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Periodic solutions of an abstract
third-order differential equation

by

Verónica Poblete and Juan C. Pozo (Santiago)

Abstract. Using operator valued Fourier multipliers, we characterize maximal regu-
larity for the abstract third-order differential equation αu′′′(t)+u′′(t) = βAu(t)+γBu′(t)+
f(t) with boundary conditions u(0) = u(2π), u′(0) = u′(2π) and u′′(0) = u′′(2π), where A
and B are closed linear operators defined on a Banach space X, α, β, γ ∈ R+, and f belongs
to either periodic Lebesgue spaces, or periodic Besov spaces, or periodic Triebel–Lizorkin
spaces.

1. Introduction. In this paper we characterize the property of maxi-
mal regularity for a third-order differential equation. This type of equation
describes several models arising from natural phenomena, such as wave prop-
agation in viscous thermally relaxing fluids, flexible space structure, a thin
uniform rectangular panel, like a solar cell array, and a spacecraft with flex-
ible attachments. At present, the requirements for maximum performance
of machines, at a minimum cost, have inevitably led to reducing the mass of
their moving parts. This means that the structures lose rigidity and become
much more flexible. Due to this, the study of flexible structures and their
properties has recently been enjoying a great deal of interest. In the same
manner, modelling acoustic wave propagation is also a field of research of
great interest because it has a wide range of applications, such as the med-
ical and industrial use of focused high intensity ultrasound in lithotrity,
thermotherapy, ultrasound cleaning, and sonochemistry.

Kuznetsov’s equation, the Westervelt equation, and the Kokhlov–Zabo-
lotskaya–Kuznetsov equation are classical models of non-linear acoustics.
These models involve second-order differential equations with respect to
time. For well-posedness and stability analysis of several types of initial
conditions for these models, see [33, 34, 44].
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Since the use of classical Fourier theory leads to an infinite signal speed
paradox, several other alternatives for non-linear acoustics equations have
been considered. For example, the equation governing one of the alternative
models is given by

(1.1) τϕttt + ϕtt − c2∆ϕ− b∆ϕt =
d

dt

(
1

c2

(
1 +

B

2A

)
(ϕt)

2

)
where τ > 0 is a constant accounting for relaxation, c the speed of sound, δ
the diffusivity of sound, B/A the non-linearity parameter, and b = δ + τc2,
(see [32]). For a study of the decay rates of the natural energy function of
the linear version of equation (1.1), see [35].

On the other hand, in general, the dynamics of linear vibrations of elastic
structures is based on Hooke’s law. The equation governing these vibrations
is the wave equation. Further, the dynamics of flexible elastic structures is
non-linear. All the same, the third-order differential equation

(1.2) λy′′′(t) + y′′(t) = c2(∆y(t) + µ∆y′(t)) for t ∈ R+ and λ < µ

governing a realistic linear model is investigated in [9, 26, 27, 28, 29], where
S. Bose and G. Gorain study boundary stabilization and obtain the explicit
exponential energy decay rate for the solution subject to mixed boundary
conditions.

The analysis of third-order differential equations dates back to the second
half of the 1900’s. At that time, Moore & Gibson [45] and Thompson [48]
worked independently on models using these equations. In fact, the linear
version of equation (1.1) is called the Moore–Gibson–Thompson equation.
Under the influence of an external force, both this equation and the Bose–
Gorain equation (1.2) take the abstract form

(1.3) αu′′′(t) + u′′(t) = βAu(t) + γAu′(t) + f(t) for t ∈ R+,

where A is a closed linear operator defined on a Banach space X, f is a
given X-valued function, and α, β, γ ∈ R+. Equation (1.3) has been studied
in many aspects. For a characterization of solutions in Hölder spaces, see
[19]. For the regularity of mild and strong solutions in Hilbert spaces defined
on R+, see [21]. For a characterization of Lp-maximal regularity of solutions
defined on R+ , see [22]. Further, existence of mild bounded solutions of a
semilinear version of this equation is studied in [3].

Here we study the third-order differential equation

(1.4) αu′′′(t) + u′′(t) = βAu(t) + γBu′(t) + f(t) for t ∈ [0, 2π]

with boundary conditions u(0) = u(2π), u′(0) = u′(2π) and u′′(0) = u′′(2π),
where f is a given X-valued function, A and B are closed linear operators
defined on a Banach space X such that D(A) ⊆ D(B), and α, β, γ ∈ R+.
We are interested in necessary and sufficient conditions which guarantee
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maximal regularity for this equation in the categories of periodic Lebesgue
spaces, Besov spaces, and Triebel–Lizorkin spaces.

During the last decades, there has been an explosion of interest in the
maximal regularity property due to its applications in theoretical mathemat-
ics, such as existence, uniqueness, and well-posedness of solutions of both
linear and non-linear evolution equations.

Various techniques are used to study the problem of maximal regularity.
We use Fourier multipliers or symbols. For operator-valued Fourier mul-
tipliers and maximal regularity for evolution equations, see, for example,
[2, 4, 6, 7, 8, 11, 12, 14, 13, 17, 19, 18, 20, 24, 25, 31, 36, 43, 39, 40, 41, 47, 49].
Applications to physical problems, most notably viscoelasticity of materials
with memory, are found in these works and the references therein.

Besov spaces are function spaces of special interest. They behave (in a
sense we will clarify below) similarly to Sobolev spaces, and the property of
maximal regularity can be stated elegantly for them. Moreover, they depend
on three parameters (s, p, and q) and important spaces are identified with
different choices of p, q, and s. For example, if p = q = ∞ and 0<s< 1,
we recover the well known space of all Hölder continuous functions of in-
dex s. For further details, see [7]. However, the main reason for working in
these spaces is that a certain form of Mikhlin’s multiplier theorem holds
for arbitrary Banach spaces, unlike the Lebesgue spaces Lp(T;X) in which
this property holds if and only if p = 2. For further information, see [23].
Triebel–Lizorkin spaces have similar properties.

The paper is organized as follows. In Section 2, we establish notational
conventions, and we introduce the concept of M-boundedness. This con-
cept is closely related to well-posedness. Sections 3–5 contain our principal
results. We obtain results on maximal regularity for third-order differential
equations in Lebesgue, Besov, and Triebel–Lizorkin spaces. In Section 6, we
apply our results to interesting examples. In general, it is not easy to verify
the R-boundedness condition, especially when two not necessarily commut-
ing operators are involved. We use functional calculus and sectorial operators
to establish boundedness and R-boundedness properties of certain families
associated with equation (1.4); the scalar values α, β, and γ of this equation
play an important role in proving boundedness and R-boundedness of these
families.

2. Preliminaries. Let X and Y be complex Banach spaces. We denote
by B(X,Y ) the space of all linear operators from X to Y . In the case X = Y ,
we write briefly B(X). Let A be an operator defined on X. We will denote
its domain by D(A), its domain endowed with the graph norm by [D(A)],
its resolvent set by ρ(A), and its spectrum by σ(A) = C \ ρ(A).



198 V. Poblete and J. C. Pozo

Given α, β, γ > 0, let A and B be closed linear operators with D(A) ∩
D(B) 6= {0}. For k ∈ Z, we will write

(2.1) ak = ik3 and bk = iαk3 + k2

and consider the operators

(2.2) Nk = (bk + iγkB + βA)−1 and Mk = akNk .

