and ϕ ◦ ψ−1 ◦ τ1 =
τA1 (see Remark 4.4), and so α is semi-saturated, since pro-C∗(A0, A1) =
lim←λC

∗(πAλ (A0), π
A
λ (A1)).

5. Morita equivalence. We recall that two pro-C∗-algebras A[τΓ ] and
B[τΓ ′ ] are strongly Morita equivalent, written A ∼M B, if there is a full
Hilbert B-module E such that the pro-C∗-algebras A and KB(E) are iso-
morphic [J5]. The full Hilbert B-module E has a natural structure of a full
Hilbert A-B pro-C∗-bimodule and it is called an imprimitivity Hilbert A-B
pro-C∗-bimodule.

Remark 5.1. (1) Suppose that E is an imprimitivity Hilbert A-B pro-
C∗-bimodule. Since KB(E) = lim←iKBi(Ei), by Lemma 3.7, we may sup-
pose that Γ and Γ ′ have the same index set. Moreover, the C∗-algebras Aλ
and KBλ(Eλ) are isomorphic. Then Aλ ∼M Bλ and Eλ is an imprimitivity
Hilbert Aλ-Bλ C

∗-bimodule for each λ ∈ Λ.
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(2) Let X and Y be two Hilbert A-A pro-C∗-bimodules and Φ : X→Y
be an isomorphism of Hilbert pro-C∗-bimodules. Since X = lim←λXλ,
Y = lim←λ Yλ, 〈Φ(x1), Φ(x2)〉A = 〈x1, x2〉A, respectively A〈Φ(x1), Φ(x2)〉 =

A〈x1, x2〉 for all x1, x2 ∈ X and λ ∈ Λ, there is a bijective map Φλ : Xλ → Yλ
such that

〈Φλ(σXλ (x1)), Φλ(σXλ (x2))〉Aλ = 〈σXλ (x1), σ
X
λ (x2)〉Aλ ,

Aλ〈Φλ(σXλ (x1)), Φλ(σXλ (x2))〉 = Aλ〈σ
X
λ (x1), σ

X
λ (x2)〉

for all x1, x2 ∈ X. Therefore, for each λ ∈ Λ, the Hilbert C∗-bimodules Xλ

and Yλ are isomorphic.

Suppose that A[τΓ ] and B[τΓ ′ ] are two pro-C∗-algebras such that the
families of C∗-seminorms which give the topologies on A and B have the
same index set, say Λ. Let X be a Hilbert A-A pro-C∗-bimodule, and Y
a Hilbert A-B pro-C∗-bimodule. For Φ : A → LB(Y ), Φ(a)y = ay, the
completion of the algebraic tensor product X ⊗A Y of X and Y over A
with respect to the topology given by the B-valued inner product 〈x1 ⊗ y1,
x2⊗ y2〉B = 〈y1, 〈x1, x2〉Ay2〉B for all x1, x2 ∈ X, y1, y2 ∈ Y becomes a right
Hilbert module over B, with the B -module action given by (x⊗y)b = x⊗yb
for all b ∈ B, x ∈ X, y ∈ Y [J1]. Moreover, for each λ ∈ Λ, (X ⊗A Y )λ =

Xλ ⊗Aλ Yλ (the map ψλ : (X ⊗A Y )λ → Xλ ⊗Aλ Yλ, ψλ(σX⊗AYλ (x ⊗ y)) =
σXλ (x)⊗ σYλ (y) is an isomorphism of Hilbert C∗-modules).

For each λ ∈ Λ, since Xλ is a Hilbert Aλ-Aλ C∗-bimodule and Yλ is
a Hilbert Aλ-Bλ C

∗-bimodule, Xλ ⊗Aλ Yλ is a Hilbert Aλ-Bλ C
∗-bimodule

with the structure of Aλ-Bλ module given by

(σXλ (x)⊗ σYλ (y))πBλ (b) = σXλ (x)⊗ σYλ (yb),

πAλ (a)(σXλ (x)⊗ σYλ (y)) = σXλ (ax)⊗ σYλ (y),

theBλ-valued inner product 〈σXλ (x1)⊗σYλ (y1), σ
X
λ (x2)⊗σYλ (y2)〉Bλ is given by〈