We denote

ρ(A,B) = {k ∈ Z : Nk exists and is bounded}, σ(A,B) = Z \ ρ(A,B).

We denote by E(T;X) the space of all 2π-periodic, X-valued functions,
and by En(T;X) the set of all functions in E(T;X) which are n times
differentiable. The following definitions will be used in subsequent sections
for Lebesgue, Besov and Triebel–Lizorkin periodic spaces.

Definition 2.1. A function u is called a strong E-solution of equa-
tion (1.4) if u ∈ E3(T;X) ∩ E1(T; [D(B)]) ∩ E(T;X) and equation (1.4)
holds a.e. in [0, 2π].

Definition 2.2. We say that equation (1.4) has E-maximal regularity
if for each f ∈ E(T;X), equation (1.4) has a unique strong E-solution.

Definition 2.3. We say that the sequence {Lk}k∈Z ⊆ B(X,Y ) is an
(E(X), E(Y ))-multiplier if for each f ∈ E(T;X), there exists a u ∈ E(T;Y )
such that

û(k) = Lkf̂(k) for all k ∈ Z.
In the case X = Y, we will say that {Lk}k∈Z is an E-multiplier.

In order to give conditions which we will need later, we establish some
notation. Let {Lk}k∈Z ⊂ B(X,Y ) be a sequence of operators. Set

∆0Lk = Lk, ∆Lk = ∆1Lk := Lk+1 − Lk
and for n = 2, 3, . . . , set

∆nLk = ∆(∆n−1Lk).

Definition 2.4. We say that a sequence {Lk}k∈Z ⊂ B(X,Y ) is M-
bounded of order n (n ∈ N ∪ {0}) if

(2.3) sup
0≤l≤n

sup
k∈Z
‖kl∆lLk‖ <∞.

Note that, for j ∈ Z fixed, we have

sup
0≤l≤n

sup
k∈Z
‖kl∆lLk‖ <∞ if and only if sup

0≤l≤n
sup
k∈Z
‖kl∆lLk+j‖ <∞.

This follows directly from the binomial formula.
The M-boundedness of order 0 for {Lk} simply means that {Lk} is

bounded.
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When n = 1, the M-boundedness is equivalent to

(2.4) sup
k∈Z
‖Lk‖ <∞ and sup

k∈Z
‖k(Lk+1 − Lk)‖ <∞.

When n = 2, in addition to (2.4), we must have

(2.5) sup
k∈Z
‖k2(Lk+2 − 2Lk+1 + Lk)‖ <∞.

When n = 3, in addition to (2.5) and (2.4), we must have

(2.6) sup
k∈Z
‖k3(Lk+3 − 3Lk+2 + 3Lk+1 − Lk)‖ <∞.

In the scalar case, that is, {ak}k∈Z ⊆ C, we will write ∆nak = ∆(∆n−1ak).

Definition 2.5. A sequence {ak}k∈Z ⊆ C \ {0} is called

• 1-regular if the sequence
{
k ∆1ak

ak

}
k∈Z is bounded;

• 2-regular if it is 1-regular and
{
k2 ∆2ak

ak

}
k∈Z is bounded;

• 3-regular if it is 2-regular and
{
k3 ∆3ak

ak

}
k∈Z is bounded.

For useful properties and further details about N -regularity, see [42, 46].

Remark 2.6. Note that if {ak}k∈Z is 1-regular, then for all j ∈ Z fixed,{
k
ak+j−ak
ak+j

}
k∈Z is bounded. If n = 2, 3, analogous properties hold.

3. Maximal regularity for a third-order differential equation in
periodic Lebesgue spaces. In order to introduce Lp-maximal regularity
for equation (1.4), we define the following spaces.

Definition 3.1. Let p ∈ [1,∞), and let n ∈ N. Let X and Y be Banach
spaces. We define the vector-valued function spaces

Hn,p
per(X,Y ) = {u ∈ Lp(T;X) : there exists v ∈ Lp(T;Y ) such that

v̂(k) = (ik)nû(k) for all k ∈ Z}.
In the case X = Y , we just write Hn,p

per(X).

We highlight two important properties of these spaces:

• Let n,m ∈ N. If n ≤ m, then Hm,p
per (X,Y ) ⊆ Hn,p

per(X,Y ).
• If u ∈ Hn,p

per(X), then u(k)(0) = u(k)(2π) for all 0 ≤ k ≤ n− 1.

Let S(R;X) be the Schwartz space of all rapidly decreasing X-valued
functions. A Banach space will be called a UMD-space if the Hilbert trans-
form is bounded in Lp(R;X) for some (and hence for all) p ∈ (1,∞).
Examples of UMD-spaces include Hilbert spaces, Sobolev spaces W s

p (Ω),
with 1 < p < ∞, the Lebesgue spaces Lp(Ω,µ) and Lp(Ω,µ;X), with
1 < p < ∞ and X a UMD-space. For further information about these
spaces, see [10, 15, 16].
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Definition 3.2. Let X and Y be Banach spaces. A family T ⊆ B(X,Y )
of operators is called R-bounded if there exist C > 0 and p ∈ [1,∞) such
that for each n ∈ N, Tj ∈ T , xj ∈ X and all independent, symmetric,
{−1, 1}-valued random variables rj on a probability space (Ω,M, µ), the
inequality ∥∥∥ n∑

j=1

rjTjxj

∥∥∥
Lp(Ω;Y )

≤ C
∥∥∥ n∑
j=1

rjxj

∥∥∥
Lp(Ω;X)

holds. The smallest such C ≥ 0 is called the R-bound of T , denoted Rp(T ).

There are various classes of R-bounded families of operators (see [23] and
the reference therein). For further properties of R-bounded families, see [20].

Proposition 3.3 ([6]). Let p ∈ (1,∞), and let X and Y be UMD-
spaces. Assume that {Lk}k∈Z ⊆ B(X,Y ). If {Lk}k∈Z is an (Lp(X), Lp(Y ))-
multiplier, then it is R-bounded.

Theorem 3.4 ([6]). Let p ∈ (1,∞), and let X and Y be UMD-spaces.
Assume {Lk}k∈Z ⊆ B(X,Y ). If {Lk}k∈Z and {k∆1Lk}k∈Z are R-bounded,
then {Lk}k∈Z is an (Lp(X), Lp(Y ))-multiplier.

Lemma 3.5 ([6]). Let f, g ∈ Lp(T;X) with p ∈ [1,∞). If A is a closed
operator in a Banach space X, then the following assertions are equivalent:

(i) f(t) ∈ D(A) and Af(t) = g(t) a.e.

(ii) f̂(k) ∈ D(A) and Af̂(k) = ĝ(k), for all k ∈ Z.

Remark 3.6. For 1 ≤ p ≤ ∞, by [6, Lemma 2.2], {knMk}k∈Z is an
Lp-multiplier if and only if {Lk}k∈Z is an (Lp(X), Hn,p

per(X))-multiplier for
all n ∈ N.

To prove Theorem 3.8 below, we will need the following. We use the
notation given in (2.1) and (2.2).

Lemma 3.7. Let α, β, γ > 0, and let A and B be closed linear operators
defined on a Banach space X. If {Mk}k∈Z and {kBNk}k∈Z are R-bounded
families of operators, then

{kak∆1Nk}k∈Z and {k2B∆1Nk}k∈Z
are also R-bounded.

Proof. First note that {akNk}k∈Z is R-bounded if and only if {bkNk}
is. Furthermore, for all j ∈ Z fixed, {akNk+j}k∈Z and {kBNk+j}k∈Z are
R-bounded. For k ∈ Z, we have

(3.1) ∆1Nk = Nk+1(bk−bk+1− iγB)Nk = −(∆1bk)Nk+1Nk− iγNk+1BNk.

Hence

kak∆
1Nk = −k∆1bk

bk+1

bk+1

ak+1
Mk+1Mk + γakNk+1kBNk.



Periodic solutions 201

On the other hand, from (3.1) we obtain

k2B∆1Nk = −k(∆1bk)kBNk+1Nk − iγkBNk+1kBNk

= −k∆1bk
bk

bk
ak
kBNk+1Mk − iγkBNk+1kBNk.

Clearly, {bk}k∈Z is a 1-regular sequence. In addition, we have

sup
k∈Z\{0}

|bk/ak| <∞, sup
k∈Z\{−1}

|ak/ak+1| <∞, and sup
k∈Z\{−1}

∣∣∣∣ k

k + 1

∣∣∣∣ <∞.
The lemma results from the properties of R-bounded families.

Our two principal results in this section are Theorems 3.8 and 3.9 below.

Theorem 3.8. Let p ∈ (1,∞), and let X be a UMD-space. If α, β, γ
> 0, and A and B are closed linear operators defined on X, then the follow-
ing assertions are equivalent:

(i) The families {kBNk}k∈Z and {Mk}k∈Z are R-bounded.
(ii) The families {kBNk}k∈Z and {Mk}k∈Z are Lp-multipliers.

Proof. (i)⇒(ii). By hypothesis, {Mk}k∈Z and {kBNk}k∈Z are R-
bounded. According to Theorem 3.4, it suffices to show that the families
{k∆1Mk}k∈Z and {k∆1(kBNk)}k∈Z are also R-bounded. For this, note that

k∆1Mk = k
∆1ak
ak+1

Mk+1 + kak∆
1Nk.

Similarly, we write k∆1(kBNk) = k2B∆1Nk + kBNk+1. Statement (ii) re-
sults from Lemma 3.7 and the properties of R-bounded families.

(ii)⇒(i). Apply Proposition 3.3.

Theorem 3.9. Let p ∈ (1,∞), and let X be a UMD-space. The following
assertions are equivalent:

(i) Equation (1.4) has Lp-maximal regularity.
(ii) σ(A,B) = ∅, and the families {Mk}k∈Z and {kBNk}k∈Z are R-

bounded.

Proof. (i)⇒(ii). Fix k ∈ Z, and let x ∈ X. Define h(t) = eiktx. A simple

computation shows that ĥ(k) = x.

By hypothesis, there exists u∈H3,p
per(X)∩H1,p

per(X; [D(B)])∩Lp(T; [D(A)])
such that, for almost all t ∈ [0, 2π],

αu′′′(t) + u′′(t) = βAu(t) + γBu′(t) + h(t).

Applying the Fourier transform to both sides, we obtain

(−iαk3 − k2 − iγkB − βA)û(k) = x.

Since x is arbitrary, we see that −iαk3 − k2 − iγkB − βA is surjective.
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On the other hand, let z ∈ D(A) ∩ D(B), and assume (−bk − iγkB −
βA)z = 0. Substituting u(t) = eiktz in (1.4), we see that u is a periodic
solution of this equation when f ≡ 0. The uniqueness of the solution implies
that z = 0.

Now suppose bk + iγkB + βA has no bounded inverse. Then for each
k ∈ Z, there exists a sequence {yk,n}n∈Z ⊆ X such that

‖yn,k‖ ≤ 1 and ‖Nkyk,n‖ ≥ n2, for all n ∈ Z.
Define xk = yk,k. We obtain ‖Nkxk‖ ≥ k2 for all k ∈ Z. Let

g(t) =
∑

k∈Z\{0}

xk
k2
eikt.

Note that g ∈ Lp(T;X). By hypothesis, there exists a unique strong Lp-
solution u ∈ Lp(T;X). Applying the Fourier transform to (1.4), we have
û(k) = −Nkĝ(k) for all k ∈ Z. We know

u(t) =
∑

k∈Z\{0}

−xk
k2
eiktNk.

For all k ∈ Z, we have ‖(xk/k2)Nk‖ ≥ 1 and conclude that u /∈ Lp(T;X).
This is a contradiction, since u is a strong Lp-solution of (1.4). Hence Nk ∈
B(X) for all k ∈ Z. Therefore, σ(A,B) = ∅.

Next let f ∈ Lp(T;X). By hypothesis, there exists a unique function

u ∈ H3,p
per(X) ∩H1,p

per(X; [D(B)]) ∩ Lp(T; [D(A)]) such that

αu′′′(t) + u′′(t) = βAu(t) + γBu′(t) + f(t)

for almost all t ∈ [0, 2π]. Applying the Fourier transform to both sides yields

(−bk − iγkB − βA)û(k) = f̂(k)

for all k ∈ Z. Since σ(A,B) = ∅, we have

û(k) = (−bk − iγkB − βA)−1f̂(k) for all k ∈ Z.
Multiplying the preceding equality by iγk, we obtain

iγkû(k) = −iγk(bk + iγkB + βA)−1f̂(k).

Since u ∈ H1,p
per(X; [D(B)]), there is a function v ∈ Lp(T; [D(B)]) satisfying

v̂(k) = iγkû(k) for all k ∈ Z. Therefore,

v̂(k) = −iγk(bk + iγkB + βA)−1f̂(k) for all k ∈ Z.
Define w = Bv. Since v ∈ Lp(T; [D(B)]), we conclude w ∈ Lp(T;X).

Since B is a closed linear operator, it follows from Lemma 3.5 that

ŵ(k) = −iγkBNkf̂(k) for all k ∈ Z.

This implies that {kBNk}k∈Z is an Lp-multiplier.
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On the other hand, since u ∈ Lp(T; [D(A)]), defining r = −βAu we have
r ∈ Lp(T;X). Since A is linear and closed, Lemma 3.5 yields

r̂(k) = −βANkf̂(k) for all k ∈ Z.

Hence, {−βANk}k∈Z is an Lp-multiplier.

Now for all k ∈ Z, we have bkNk = I − iγkBNk − βANk. Since the
sum of Lp-multipliers is also an Lp-multiplier, we conclude {bkNk}k∈Z is an
Lp-multiplier. The sequence {ak/bk}k∈Z\{0} is bounded. Hence, (ak/bk)bkNk

= Mk is an Lp-multiplier. It now follows from Proposition 3.3 that {Mk}k∈Z
and {kBNk}k∈Z are R-bounded.

(ii)⇒(i). By hypothesis, the conditions of Theorem 3.8 are satisfied.
Therefore, {Mk}k∈Z and{kBNk}k∈Z areLp-multipliers. From Remark 3.6 we

conclude that {(−bk−iγkB−βA)−1}k∈Z is an (Lp(X), H3,p
per(X))-multiplier.