σYλ (y1), 〈σXλ (x1), σ
X
λ (x2)〉Aλσ

Y
λ (y2)

〉
Bλ

and the Aλ-valued inner product Aλ〈σXλ (x1) ⊗ σYλ (y1), σ
X
λ (x2) ⊗ σYλ (y2)〉 is

given by

Aλ

〈
σXλ (x1)Aλ〈σ

Y
λ (y1), σ

Y
λ (y2)〉, σXλ (x2)

〉
for all a ∈ A, b ∈ B, x, x1, x2 ∈ X, y, y1, y2 ∈ Y . Therefore X ⊗A Y is a
Hilbert A-B pro-C∗-bimodule and (X ⊗A Y )λ = Xλ ⊗Aλ Yλ for each λ ∈ Λ.

Theorem 5.2. Let A[τΓ ] and B[τΓ ′ ] be two pro-C∗-algebras, X a Hilbert
A-A pro-C∗-bimodule, and Y a Hilbert B-B pro-C∗-bimodule. If A and B
are strongly Morita equivalent and if the Hilbert pro-C∗-bimodules X ⊗A E
and E ⊗B Y are isomorphic, where E is an imprimitivity Hilbert A-B pro-
C∗-bimodule, then the pro-C∗-algebras A ×X Z and B ×Y Z are strongly
Morita equivalent.
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Proof. By Remark 5.1(1), we can suppose that Γ and Γ ′ have the same
index set, say Λ, and Eλ is an imprimitivity Hilbert Aλ-Bλ C

∗-bimodule.
By Remark 5.1(2) the Hilbert C∗-bimodules Xλ⊗Aλ Eλ and Eλ⊗Bλ Yλ are
isomorphic, for each λ ∈ Λ. Then, by [AEE, Lemma 4.1] there are a faithful
representation (θλ, Hλ) of the linking algebra of Eλ, L(Eλ), maps θXλ :
Xλ → L(Hλ) and θYλ : Yλ → L(Hλ) such that (θλ|Aλ , θXλ) and (θλ|Bλ , θYλ)
are faithful covariant representations of the Hilbert C∗-bimodules Xλ and
Yλ and θXλ(Xλ)θλ(Eλ) = θλ(Eλ)θYλ(Yλ).

For λ ∈ Λ, let Hλ =
⊕

µ≤λHµ. It is easy to check that the map ϕλ :
L(Eλ)→ L(Hλ) defined by

ϕλ(π
L(E)
λ (c))

(⊕
µ≤λ

ξµ

)
=
⊕
µ≤λ

θµ(πL(E)
µ (c))ξµ

is a faithful representation of L(Eλ). Moreover (ϕλ|Aλ, ϕXλ) and (ϕλ|Bλ, ϕYλ),
where

ϕXλ : Xλ → L(Hλ), ϕXλ(σXλ (x))
(⊕
µ≤λ

ξµ

)
=
⊕
µ≤λ

θXµ(σXµ (x))ξµ,

ϕYλ : Yλ → L(Hλ), ϕYλ(σYλ (y))
(⊕
µ≤λ

ξµ

)
=
⊕
µ≤λ

θYµ(σYµ (y))ξµ

are covariant representations of (Xλ, Aλ) and (Yλ, Bλ) and ϕXλ(Xλ)ϕλ(Eλ)
= ϕλ(Eλ)ϕYλ(Yλ).

Let H = limλ→Hλ and L(H) be the pro-C∗-algebra of all continuous
linear operators on H ([F, I]). For c ∈ L(E), the map ϕ(c) : H → H, defined

by ϕ(c)(ξλ) = ϕλ(π
L(E)
λ (c))(ξλ) for all ξλ ∈ Hλ and λ ∈ Λ is an element in

L(H). In this way we obtain an injective pro-C∗-morphism ϕ : L(E)→ L(H)

such that pλ,L(H)(ϕ(c)) = ‖ϕλ(π
L(E)
λ (c))‖L(Hλ) = pλ,L(E)(c) for all c ∈ L(E)

and λ ∈ Λ. For x ∈ X the map ϕX(x) : H → H, defined by ϕX(x)(ξλ) =
ϕXλ(σXλ (x))(ξλ) for all ξλ ∈ Hλ and λ ∈ Λ, is an element in L(H). Thus we
obtain an injective map ϕX : X → L(H). Since