Given f ∈ Lp(T;X), there exists u ∈ H3,p
per(X) such that

(3.2) û(k) = (−bk − βA− iγkB)−1f̂(k) for all k ∈ Z.

Moreover, Lemma 3.5 shows that u(t) ∈ D(A) ∩ D(B) for almost all t ∈
[0, 2π].

By hypothesis, {ikB(−bk− iγkB−βA)−1}k∈Z is an Lp-multiplier. Then
there exists v ∈ Lp(T;X) satisfying

v̂(k) = ikB(−bk − iγkB − βA)−1f̂(k) for all k ∈ Z.

According to (3.2), we have v̂(k) = ikBû(k) for all k ∈ Z.

On the other hand, since H3,p
per(X) ⊆ H1,p

per(X), there exists w ∈ Lp(T;X)
such that ŵ(k) = ikû(k) for all k ∈ Z. Since B is a closed linear operator,
we have

v̂(k) = B(ikû(k)) = Bŵ(k) = B̂w(k) for all k ∈ Z.

By the uniqueness of the Fourier coefficients, v = Bw. This implies that
w ∈ Lp(T; [D(B)]). Therefore, u ∈ H1,p

per(X; [D(B)]). We claim that u ∈
Lp(T; [D(A)]). In fact, using the identity

βA(bk+iγkB+βA)−1 = I−bk(bk+iγkB+βA)−1−iγkB(bk+iγkB+βA)−1

we see that {βA(bk + iγkB + βA)−1}k∈Z is an Lp-multiplier. Thus, there
exists a function h ∈ Lp(T;X) satisfying

ĥ(k) = A(bk + iγB + βA)−1f̂(k) for all k.

It follows from (3.2) that ĥ(k) = Aû(k) for all k ∈ Z. By the uniqueness of
the Fourier coefficients, we have h = Au. This implies that u ∈ Lp(T; [D(A)])

as asserted, so u ∈ H3,p
per(X) ∩H1,p

per(X; [D(B)]) ∩ Lp(T; [D(A)]).

As u ∈ H3,p
per(X), we have u(0) = u(2π), u′(0) = u′(2π), and u′′(0) =

u′′(2π). Since A and B are closed linear operators, it now follows from (3.2)
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that

αû′′′(k) + û′′(k) = βÂu(k) + γB̂u(k) + f̂(k) for all k ∈ Z.
From the uniqueness of the Fourier coefficients we conclude that (1.4) holds
a.e. in [0, 2π]. Therefore, u is a strong Lp-solution of (1.4).

It remains to show that this solution is unique. Indeed, let f ∈ Lp(T;X).
Suppose (1.4) has two strong Lp-solutions, u1 and u2. A direct computation
shows that

(−bk − iγkB − βA)(û1(k)− û2(k)) = 0 for all k ∈ Z.

Since −bk − iγkB − βA is invertible, we have û1(k) = û2(k) for all k. By
the uniqueness of the Fourier coefficients, u1 ≡ u2. Therefore, (1.4) has
Lp-maximal regularity.

We define the operators

Sk =

(
−bk
β
−A

)−1

and Tk =

(
I − γ

β
ikBSk

)−1

, for all k ∈ Z.

We use this notation in our next result.

Corollary 3.10. Let 1 < p <∞, and let X be a UMD-space. Assume
that the families of operators

F1 = {akSk : k ∈ Z} and F2 =

{
ik
γ

β
BSk : k ∈ Z

}
are R-bounded. If Rp(F2) < 1, then equation (1.4) has Lp-maximal regu-
larity.

Proof. According to [30, Lemma 3.17], the family {Tk}k∈Z is R-bounded.
Since Mk = akSkTk and kBNk = kBSkTk, for all k ∈ Z, we conclude that
{Mk}k∈Z and {kBNk}k∈Z are R-bounded by the properties of R-bounded-
ness. The corollary now follows from Theorem 3.9.

For all k ∈ Z, we define

(3.3) ck =
−iαk3 − k2

β
and dk = − iαk

3 + k2

iγk + β
.

We use this notation in our next results.

Corollary 3.11. Let p ∈ (1,∞), and let X be a UMD-space. The
following assertions are equivalent:

(i) Equation (1.4) with B ≡ 0 has Lp-maximal regularity.
(ii) {ck}k∈Z ⊆ ρ(A) and {ak(ck −A)−1}k∈Z is R-bounded.

Proof. Note that (i) is equivalent to condition (i) of Theorem 3.9 with
B ≡ 0, and (ii) is equivalent to condition (ii) of Theorem 3.9 with B ≡ 0.
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Corollary 3.12. Let p ∈ (1,∞), and let X be a UMD-space. The
following assertions are equivalent:

(i) Equation (1.4) with B ≡ A has Lp-maximal regularity.
(ii) {dk}k∈Z ⊆ ρ(A), and {dk(dk −A)−1}k∈Z is R-bounded.

Proof. (i)⇒(ii). By Theorem 3.9, we have σ(A,A) = ∅ and (iαk3 +k2 +
iγkA + βA)−1 ∈ B(X) for all k ∈ Z. In addition, {ik3(iαk3 + k2 + iγkA +
βA)−1}k∈Z is R-bounded, hence bounded, so there exists a constant C > 0
such that

sup
k∈Z
‖ik3(iαk3 + k2 + iγkA+ βA)−1‖ ≤ C.

This implies

‖(dk −A)−1‖ ≤ |iγk + β|
|ik3|

C for all k ∈ Z \ {0}.

Since 0 ∈ ρ(A,A) if and only if 0 ∈ ρ(A), we have {dk}k∈Z ⊆ ρ(A). Proper-
ties of R-bounded families and the equality

dk(dk −A)−1 =
iαk3 + k2

ik3
ik3(iαk3 + k2 + (iγk + β)A)−1

show that {dk(dk −A)−1}k∈Z is R-bounded.

(ii)⇒(i). Note that (ii) guarantees that condition (ii) of Theorem 3.9 is
satisfied. In fact, dk ∈ ρ(A) implies that (dk −A)−1 is well defined in B(X).
Since {dk(dk − A)−1}k∈Z is R-bounded, there exists a constant C ≥ 0 such
that

sup
k∈Z
‖dk(dk −A)−1‖ = sup

k∈Z
|iαk3 + k2| ‖(iαk3 + k2 + (iγk + β)A)−1‖ ≤ C.

Then, for all k ∈ Z \ {0}, we obtain

‖(−iαk3 − k2 − (iγk + β)A)−1‖ ≤ C

|iαk3 + k2|
.

Since 0 ∈ ρ(A) if and only if 0 ∈ ρ(A,A), we have σ(A,A) = ∅.
We combine properties of R-bounded families with the identities

ik3(iαk3 + k2 + iγkA+ βA)−1 =
ik3

iαk3 + k2
dk(dk −A)−1

and

kA(iαk3 + k2 + iγkA+ βA)−1 =
−k

iγk + β
(dk(dk −A)−1 − I)

to find that {ik3(bk + iγkA+ βA)−1}k∈Z and {kA(bk + iγkA+ βA)−1}k∈Z
are R-bounded.
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4. Maximal regularity for a third-order differential equation in
periodic Besov spaces. Before introducing the Bs

p,q-maximal regularity
for equation (1.4), we recall the definition of periodic Besov space. Let S(R)
be the Schwartz space on R, S ′(R) the space of all tempered distributions
on R, and D′(T) the space of 2π-periodic distributions. Let D′(T;X) =
B(D(T);X) be the space of all bounded linear operators from D(T) to X.
The elements of D′(T;X) are called X-valued distributions on T. Let Φ(R)
be the set of all systems φ = {φj}j≥0 ⊆ S(R) satisfying supp(φ0) ⊆ [−2, 2],
and

supp(φj) ⊆ [−2j+1,−2j−1] ∪ [2j−1, 2j+1],
∑
j≥0

φj(t) = 1 for t ∈ R,

and, for α ∈ N ∪ {0}, there is a Cα > 0 such that

sup
j≥0, x∈R

2αj‖φ(α)
j (x)‖ ≤ Cα.

That such systems exist is a well known fact which is related to the Little-
wood–Paley decomposition. For further information, see [1, 2, 5, 7].

Definition 4.1. Let 1 ≤ p, q ≤ ∞, s ∈ R, and φ = (φj)j≥0 ∈ Φ(R). The
X-valued periodic Besov space is defined by

Bs,φ
p,q (T;X) = {f ∈ D′(T;X) : ‖f‖

Bs,φp,q
<∞}

where

‖f‖
Bs,φp,q

=
(∑
j≥0

2jsq
∥∥∥∑
k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥q
p

)1/q

with the usual modification when p =∞ or q =∞. The space Bs,φ
p,q is inde-

pendent of φ ∈ Φ(R), and the norms ‖ · ‖
Bs,φp,q

for different φ are equivalent.

We will denote ‖ · ‖
Bs,φp,q

simply by ‖ · ‖Bsp,q .

For further references on these spaces and their properties, see [7].

Theorem 4.2 ([7]). Let 1 ≤ p, q ≤ ∞, and s ∈ R. Let X and Y be
Banach spaces. If the family {Lk}k∈Z ⊆ B(X,Y ) is M-bounded of order 2,
then {Lk}k∈Z is a Bs

p,q-multiplier.

Recall that Theorem 4.2 does not impose any conditions on the Banach
spaces X and Y .

Lemma 4.3. Let α, β, γ > 0, and let A and B be closed linear operators
defined on X. If {Mk}k∈Z and {kBNk}k∈Z are bounded families of operators,
then

{k2ak∆
2Nk}k∈Z and {k3B∆2Nk}k∈Z

are also bounded.
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Proof. We follow the proof of Lemma 3.7.Note that{akNk}k∈Z is bounded
if and only if {bkNk}k∈Z is bounded. Further, for all j∈Z fixed, {akNk+j}k∈Z
and {kBNk+j}k∈Z are bounded. For all k ∈ Z, we have

k2ak∆
2Nk = iγkak(Nk −Nk+2)kBNk+1 −Mkk

2 ∆2bk
bk+1

bk+1

ak+1
Mk+1

+ kak(Nk+2 −Nk)k
∆1bk+1

bk+1

bk+1

ak+1
Mk+1

and

k3B∆2Nk = k2B(Nk −Nk+2)kBNk+1 − kBNkk
2 ∆2bk
bk+1

bk+1

ak+1
Mk+1

− k2B(Nk+2 −Nk)k
∆1bk+1

bk+1

bk+1

ak+1
Mk+1.

Since {bk}k∈Z is a 2-regular sequence, Lemma 3.7 shows that{k2ak∆
2Nk}k∈Z

and {k3B∆2Nk}k∈Z are bounded.

Our two principal results in this section are Theorems 4.4 and 4.5 below.

Theorem 4.4. Let 1 ≤ p, q ≤ ∞, and s > 0. Let α, β, γ ∈ R+, and
let A and B be closed linear operators defined on a Banach space X. The
following assertions are equivalent:

(i) {kBNk}k∈Z and {Mk}k∈Z are bounded.
(ii) {kBNk}k∈Z and {Mk}k∈Z are Bs

p,q-multipliers.

Proof. (i)⇒(ii). According to Theorem 4.2, we need to show that
{Mk}k∈Z and {kBNk}k∈Z are M-bounded of order 2. Exactly the same
calculation made in Theorem 3.8 displays that k∆1Mk and k∆1(kBNk) are
uniformly bounded. Now note that

k2∆2Mk = k2ak∆
2Nk + k2 ∆2ak

ak+1
Mk+1 − k

∆1ak
ak

kak(Nk −Nk+2).

Also
k2∆2(kBNk) = k3B∆2Nk + k2B(Nk+2 −Nk).

From Lemmas 3.7 and 4.3 we conclude that {Mk}k∈Z and {kBNk}k∈Z are
M-bounded of order 2.

(ii)⇒(i). It follows from the Closed Graph Theorem that there exists a
C ≥ 0 (independent of f) such that, for f ∈ Bs

p,q(T;X), we have∥∥∥∑
k∈Z

ek ⊗Mkf̂(k)
∥∥∥
Bsp,q
≤ C‖f‖Bsp,q .

Let x ∈ X, and define f(t) = eiktx for k ∈ Z fixed. Then the preceding
inequality implies

‖ek‖Bsp,q‖Mkx‖Bsp,q = ‖ekMkx‖Bsp,q ≤ C‖ek‖Bsp,q‖x‖Bsp,q .
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Hence ‖Mk‖ ≤ C for all k ∈ Z, and supk∈Z ‖Mk‖ < ∞. Similarly,
supk∈Z ‖kBNk‖ <∞.

Theorem 4.5. Let 1 ≤ p, q ≤ ∞, and s > 0. Let X be a Banach space.
The following assertions are equivalent:

(i) Equation (1.4) has Bs
p,q-maximal regularity.

(ii) σ(A,B) = ∅, and the families {Mk}k∈Z and {kBNk}k∈Z are bounded.

Proof. (i)⇒(ii). The same proof as that of Theorem 3.9 shows that, for
all k ∈ Z, bk + iγkB + βA has an inverse. Suppose bk + iγkB + βA has no
bounded inverse. Then for each k ∈ Z, there exists a sequence {yk,n}n∈Z ⊆ X
such that

‖yn,k‖ ≤ 1 and ‖(bk + iγkB + βA)−1yk,n‖ ≥ |n|2+s, for all n ∈ Z.

Defining xk = yk,k, we have

‖(bk + iγkB + βA)−1xk‖ ≥ |k|2+s for all k ∈ Z.

Let

g(t) =
∑

k∈Z\{0}

xk
|k|2+s

eikt.

Note that g ∈ Bs
p,q(T;X). In fact,∑

j≥0

2jsq
∥∥∥∑
k∈Z

ek ⊗ φj(k)ĝ(k)
∥∥∥q
p

=
∑
j≥0

2jsq
∥∥∥∥∑
k∈Z

ek ⊗ φj(k)
xk
|k|2+s

∥∥∥∥q
p

=
∑
j≥0

2jsq
∥∥∥∥∑
k∈Z

ek ⊗
1

|k|2
φj(k)

xk
|k|s

∥∥∥∥q
p

.

Since supp(φj) ⊆ [−2j+1,−2j−1] ∪ [2j−1, 2j+1] and by the estimation made
in the construction of Besov spaces, we have the inequality∑

j≥0

2jsq
∥∥∥∑
k∈Z

ek ⊗ φj(k)ĝ(k)
∥∥∥q
p
≤
∑
j≥0

2jsq
C

2jq
1

2q(j−1)s
<∞.