L(H)〈ϕX(x1), ϕX(x2)〉(ξλ) = ϕX(x1)(ϕX(x2))
∗(ξλ)

= ϕXλ(x1)(ϕXλ(x2))
∗(ξλ) =L(Hλ) 〈ϕXλ(x1), ϕXλ(x2)〉(ξλ)

= ϕλ|Aλ(Aλ〈σ
X
λ (x1), σ

X
λ (x2)〉)(ξλ) = ϕ|A(A〈x1, x2〉)(ξλ)

and in a similar way

〈ϕX(x1), ϕX(x2)〉L(H)(ξλ) = ϕ|A(〈x1, x2〉A)(ξλ)

for all x1, x2 ∈ X, ξλ ∈ Hλ, and λ ∈ Λ, we see that (ϕ|A, ϕX) is a covari-
ant representation of (X,A). In a similar way, we define an injective map
ϕY : Y → L(H) such that (ϕ|B, ϕY ) is a covariant representation of (Y,B).
Moreover, ϕX(X)ϕ(E) = ϕ(E)ϕY (Y ). Since pλ,L(H)(ϕ(c)) = pλ,L(E)(c),
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pλ,L(H)(ϕX(x)) = pAλ (x) and pλ,L(H) (ϕY (y)) = pBλ (y) for all c ∈ L(E),
x ∈ X , y ∈ Y and λ ∈ Λ, we can identify L(E), A, B, X, Y and E with
their images in L(H).

Let

W = span

{[
X XE

Y E∗ Y

]}
,

where E∗ is the dual module of E. Clearly, W is an L(E)-L(E) Hilbert
pro-C∗-bimodule with respect to the structure of L(H) and W = lim←λWλ,
where

Wλ = π
L(H)
λ (W ) = span

{[
Xλ XλEλ

YλE
∗
λ Yλ

]}
for each λ ∈ Λ.

Since {L(Eλ);Wλ;π
L(H)
λµ |L(Eλ);π

L(H)
λµ |Wλ

; λ, µ ∈ Λ, λ ≥ µ} is an inverse sys-
tem of Hilbert C∗-bimodules such that the canonical projections are all
surjective, by Corollary 3.6 and Proposition 3.8, L(E) ×W Z is isomorphic
to lim←λ L(Eλ)×Wλ

Z and (L(E)×W Z)λ = L(Eλ)×Wλ
Z.

For each λ ∈ Λ, since L(Eλ), Aλ, Bλ, Xλ, Yλ and Eλ can be identified with
their images in L(Hλ), and XλEλ = EλYλ, by the proof of [AEE, Theorem
4.2], the C∗-algebras Pλ(L(Eλ) ×Wλ

Z)Pλ and Aλ ×Xλ Z are isomorphic,
where

Pλ =

[
1M(Aλ) 0

0 0

]
can be seen as a projection in the multiplier algebra M(L(Eλ) ×Wλ

Z) of
the C∗-algebra L(Eλ)×Wλ

Z. Then

P =

[
1M(A) 0

0 0

]
can be seen as a projection in M(L(E)×W Z) (see [P1]) and

P(L(E)×W Z)P = lim
←λ
Pλ(L(Eλ)×Wλ

Z)Pλ.

Therefore, the pro-C∗-algebras P(L(E) ×W Z)P and lim←λAλ ×Xλ Z are
isomorphic.

In the same manner, we show that the pro-C∗-algebras Q(L(E)×W Z)Q
and lim←λBλ ×Yλ Z are isomorphic, where

Q =

[
0 0

0 1M(B)

]
.

Since P and Q are full complementary projections in M(L(E) ×W Z), by
[J4, Theorem 9], the pro-C∗-algebras lim←λAλ ×Yλ Z and lim←λBλ ×Yλ Z
are strongly Morita equivalent, and so A×X Z ∼MB ×Y Z.
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[J4] M. Joiţa, On the linking algebra of Hilbert modules and Morita equivalence of
locally C∗-algebras, Surveys Math. Appl. 1 (2006), 23–32.
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