By hypothesis, there exists a unique strong Bs
p,q-solution u of (1.4). Since

(1.4) holds for almost t ∈ [0, 2π], taking the Fourier transform we obtain

û(k) = −(bk + iγkB + βA)−1ĝ(k) for all k ∈ Z.

We know that u(t) =
∑

k∈Z\{0}−
xk
|k|2+s (bk + iγkB + βA)−1eikt, and since∥∥∥∥ xk

|k|2+s
(bk + iγkB + βA)−1

∥∥∥∥ ≥ 1

we have u /∈ Bs
p,q(T;X), a contradiction. Hence (bk + iγkB+βB)−1 ∈ B(X)

for all k ∈ Z. Therefore, σ(A,B) = ∅.
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By an analogous idea to the proof of Theorem 3.9, we deduce that the
families {ak(bk + iγkB + βA)−1}k∈Z and {kB(bk + iγkB + βA)−1}k∈Z are
Bs
p,q-multipliers. The result follows from Theorem 4.4.

(ii)⇒(i). By (ii) and Theorem 4.4, {Mk}k∈Z and {kBNk}k∈Z are Bs
p,q-

multipliers. Given f ∈ Bs
p,q(T;X), there exists u ∈ Bs

p,q(T;X) such that

(4.1) û(k) = (−bk − iγkB − βA)−1f̂(k) for all k ∈ Z.
Since 1 ≤ p, q ≤ ∞ and s > 0, we have Bs

p,q(T;X) ⊆ Lp(T;X). Lemma 3.5
shows that u(t) ∈ D(A) ∩D(B) for almost t ∈ [0, 2π].

Define Ik = (1/ak)I if k 6= 0 and I0 = I. According to Theorem 4.2, the
family {Ik}k∈Z is a Bs

p,q-multiplier. Hence {IkMk}k∈Z is a Bs
p,q-multiplier.

In other words, {Nk}k∈Z is a Bs
p,q-multiplier. Thus, there exists a function

u3 such that, for all integers k, we have

û3(k) = −ik3(−bk − iγkB − βA)−1f̂(k).

By (4.1), for all k ∈ Z, we have û3(k) = −ik3û(k). Thus, u ∈ Bs+3
p,q (T;X).

On the other hand, since {kBNk}k∈Z is a Bs
p,q-multiplier, there exists a

function v ∈ Bs
p,q(T;X) such that

v̂(k) = ikB(−bk − iγkB − βA)−1f̂(k) for all k ∈ Z.

It follows from (4.1) that v̂(k) = ikBû(k) for all k ∈ Z.
Moreover, since Bs+3

p,q (T;X) ⊆ Bs+1
p,q (T;X), we have u′ ∈ Bs

p,q(T;X) and

û′(k) = ikû(k) for all k ∈ Z. Since B is a closed linear operator, we have

v̂(k) = B(ikû(k)) = Bû′(k) = B̂u′(k) for all k ∈ Z.
By the uniqueness of the Fourier coefficients, v = Bu′. This implies that
u′ ∈ Bs

p,q(T; [D(B)]). Accordingly u ∈ Bs+1
p,q (T; [D(B)]).

Following the lines of the proof of Theorem 3.9 we note that the family
{βA(bk + iγkB + βA)−1}k∈Z is a Bs

p,q-multiplier. Hence, there exists w ∈
Bs
p,q(T;X) satisfying

ŵ(k) = A(−bk − iγB − βA)−1f̂(k) for all k,

hence ŵ(k) = Aû(k) for all k ∈ Z. By the uniqueness of Fourier co-
efficients, we conclude that w = Au, so u ∈ Bs

p,q(T; [D(A)]). Therefore

u ∈ Bs+3
p,q (T;X)∩Bs+1

p,q (T; [D(B)])∩Bs
p,q(T; [D(A)]). As u ∈ Bs+3

p,q (T;X), we
have u(0) = u(2π), u′(0) = u′(2π) and u′′(0) = u′′(2π). Since A and B are
closed linear operators, it now follows from (4.1) that

αû′′′(k) + û′′(k) = βÂu(k) + γB̂u(k) + f̂(k) for all k ∈ Z.
From the uniqueness of Fourier coefficients, we conclude that (1.4) holds
a.e. in [0, 2π]. Therefore u is a strong Bs

p,q-solution of (1.4). Using the same
argument as for Theorem 3.9 we find that this solution is unique.



210 V. Poblete and J. C. Pozo

In our next corollaries, we use the notations{Sk}k∈Z,{ck}k∈Z and{dk}k∈Z,
introduced in Section 3. The proofs are similar to the corresponding ones of
Section 3, so we omit them.

Corollary 4.6. Let 1 ≤ p, q ≤ ∞, s > 0 and X a Banach space.
Assume that the families {akSk}k∈Z and {(iγk/β)BSk}k∈Z are bounded. If
supk∈Z ‖akSk‖ < 1, then equation (1.4) has Bs

p,q-maximal regularity.

Corollary 4.7. Let X be a Banach space and 1 ≤ p, q ≤ ∞ and s > 0.
The following assertions are equivalent:

(i) Equation (1.4) with B ≡ 0 has Bs
p,q-maximal regularity.

(ii) {ck}k∈Z ⊆ ρ(A) and {ak(ck −A)−1}k∈Z is bounded.

Corollary 4.8. Let X be a Banach space and 1 ≤ p, q ≤ ∞ and s > 0.
The following assertions are equivalent:

(i) Equation (1.4) with B ≡ A has Bs
p,q-maximal regularity.

(ii) {dk}k∈Z ⊆ ρ(A) and {dk(dk −A)−1}k∈Z is bounded.

5. Maximal regularity for a third-order differential equation in
periodic Triebel–Lizorkin spaces. In this section, we study maximal
regularity for equation (1.4) in periodic Triebel–Lizorkin spaces. We briefly
recall their definition in the vector-valued case (see [14]). We use the nota-
tions S(R;X), S ′(R;X), D′(T;X) and Φ(R) of the preceding section.

Let φ = (φk)k∈N0 ∈ Φ(R) be fixed, for 1 ≤ p, q ≤ ∞, and s ∈ R. The
X-valued periodic Triebel–Lizorkin spaces is defined by

F s,φp,q (T;X) = {f ∈ D′(T;X) : ‖f‖
F s,φp,q

<∞}

where

‖f‖
F s,φp,q

=
∥∥∥(∑

j≥0

2jsq
∥∥∥∑
k∈Z

ek ⊗ φj(k)f̂(k)
∥∥∥q
X

)1/q∥∥∥
p

with the usual modification when p =∞ or q =∞. The space F s,φp,q is inde-
pendent of φ ∈ Φ(R), and the norms ‖ · ‖

F s,φp,q
for different φ are equivalent.

Consequently, we simply denote ‖ · ‖
F s,φp,q

by ‖ · ‖F sp,q .

Theorem 5.1 ([14]). Let 1 ≤ p, q ≤ ∞, s ∈ R, and let X,Y be Banach
spaces. If the family {Lk}k∈Z ⊆ B(X,Y ) is M-bounded of order 3, then
{Lk}k∈Z is an F sp,q-multiplier.

Recall that Theorem 5.1, as in the case of Theorem 4.2, does not impose
any conditions on the underlying Banach spaces X and Y .

The proof of Theorem 5.3 below will depend on our next result.
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Lemma 5.2. Let α, β, γ > 0, and let A and B be closed linear operators
defined on X. If {Mk}k∈Z and {kBNk}k∈Z are bounded families, then so are

{k3ak∆
3Nk}k∈Z and {k4B∆3Nk}k∈Z.

Proof. We follow the proofs of Lemmas 3.7 and 4.3. We note that
{akNk}k∈Z is bounded if and only if {bkNk}k∈Z is bounded. Further, for
all j ∈ Z fixed, {akNk+j}k∈Z and {kBNk+j}k∈Z are bounded. Using the
calculations of Lemma 4.3, we see that for all k ∈ Z,

∆2Nk = (Nk+2 −Nk)(−∆1bk+2 − iγB)Nk+1 −Nk(∆
2bk)Nk+1.

Therefore,

(5.1) k3ak∆
3Nk

= k2ak(∆
2Nk+1)k(−∆bk+2 − iγB)Nk+2

+ k3ak(∆
2Nk)k(−∆bk+2 − iγB)Nk+2

− kak(Nk+2 −Nk)k
2 ∆2bk+1

bk+2
bk+2Nk+2

+ kak(Nk+2 −Nk)k
2(−∆bk+1 − iγB)∆1Nk+1

− k3 ∆3bk
bk+2

akNk+1bk+2Nk+2 − k2 ∆2bk
bk+2

kak(∆
1Nk)bk+2Nk+2

− k2 ∆2bk
bk

bkNkkak(Nk+2 −Nk).

Moreover, we have

(5.2) k4B∆3Nk

= k3B(∆2Nk+1)k(−∆1bk+2 − iγB)Nk+2

+ k3B(∆2Nk)k(−∆2bk+2 − iγB)Nk+2

+ k2B(Nk+2 −Nk)k
2 ∆2bk+1

bk+2
bk+2Nk+2

− k2B(Nk+2 −Nk)k
2(−∆2bk+2 − iγB)(Nk+2 −Nk)

+
k3∆3bk
bk+2

iakNk+1bk+2Nk+2 −
k2∆2bk
bk+2

k2B(∆1Nk)bk+2Nk+2

− k2∆2bk
bk

bkBNkk
2(Nk+2 −Nk).

Since {bk}k∈Z is a 3-regular sequence, it follows from Lemmas 3.7 and 4.3
that all the terms on the right side of (5.1) and (5.2) are uniformly bounded.
Therefore, {k3ak∆

3Nk}k∈Z and {k4B∆3Nk}k∈Z are bounded.

Our two principal results in this section are Theorems 5.3 and 5.4 below.
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Theorem 5.3. Let 1 ≤ p, q ≤ ∞, and s > 0, and let A and B be closed
linear operators defined on a Banach space X. The following assertions are
equivalent:

(i) {kBNk}k∈Z and {Mk}k∈Z are bounded.
(ii) {kBNk}k∈Z and {Mk}k∈Z are F sp,q-multipliers.

Proof. (i)⇒(ii). Theorem 4.4 shows that {Mk}k∈Z and {kBNk}k∈Z are
M-bounded of order 2. Moreover,

k3∆3Mk = k3ak∆
3Nk + k3(ak+3 − ak)∆2Nk+1 + k3(∆2ak+1)(∆1Nk+1)

− 2k3(∆2ak)(∆
1Nk+1) + (∆3ak)Nk+2,

and

k3∆3(kBNk) = k4B∆3Nk + 3k3B∆2Nk+1.

It follows from Lemmas 3.7, 4.3 and 5.2 that {Mk}k∈Z and {kBNk} are
M-bounded of order 3. Condition (ii) now follows from Theorem 5.1.

(ii)⇒(i). The proof follows the same lines as that of Theorem 4.4.

Theorem 5.4. Let 1 ≤ p, q ≤ ∞. If s > 0 and X is a Banach space,
then the following assertions are equivalent:

(i) Equation (1.4) has F sp,q-maximal regularity.
(ii) σ(A,B) = ∅, and the families {Mk}k∈Z and {kBNk}k∈Z are bounded.

Proof. The proof is similar to that of Theorem 4.5.

In our next corollaries, we use the notations {Sk}k∈Z, {ck}k∈Z and
{dk}k∈Z, introduced in Section 3. The proofs are similar to the corresponding
ones of Section 3, so we omit them.

Corollary 5.5. Let 1 ≤ p, q ≤ ∞, s > 0, and X a Banach space.
Suppose that the families {akSk}k∈Z and {ik(γ/β)BSk}k∈Z are bounded. If
supk∈Z ‖akSk‖ < 1, then equation (1.4) has F sp,q-maximal regularity.

Corollary 5.6. Let 1 ≤ p, q ≤ ∞, s > 0 and X a Banach space. The
following assertions are equivalent:

(i) Equation (1.4) with B ≡ 0 has F sp,q-maximal regularity.

(ii) {ck}k∈Z ⊆ ρ(A) and {ak(ck −A)−1}k∈Z is bounded.

Corollary 5.7. Let 1 ≤ p, q ≤ ∞, s > 0, and X a Banach space. The
following assertions are equivalent:

(i) Equation (1.4) with B ≡ A has F sp,q-maximal regularity.

(ii) {dk}k∈Z ⊆ ρ(A) and {dk(dk −A)−1}k∈Z is bounded.
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6. Examples. In this section, we apply our results to some interesting
examples.

Example 6.1. Let α, β, γ ∈ R+. Let 1 ≤ p, q ≤ ∞, and s > 0. Consider
the abstract equation

(6.1) αu′′′(t) + u′′(t) = βAu(t) + γAu′(t) + f(t) for t ∈ [0, 2π]

with boundary conditions u(0) = u(2π), u′(0) = u′(2π) and u′′(0) = u′′(2π),
and A a positive selfadjoint operator defined on a Hilbert space X such
that infλ∈σ(A){λ} 6= 0. If f ∈ L2(T;X) (resp. Bs

p,q(T;X) and F sp,q(T;X)),

then equation (6.1) has L2-maximal regularity (resp. Bs
p,q-maximal and F sp,q-

maximal regularity).

Proof. We have

dk =
−(αγk4 + βk2)

(γk)2 + β2
+ i

(γ − αβ)k3

(γk)2 + β2
.

Since A is positive selfadjoint such that infλ∈σ(A) ‖λ‖ 6= 0, we know that
σ(A) ⊆ [ε,∞) with some ε > 0. This implies that dk ∈ ρ(A) for all k ∈ Z.
Moreover, by [38, Chapter 5, Section 3.5],

‖(dk −A)−1‖ =
1

dist(dk, σ(A))
.

Therefore, supk∈Z ‖dk(dk − A)−1‖ < ∞. It follows from Corollary 3.12
that equation (6.1) has L2-maximal regularity. According to Corollaries 4.8
and 5.7, equation (6.1) has, respectively, Bs

p,q-maximal regularity and F sp,q-
maximal regularity.

For the next example we need to introduce some preliminaries on secto-
rial operators. Denote by Σφ ⊆ C the open sector

Σφ = {λ ∈ C \ {0} : |arg λ| < φ}.

We denote

H(Σφ) = {f : Σφ → C holomorphic}

and

H∞(Σφ) = {f : Σφ → C holomorphic and bounded}.

H∞(Σφ) is endowed with the norm

‖f‖φ∞ = sup
|arg(λ)|<φ

|f(λ)|.

We further define the subspace H0(Σφ) of H(Σφ) as follows:

H0(Σφ) =
⋃

α,β<0

{f ∈ H(Σφ) : ‖f‖∞α,β <∞}
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where

‖f‖∞α,β = sup
|λ|≤1

|λαf(λ)|+ sup
|λ|≥1

|λ−βf(λ)|.

Definition 6.2. A closed linear operator A in X is called sectorial if
the following two conditions hold:

(i) D(A) = X, R(A) = X, and (−∞, 0) ⊆ ρ(A).
(ii) supt>0 ‖t(t+A)−1‖ ≤M for some M > 0.

A is called R-sectorial if the set {t(t + A)−1}t>0 is R-bounded. We denote
the class of sectorial operators (resp. R-sectorial operators) in X by S(X)
(resp. RS(X)).

If A ∈ S(X), then Σφ ⊆ ρ(−A) for some φ > 0 and

sup
|arg(λ)|<φ

‖λ(λ+A)−1‖ <∞.

We denote the spectral angle of A ∈ S(X) by

φA = inf
{
φ : Σπ−φ ⊆ ρ(−A), sup

λ∈Σπ−φ
‖λ(λ+A)−1‖ <∞

}
.

Definition 6.3. Let A be a sectorial operator. If there exist φ > φA
and a constant Kφ > 0 such that

(6.2) ‖f(A)‖ ≤ Kφ‖f‖φ∞ for all f ∈ H0(Σφ)

then we say that a sectorial operator A admits a bounded H∞-calculus.

We denote the class of sectorial operators A which admit a bounded
H∞-calculus by H∞(X). Moreover, the H∞-angle is defined by

φ∞A = inf{φ > φA : (6.2) holds for some Kφ}.

Remark 6.4. Let A be a sectorial operator which admits a bounded
H∞-calculus. If the set

{h(A) : h ∈ H∞(Σθ), ‖h‖θ∞ < 1}
is R-bounded for some θ > 0, then we say that A admits an R-bounded
H∞-calculus. We denote the class of such operators byRH∞(X). TheRH∞-
angle is defined analogously to the H∞-angle, and is denoted θR∞A . For fur-
ther information about sectorial and R-sectorial operators, see [37].

To prove Lemma 6.6 below, we need, the following proposition from
functional calculus theory (cf. [20]).

Proposition 6.5. Let A ∈ RH∞(X) and suppose that {hλ}λ∈Λ ⊆
H∞(Σθ) is uniformly bounded for some θ > θR∞A , where Λ is an arbitrary
index set. Then the set {hλ(A)}λ∈Λ is R-bounded.
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Lemma 6.6. Let α, β ∈ R+ and X be a UMD-space. If A ∈ RH∞(X)
with θR∞A < π/3, then the families of operators{
ik3

(
− iαk

3 + k2

β
−A

)−1}
k∈Z

and

{
ikA1/2

(
− iαk

3 + k2

β
−A

)−1}
k∈Z

are R-bounded.

Proof. For every k ∈ Z we define F 1
k : Σπ/3 → C and F 2

k : Σπ/3 → C by

F 1
k (z) =

iβk3

−(iαk3 + k2 + βz)
and F 2

k (z) =
iβkz1/2

−(iαk3 + k2 + βz)
,

where z1/2 is defined in C r {0} and it is holomorphic in C r (−∞, 0].
Furthermore, for all k ∈ Z and z ∈ Σπ/3 we have iαk3 + k2 + βz 6= 0.

Therefore, for all k ∈ Z the functions F 1
k and F 2

k are holomorphic in Σπ/3.

We claim that for j ∈ {1, 2} there exists a constant M ≥ 0 such that

sup
k∈Z
‖F jk‖

π/3
∞ ≤M.

Indeed, note that for all k ∈ Z r {0} we have

−(iαk3 + k2 + βz) = −(iαk3 + k2)

(
1 +

βz

iαk3 + k2

)
.

Since for all k ∈ Zr {0} and z ∈ Σπ/3 we have βz
iαk3+k2

∈ Σπ/3+π/2 and the
distance of −1 to this sector is positive, we have

sup
k∈Zr{0}

‖F 1
k ‖π/3∞ ≤M1 for some M1 ≥ 0.

Note also that for all k ∈ Z r {0},

−(iαk3+k2+βz) =−
√
iαk3 +k2 z1/2

(
1+

iβ1/2z1/2

√
iαk3 +k2

)(√
iαk3 +k2

z1/2
−iβ1/2

)
.

For all k ∈ Z r {0} and z ∈ Σπ/3 we have

iβ1/2z1/2

√
iαk3 + k2

∈ Σπ/2+π/6+π/4 and

√
iαk3 + k2

z1/2
∈ Σπ/6+π/4.

Since the distance of −1 to Σ11π/12 is positive and the distance of i to Σ5π/12

is also positive, we see that supk∈Zr{0} ‖F 2
k ‖

π/3
∞ ≤M2 for some M2 ≥ 0.

In addition, for all z ∈ Σπ/3 the functions F 1
0 (z) = 0 = F 2

0 (z). Therefore,

there exists M ≥ 0 such that supk∈Z ‖F
j
k‖

π/3
∞ ≤M for j = 1, 2. With a direct

computation for all k ∈ Z and z ∈ Σπ/3 we have

F 1
k (z) =

ik3

− iαk3+k2

β − z
and F 2

k (z) =
ikz1/2

−(iαk3+k2)
β − z

.
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Since A ∈ RH∞(X), for all k ∈ Z the operators

F 1
k (A) = ik3

(
− iαk

3 +k2

β
−A
)−1

and F 2
k (A) = ikA1/2

(
− iαk

3 +k2

β
−A
)−1

exists. It follows from Proposition 6.5 that the families of operators
{F 1

k (A)}k∈Z and {F 2
k (A)}k∈Z are R-bounded.

Example 6.7. Let X be a UMD-space, and let p ∈ (1,∞). Suppose
A ∈ RH∞(X) with θR∞A < π/3. Consider the family of operators

F =

{
ikA1/2

(
− iαk

3 + k2

β
−A

)−1

: k ∈ Z
}

with α, β > 0. If γ > 0 is such that (γ/β)Rp(F) < 1, then the equation

(6.3) αu′′′(t) + u′′(t) = βAu(t) + γA1/2u′(t) + f(t) for t ∈ [0, 2π]

with boundary conditions u(0) = u(2π), u′(0) = u′(2π) and u′′(0) = u′′(2π)
has Lp-maximal regularity.

Proof. According to Lemma 6.6, the families of operators{
ikA1/2

(
− iαk

3 + k2

β
−A

)−1}
k∈Z

and

{
ik3

(
− iαk

3 + k2

β
−A

)−1}
k∈Z

are R-bounded. Since (γ/β)Rp(F) < 1, it follows from Corollary 3.10 that
equation (6.3) has Lp-maximal regularity.
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